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Abstract

This paper studies the statistical complexity of kernel hyperparameter tuning in the
setting of active regression under adversarial noise. We consider the problem of
finding the best interpolant from a class of kernels with unknown hyperparameters,
assuming only that the noise is square-integrable. We provide finite-sample guaran-
tees for the problem, characterizing how increasing the complexity of the kernel
class increases the complexity of learning kernel hyperparameters. For common
kernel classes (e.g. squared-exponential kernels with unknown lengthscale), our
results show that hyperparameter optimization increases sample complexity by
just a logarithmic factor, in comparison to the setting where optimal parameters
are known in advance. Our result is based on a subsampling guarantee for linear
regression under multiple design matrices which may be of independent interest.

1 Introduction

In machine learning, Kernel Ridge Regression (KRR) is central to modern time series analysis
and nonparametric regression. For time series, Gaussian Processes model the covariance of a
stochastic process using a kernel matrix, and interpolate the underlying signal with KRR [RW06].
In nonparametric regression, kernels define a local-averaging scheme, and KRR provides a smooth
interpolation for the function [Fot07, Tsy09]. Experimentally, it is known that the Kernel Ridge
Regression estimator generalizes and interpolates well over continuous domains [WA13, AKM*19].

However, it is also known that kernel regression only performs well when kernel hyperparameters
are chosen well [WN15, BMS™ 19]. This observation has lead to significant interest in algorithms
that try to find the best kernel parameters in a large search space [WPG™ 19, LCBT04]. Additionally,
the existing research generally assumes that observation noise is independent, unbiased, and random
[RW06, MRT12, AKM* 17, Fot07]. The goal of this paper is to understand the statistical cost of this
sort of hyperparameter optimization when we can have worst-case observation noise. How many
data samples are needed to avoid over-fitting when searching over such a large class of models?

We formalize this problem in an adversarial noise setting that originated in the function approximation
community [CP19a, CM17]. By Bochner’s theorem, every stationary (shift invariant) kernel function
k,, can be written k,, (A) = [ e72™%4 11(€)d for some probability density function . [AKM*19]
introduced the following active regression problem for interpolating with a fixed kernel k,,:

Problem 1. Let y(t) be a signal we wish to interpolate. Let z(t) be an adversarial noise signal. Fix
regularization parameter € > 0 and observe y(t) + z(t) at any chosen times t1, . .., t,. How large
does n need to be so that an interpolant 3 constructed from our observations satisfies:

19—yl < Co - (|l2ll7 + € - Energy,, (y))
for some universal constant Cy > 1.
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Here [|z]|% := fOT |z(t)|? £dt is the natural ¢, norm on [0,7]. Defined formally in Section 3,
Energy “(y) is a natural measure of the cost of representing the ground truth signal y with the kernel
k. Itis roughly equal to the smallest norm of a signal capable of using k,, to exactly reconstruct y.
Intuitively, if the kernel &, cannot represent y easily, then the associated term Energy, (y) is large,
and hence the interpolation error may be large.

Problem 1 is a robust active nonparametric learning problem. It is nonparametric in the sense that a
kernel is being used to interpolate the signal y. It is robust in the sense that the noise function z(t) is
arbitrary (for instance, we do not assume that z(¢) is a zero-mean stochastic process). It is active in
the sense that the user chooses the time points ¢4, . .., t,.

[AKM™19] shows that if we let the number of observations n exceed a natural Statistical Dimension
parameter which is a function of the kernel k,, and regularization parameter € (see Section 2.2 for
a formal definition), then KRR solves Problem 1. Moreover, for many common kernels (square
exponential, sinc, Lorentzian, etc.) this number of samples is necessary in the worst-case.

Since the observation noise z is adversarial, a linear dependence on ||z||% is inevitable. On the
other hand, the Energy #(y) term can be reduced by decreasing ¢, but this increases the statistical
dimension of the problem, necessitating more samples. Alternatively, we can decrease the energy
term substantially by simply choosing a different kernel. This is the problem of kernel hyperparameter
tuning:

Problem 2. Let y(t) be a signal we wish to interpolate. Let z(t) be an adversarial noise signal.
Let U be a (possibly infinite) set of kernel PDFs. Fix regularization parameter € > 0 and observe
y(t) + z(¢) at any chosen times t1, . .., t,. How large does n need to be so that we can select a PDF
i € U and construct a KRR interpolant y from our observations such that:

15 = ylI7 < Co - (IIZI% + & - min Energyu(y)>
pneUu
for some universal constant Cy?

