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In this document we provide supplementary materials that we are not able to fit into the main
manuscript due to the page limit. Specifically, we show the architecture of the discriminator, dataset
information, setups on all datasets, evaluation protocals, and more visualizations of the disentangled
factor graphs.

A. Discriminator Architecture

The discriminator is taken to be a three-layer GCN, followed by a one-layer MLP. The input of the
discriminator is the transformed features of nodes with dimmension F', and the factor graphs. The
dimensions of the hidden features of the three-layer GCN are set to F', F//2, and F respectively.
The non-linear activation function is Tanh and no residual connection is used. Mean pooling is then
applied to the generated node features to obtain the features of graphs. These features are then fed to
the one-layer MLP to generate the activation for each class.

B. Dataset Information

We list the information of all datasets used in the manuscript in Tab. [T}

The synthetic dataset contains 20,000 samples. 14,000 for training, 2,000 for validation, and 4,000
for testing. The number of nodes is fixed to 15 and the average degree of samples is 3.43. The task for
this dataset is multi-label graph classification, where the number of labels is the same as the number
of factor graphs.

ZINC dataset contains 12,000 samples. The task of this dataset is to regress a molecular property (the
constrained solubility) [Jin et al.,2018]]. The number of nodes per graph ranges from 9 to 37, and the
average degree of samples is 2.15. Since there are three different type of bonds in the graphs, the
number of factor graphs to disentangle is taken to be three.

The other three datasets are widely used graph classification datasets. IMDB-B is a movie collabo-
ration dataset. Each graph is derived from a pre-specified genre of movies, where nodes represent
actors/actresses and edges represent whether two actors/actresses appear in a same movie. The task is
to predict the genre of graphs. COLLAB is a scientific collaboration dataset generated from three
public collaboration datasets: High Energy Physics, Condensed Matter Physics, and Astro Physics.
Each graph represents a researcher and the task is to predict the field of this researcher. MUTAG is a
dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds with 7 discrete labels.
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Table 1: Dataset information used in the main manuscript include the data split, statistic information,
and the tasks.

Dataset information

Dataset
Split (train/val/test) ~ #Node per graph ~ Average degree  #Factor graphs Task
Synthetic  14,000/2,000/4,000 15 3.42 4 multi-label graph classification
ZINC 10,000/1,000/1,000 9-37 2.15 3 graph regression
IMDB-B  10-fold (total 1000) 19.8 10.78 - multi-class graph classification (2 classes)
COLLAB  10-fold (total 5000) 74.5 67.61 - multi-class graph classification (3 classes)
MUTAG 10-fold (total 188) 179 3.20 - multi-class graph classification (2 classes)

C. Setups on All Datasets

For the synthetic dataset, two disentangle layers with eight and four factor graphs respectively are
used for FactorGCN models. The output is then mean pooled followed by a fully connected layer.
For the ZINC dataset, four disentangle layers with eight, eight, four, two factor graphs respectively
are used. Batch normalization is used after each layer and the output is mean pooled followed by two
fully connected layers. For the other three datasets, four disentangle layers with four, four, two, and
two factor graphs respectively are used. Batch normalization is used after each layer and the output
of each layer are followed by a fully connected layer. All outputs of the fully connected layers are
then summed up to compute the final output.

For the three graph classification datasets, we use the same ten-fold cross-validation training strategy
as [Xu et al.||2018]]. The dataset is separated into ten parts. We generate ten validation accuracy
curves when setting each of parts as the validation one. The ten curves are then averaged. The
maximum accuracy of the averaged curves and the corresponding standard deviation are reported.

D. Evaluation Protocols

For the downstream tasks, the evaluation protocols are the same as the original ones, e.g., Micro-
F1 for multi-label classification takes, Accuracy for multi-class classification tasks, and MAE for
regression tasks.

Two new metrics are designed in this work named GED g and C-score. We will provide a more detailed
description and examples for them. GEDp is based on the definition of graph edit distance (GED),
GED measures distance between two graphs. The distance is represented by the steps used to convert
one graph to the other, where each of the steps can only be vertex insertion, vertex deletion, edge
insertion, or edge deletion. However, computing graph edit distance is NP-complete [Gao et al.,
2010|]. Although we have some approximation algorithm to compute GED [Abu-Aisheh et al.| [2015],
the computational complexity is still high, making it infeasible to evaluate the disentanglement
performance handily.

Since the order of nodes is in fact known through the input graph, we do not need to consider the
vertex insertion and vertex deletion operators during the computation of GED. The GED, for which
we eliminate two operations, is named as GED . Computing GED g can be very fast since we can
just add up the two adjacent matrices, which contain only zeros and ones, and count the number of
ones in the new matrix. For each pair of ground truth graphs and disentangled factor graphs, we can
compute the best match through Hungarian algorithm and obtain the minimum cost. The GEDg
metric is then computed as the average cost together with the standard deviation of the costs.

The GEDg reflects that the capability of the method to generate the latent factor graphs. We also care
about the stability of the disentanglement, meaning that we want a specific factor graph that always
represents a specific ground truth factor graph and remains the same across different input samples.
We thus introduce the consistency score (C-score) to measure the stability of the disentanglement.
C-score is computed based on the result of the Hungarian match. For each sample, the Hungarian
match result will give us the optimal assignment. After matching all the samples, we will obtain a
matched list for each type of the ground truth factor graphs, i.e. four lists if we have four types of
factor graphs. For each list, we count the most frequently generated factor graphs and compute the
percentage of it in the whole list. Averaging the results from all lists gives us the C-score.



F. More Visualization of Disentangled Factor Graphs

We provide in Fig. [[|more visualizations of the samples from the synthetic and the disentangled factor
graphs. The visualized disentangled factor graphs are the best matched factor graphs, after we set the
threshold of the coefficient to make the edges in the factor graph to be the same as the ground truth
one.
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Figure 1: More visualizations of the mixed graph, ground truth factor graphs, and the disentangled
factor graphs on the synthetic dataset.
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