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when noise is fully adversarial in the active regression setting. While extremely useful, the SM Kernel is notoriously2

hard to tune (L147-148). By proving that the statistical cost of tuning the SM Kernel is low, even in this hard regime,3

we show that we need better algorithms for hyperparameter tuning, and not to just collect more data. Also, we provide a4

new mathematical framework to analyze hyperparameter tuning, which hopefully opens the door to new algorithms.5

We thank the reviewers for their constructive and broadly positive feedback. We are pleased to see the reviewers find6

our problem statement interesting and relevant, find our technical results to be sound and relevant to practitioners, and7

find our writing to be clear. We also appreciate the reviewers asking about potential future directions of our work, either8

for new algorithms or for a different statistical setup.9

One important open question identified by (R1, R3, R4) is about finding a polynomial time algorithm. While10

our paper does not have a polynomial time algorithm for SM Kernel hyperparameter tuning, it opens the door for11

more research towards that goal. Previously, it was unknown if exponentially many samples were needed to even12

information-theoretically tune a SM Kernel. If this were the case, then there would be no hope for finding a polynomial13

time algorithm. We show that this barrier does not exist, which gives more hope for a fast algorithm.14

Along the same lines, R1 asks us to “discuss the possible direction[s] of developing the corresponding algorithm”.15

This highlights another potential benefit of our paper: prior work does not frame hyperparameter tuning as a Fourier16

fitting problem. By rigorously and directly connecting the two settings, our paper makes it easier for a polynomial17

time algorithm to originate from signal processing and benefit kernel hyperparameter tuning. The Sparse Fourier18

Transform and Compressed Sensing literatures seem promising in this regard – notably, they both feature fast19

algorithms with statistical guarantees for many Fourier fitting problems. We agree that the paper should discuss these20

directions explicitly, and we have added such a discussion to our conclusion.21

R2 is concerned about the applications and broader impact of our paper. We study kernel ridge regression with22

adversarial noise. There are many applications of this setting. For instance, we cite two papers that use the SM Kernel in23

distinct ways: [HSSM15] uses the SM Kernel in an analysis of the lifespan of lithium-ion batteries and [WDLX15] uses24

the SM Kernel to model human decision-making processes. Many more applications can by found in the papers that25

cite [WA13], which proposed the SM Kernel. So, the SM Kernel is relevant to many applications despite being hard26

to tune. Our broader impact depends on how the SM Kernel is used. We agree the introduction and broader impact27

sections would benefit from a clearer discussion of applications of our framework, and have added that to the paper.28

R1 also brings up the novelty and impact of our paper, and its relationship to [AKM+19]. [AKM+19] is a recent29

STOC paper about Fourier function fitting in the same adversarial noise setting as our paper. They show that kernel30

ridge regression provides a good interpolant when the kernel is fixed (i.e. hyperparameters are known). The novel31

technical contribution of our work is the extension of [AKM+19] to the setting with an unknown kernel. This allows us32

to frame kernel hyperparameter optimization as a Fourier fitting problem, so [AKM+19] lets us prove the first bounds33

on the statistical complexity of learning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernelslearning kernels with totally adversarial noise. Mathematically, this comparison is34

made clear in our introduction (Problem 1 versus Problem 2).35

R4 asks if our results can apply to the fixed data setting. This is an interesting question, but answering it requires a36

different noise model than our totally adversarial noise model. If the data was fixed, then an adversary could arbitrarily37

perturb the signal y(t) only at the observed times. So, a small-norm noise signal would make approximate recovery of38

y(t) totally impossible. Instead, perhaps the adversary could only perturb an ε fraction of the observations? We think39

this is an interesting direction, and it is plausible that our techniques could generalize such a fixed-kernel result into a40

hyperparameter optimization result, but this speculation and out of scope for our paper.41

R2 asks for a “intuition behind the statistical dimension” and how it varies between kernels. Kernels are nonpara-42

metric functions that can involve infinitely many features (in our paper, a feature of a kernel is like the Fourier transform43

of a kernel at a given frequency). Nevertheless, in Kernel Ridge Regression, thanks in part to regularization, kernels can44

typically be well approximated with a finite number of features (this is the idea behind e.g. Random Fourier Features).45

Statistical dimension captures exactly how many features are needed. Since regression in d features requires roughly d46

samples, this means kernel ridge regression needs roughly statistical dimension many observations. For the RBF kernel,47

statistical dimension is linear in the lengthscale parameter and the duration of time we interpolate over. The intuition is48

that if either the lengthscale or the duration of time increase, then we can represent more complex functions with the49

same Fourier-norm, so this necessitates more samples (i.e., larger statistical dimension).50

R2 asks for Clarification about O(1) and C in our bounds. These all refer to a universal constant independent of51

any problem parameters such that the left hand side is bounded by the constant times the right hand side. We thank R2,52

have updated our paper to always use the C notation, and always describe C as a universal constant. R2 asks us to53

include a better intuition for the Energy term in the introduction, beyond what is on lines 33-35. We thank R2 and54

agree; we have now included a stronger mathematical intuition for the Energy term in the introduction.55