We should think of ¢/ as containing all PDFs corresponding to kernels in a structured class: for
examples, all squared exponential kernels with unknown lengthscale. To solve Problem 2, we must
find hyperparameters that are competitive with the best possible kernel defined by ¢{. This is still a
robust active nonparametric learning problem, but is now generalized to consider hyperparameters. At
a high level, our main result is to prove that the number of time samples required to solve Problem 2
is not much larger than the number of samples required to solve Problem 1.

1.1 Prior work

There is substantial prior work on hyperparameter tuning between the Learning Theory, Time Series,
and Signal Processing literatures. In the Learning Theory community, the problem of “learning
kernels” is typical, but usually assumes we are given a finite set of fixed kernels and have to learn how
to combine the given kernels [CMR09, ZO07, MH19]. There does exist some work that discusses
tuning hyperparameters for kernel families, but these works all make iid noise assumptions [YC10].
There is also work on gradient methods for hyperparameter tuning, but this work generally avoids finite
sample complexity bounds [RW06, BMS™19]. In signal processing, kernel hyperparameter tuning
generalizes the well studied problem of spectrum-blind signal reconstruction [FB96, Bre08, ME09].
However, prior work in that area again does not provide finite sample complexity bounds. The core
technical results of this paper extend tools from recent work on Randomized Signal Processing. In
particular, papers in this area deal with adversarial observation noise, but either assume we know the
kernel function exactly [AKM™ 19] or primarily address Fourier sparse function fitting [CKPS16].

We illustrate the application of our results on the Spectral Mixture (SM) Kernel, introduced by
[WA13]. The SM Kernel has garnered interested in the Gaussian process community for its ability to
interpolate and extrapolate periodic structure [WA13, YWSS15, TBT15], with applications ranging
from modeling human decision-making [WDLX15] to estimating the life span of batteries [HSSM15].
While lots of work has shown that SM Kernel hyperpaerameter tuning is difficult in practice [WNI135,
BMS*19, BHHT 16, HDS17, WDLX15], these works do not show if this tuning is difficult due to a
lack of data, or due to a lack of strong enough algorithms. We resolve this by showing that not much
data is needed to tune SM Kernels.



1.2 Contributions

Our main contribution is to extend work on Randomized Signal Processing to bound the sample
complexity of Problem 2. For many cases (i.e. the Squared Exponential Kernel with unknown
lengthscale), we prove that the sample complexity of learning both the hyperparameters and the
signal y(¢) is only logarithmically larger than the sample complexity of learning y(¢) with known
hyperparameters (see Corollary 3 with ¢ = 1). In other words, solving Problem 2 is not much harder
than solving Problem 1 with the hardest single kernel in &/. We prove this in two core steps:

* First, we consider the setting where we want to optimize over a large but finite set of () possible
kernels. To solve Problem 1, the problem where we have a fixed kernel, prior work requires
the number of samples to depend linearly on 1/6 [AKM™19]. Accordingly, a naive solution to
Problem 2 that combines existing results with a union bound would require the number of samples
to grow linearly with (). In Section 4 we improve this dependence to be logarithmic. Our result
requires a subsampling guarantee for linear operators that may have infinite dimension. When
applied to finite matrices, this result corresponds to a guarantee for subsampled linear regression
with multiple design matrices.

* Next, we show how to use this result to bound the sample complexity of hyperparameter tuning for
kernels with an infinite space of hyperparameters. In particular, Section 5 shows how to discretize
the space of hyperparameters, reducing the problem from picking a hyperparameter in a continuous
space to picking a hyperparameter from a finite set. Then, the result from the first bullet point
bounds the actual sample complexity of learning our hyperparameters. For demonstration purposes,
a full analysis is presented for the commonly used Spectral Mixture (SM) Kernel, but the broad
framework generalizes to most other stationary kernels.

Recall from the discussion on prior work that SM Kernel Hyperparameter tuning is known to be
difficult in practice. However, it was not known if this tuning is difficult because SM Kernels require
many observations, or if we lack algorithms that can efficiently find a good set of hyperparameters.
The second bullet point above resolves this uncertainty under the weak noise assumptions of Prob-
lem 2, showing that even without random noise, a small number of observations can statistically
identify a near-optimal SM Kernel.

2 Preliminaries

Let bold capital letters, like A and B, denote complex-valued matrices. Let bold lower case letters,
like x and y, denote complex-valued vectors. |x||2 denotes the ¢5 norm of x. We view infinite-
dimensional linear operators as generalization of matrices, and functions as generalizations of vectors,
so the notation used with be analogous. Calligraphic capital letters, like A and B will represent either
linear operators or sets; it will be clear from context. Lower case non-bold letters, like f and g, denote
complex-valued functions of real numbers. Typically y(t) and z(¢) will represent functions in the
time domain, while g(&) and h(&) will represent functions in the frequency domain. We use < and >
to denote semidefinite order for both matrices and Hermitian operators.

In general, we use H to denote a Hilbert space. (f, g)» and || - || denote the corresponding inner
product and norm. For a complex number x, we let £* denote its complex conjugate. For a matrix or
linear operator A, we let A* denote the Hermitian adjoint. That is, if A maps between Hilbert spaces
Hi and Ho, then A* : Hoy — Hy satisfies (f, A*g)y, = (Af, g)n, forany f € Hi, g € Ho.

2.1 Shift Invariant Kernels

This paper is concerned with shift-invariant, positive semidefinite kernel functions on the real line. By
Bochner’s theorem, any such kernel is the Fourier transform of a positive measure [RR07], and for
all settings we consider, the measure will be a probability measure with finitely bounded probability
density function p.! We denote the corresponding kernel function by k,,:

ity — t2) = / 2T —) 1 (€) e. (1)
£eR

!"Throughout this paper, 1 will sometimes denote a scaled PDF that integrates to a constant other than 1.



For example, when (&) = \/ﬁ e=8’/20° Jku(A) = e~8%7" is a squared exponential kernel, also

called a radial basis function (RBF) kernel. When p(§) = 1/2F for £ € [—F, F] and 0 elsewhere,
ku(A) = sinc(F'|Al) is a sinc kernel.

We let Lo () denote the space of complex Valued square integrable functions with respect to p. Lo (pt)
has inner product (g, h), = [; g(§ )u(€)dé and norm ||g|? := (g, g),.. We will also refer to

llg]|% as the power ofg w1th respect to /l A function g is in Lo (p) if || g/, < co. We let Lo(T')
denote the set of complex valued square integrable functions on [0, T']. Le. Lo(7T') has inner product

fo Fdt and norm [|z]|3. := (z, z)7. A function  is in Ly (T) if ||| 7 < occ.

2.2 Statistical Dimension and Universal Sampling

As discussed, the sample complexity of interpolating a function y on [0, 7] with a fixed kernel
function £, is characterized by the statistical dimension of that kernel. Before formally defining this
quantity, we introduce the integral operator /C,, : Lo(T") — Lo(T")

Kuz](t) == /0 k(s — t)nc(s)%ds7

which is defined for any kernel function k,, and time range [0, T]. Note that KC;, = JF; F,, where F,
and F; are the following Fourier transform and inverse Fourier transform operators:

T 1
Fu La(T) = La(p) [Fuzx](§) == /0 x(t)e_z’”gtfdt

Fr: Lo(u) — La(T) (Fgl(t) = / 9(6) > () d

Definition 1 (Statistical Dimension). For any bounded PDF | with corresponding kernel k,,, time
range [0, T), and parameter € > 0, the statistical dimension s,, . is defined:

Spe = tr (ICH(ICM + EIT)_l) ,
where It is the identity operator on Lo(T') and tr is the trace of an operator.

Refer to [AKM™19] for bounds on the statistical dimension of common kernels. For example, for

an RBF kernel with variance 02, s,,. = O(c*T/log(1/¢) + log(1/¢)). For a sinc kernel with
bandlimit F, s, . = O(FT + log(1/¢)).

[AKM™19] prove that Problem 1 can be solved with a number of samples depending on the statistical
dimension s,, . as long as active samples are drawn from the following distribution over [0, T':

Definition 2 (Universal Sampling Distribution?). For a parameter o > 0, let

Falt) := W lTaG’T( %)l
A s te 0,7 uT( - )T

Notethatf0 To(t)dt = O(alog ).

Surprisingly, this distribution works for any kernel PDF y and € > 0, as long as o > c¢s,, . for some
universal constant ¢ > 0. Specifically, [AKM™ 19] show that n = Q(s,, (3 +log(s,.c))) independent
samples drawn from [0, 7] with probability proportional to 7, () suffice to solve Problem 1 with
probability (1 — d). The result relies on proving that 7, forms an upper bound for the Ridge Leverage
Function of F;. Details are discussed in Appendix C.2, specifically Lemma 3 and Lemma 4.

2.3 Spectral Mixture Kernels

The core goal of this paper is to bound the sample complexity of learning kernel hyperparameters
under adversarial noise. While our techniques can apply to a wide variety of kernel classes, we

The polynomial factors on « can be tightened using some recent papers [Erd17, CP19b], but this would
only tighten constants in fOT To (t)dt, and hence only tighten constants in the sample complexity.



illustrate their application with the Spectral Mixture (SM) Kernel introduced by [WA13]. The SM
Kernel is defined by having a PDF that is a symmetric mixture of Gaussians.

(£=o)? . .
Formally, let y. »(§) == \/ﬁe_ 202 denote a Gaussian PDF with mean c and lengthscale 2.
Then, let fic o w(§) = 23:1 Wjlte, 0, (§) denote a mixture of ¢ Gaussians with weights in w,

means in c, and lengthscales in o. In the special case that w is the all ones vector, we omit w from
the subscript: pc »(£). The SM Kernel considers the special case of the mixture of Gaussians kernel
when the PDF is symmetric: dfic o w(—E) = dfic,ow(§), making the kernel function real-valued:

q
keomw(s—1t) = Z 7113‘6_2”2(8_”2”12 cos(2m(s — t)c;)
j=1
All our results are stated for the Mixture of Gaussians kernel, so the SM kernel is handled implicitly.

3 Technical Overview

At a high level, we are given a possibly infinite set of PDFs over frequencies ¢/ and want to find a
specific PDF ji € U such the KRR interpolant using /i is a good interpolant for the ground truth
signal y(t). We only get to observe y(t) through adversarially perturbed samples, and we get to pick
those samples to lie anywhere in [0, T']. Our main concern is bounding the number of samples needed
to identify a near-optimal j: and its associated interpolant y. We formally state Problem 2 below:

Problem 2 Restated. Let y(t) be a signal we want to interpolate. Let z(t) be an adversarial noise
signal. Let U be a (possibly infinite) set of kernel PDFs. Let U C U be the subset of PDF capable
of representing y exactly®. That is, U := { € U | 3h € La(p),y = Fh}. Fix regularization
parameter € > 0 and number of observations n. Observe y(t) + z(t) at any chosen times t1, . . ., t,.
Using any [ € U, construct an interpolant y from our observations such that

ly =313 < Co- (23 +e _min_[|n)2)
HEU, y=Fh

for some universal constant Cjy > 1.

Note that, for any 1 € U, we have defined Energy , (y) to be ||h||%, where y = F:h. That is, the
energy of y under PDF p is the norm of the signal whose Inverse Fourier Transform is y. Inuitively,
if it is difficult to represent y in Lo (u), then the energy of y is large.

To make our statistical approach clear, we start by presenting the exact time-sampling and interpolation
schemes used in this paper. We need two algorithms for our analysis: the first picks n times samples
and builds @ different weighted kernel matrices (one for each of () different given kernels); the
second constructs a KRR interpolant for any given weighted kernel matrix. Note that all kernel
matrices are constructed using the exact same time samples.

Algorithm 1 Time Point Sampling

input: Kernel functions k k.., non-negative function p(t) on [0, 7] with known integral

s Kugs

P= fOT p(t)dt, number of samples 7.

output: Times ty,...,t, € [0,T], weights vy,...,v,, PSD matrices K ,..., K,, € C"*",
1: Independently sample ¢1, ..., ¢, from [0, T'] with probability proportional to p(t).

P

2: ForiE{l,...7n}setvi:: W Tplty)”
3: Forge {1,...,Q}andi,j € {1,...,n} set [K, |;; = vivj - ky,(t:,t;)
4: return iy, ... by, V1, Uns Kpyy oo, Ky

Think of p(t) as being 7, (t) for some «. For any particular K,, we can compute and evaluate the
interpolant g as follows:

3This is a technical nuance to handle the edge-case that y(¢) might not be representable by all of the given
PDFs. For instance, if y is a sinusoid with frequency 1, then a bandlimited p supported on frequencies 2 through
4 is incapable to of representing y exactly.



Algorithm 2 Computing the Interpolant

input: Time points ¢y, ...,t, € [0,T], weights vy, ..., v,, PSD matrix K,, € C"*", regularization
parameter € > 0.
ouput: Reconstructed function g, represented implicitly

1: Lety € C™ be the vector with §; = v; - [y(t;) + 2(t;)]

2: return & = (K, +el)™'y

For any ¢ in [0, 7], we can evaluate §(t) by computing &, (t;,t) forall i € 1,...,n and returning
gt) = Zi:l Qi - ku(tivt)-

In order to start off the analysis, we show that solving a Fourier operator analogue to a Ridge
Regression problem guarantees a solution to Problem 2. That is, we reduce the problem of finding a
good interpolant to the problem of solving a specialized Ridge Regression problem. However, this
Ridge Regression problem involves an operator on [0, 7], and is not in terms of samples observed. So,
we then have to bound how many samples we need to observe for our samples to generalize well to
the continuous [0, 7] domain, for all PDFs p € U. This is the core technical challenge of this paper.

Claim 1. Let i € U and § € Lo(p) be near-optimal solutions to a continuous-time Fourier Fitting
problem with ridge regularization:

1779 (erZ)II:rJr€||g|\2<01;Lﬂ€11{{1 min, [II g — (y+ 27 +ellgllz]

Let U C U be the subset of PDFs that are able of representing y exactly. Then,

ly =917 <2(C+ 1|27 +2Ce  min_ ||,
HEU,y=Fh

This claim is proven in Appendix A, and directly generalizes the proof of Claim 4 in [AKM™*19].
Our goal is now to find a /i and § that approximately minimize || F;g — (y + 2)||7 + el|g||7. If we
only had one . to consider, the prior work would be able to solve this with O(s, (% +log(s,.c)))
many samples. However, since our goal is to analyze hyperparameter tuning, we consider the cases
with both exponentially large and infinitely large /. In these cases, union bounds using prior work
would yield exponentially large and unbounded sample complexities, respectively. In order to avoid
this, we form an epsilon-net style argument. The argument follows in two steps:

1. Sampling Time with Finitely Many PDFs: Assume that {{ is finite. Let sy, be the largest
statistical dimension found in /. Then we prove that O(Smax,c log(225== - |1 1)) observations
suffice to recover a near-optimal (fi, §) pair. We emphasize the logarlthmlc dependence on ||,
since this will allow us to consider exponentially large sets in the next step.

2. Discretization of Kernel Hyperparameters: Assume that I/ is the set of Gaussian Mixture PDFs
with ¢ Gaussians, taking means in [—W, W], lengthscales in [m, M], and weights in [0, 1]. Then
we create a finite set of Gaussian Mixture PDFs U such that the best (i, ) pair on U is nearly
optimal on all of . In particular, we find [/ = O((X log(2))a).

Our result from the first bullet point allows us to handle the exponentially large set U created in the
second bullet point. After combining these results and noting that $yax. = O(¢MT), we find that

O(¢?MT log(%)) time samples suffice to identify a near-optimal SM kernel’s hyperparameters. The
rest of this paper breaks down and explains these two theoretical results in detail.

4 Sampling Time with Finitely Many PDFs

In this section we assume that the given set of PDFs U/ is finite, and let () := |{|. Let § and i € U be
the KRR interpolant and associated PDF that minimize our sample ridge regression cost. We then
prove that y describes a nearly-optimal interpolant that satisfies the requirement of Claim 1, so long
as we take sufficient samples from the Universal Sampling Distribution (Definition 2). In particular,
if Smax.e 1S the largest statistical dimension found in ¢/, then we require O(Smax e 1og(m -Q))
samples We formally state this first core technical result:



Theorem 1. Let U be a finite set of PDFs. Let syax e be the maximum statistical dimension in U. Let
Algorithm 1 output observation times t1, ... ,t,, weights vy, . .., v,, and weighted Kernel Matrices

K, ,...,K,,. Lety be the observed response vector. Let [i, & solve the ridge regression problem:
fi,& = argmin ||K,a—y[3+ecaTK, o ()
peEU,aceR™
Define the Fourier domain version of the interpolant*: §(§) = Z?:l vjdj(f%”ftf. Ifn =
Q(Smax,e log(22%== - Q)), then with probability 1 — § we have
1F29 — (y + )7 +ellgll < (72+ ) min min 1Frg = (y+2)I7 +<llgll

Theorem 1 is proven in Appendix C.2, with a simplified and more approachable proof for the matrix
case in Appendix C.1. Intuitively, Theorem 1 states that despite having adversarial noise, choosing
from a large family of kernels during hyperparameter tuning does not sharply increase the sample
complexity of fitting y(¢). In other words, Theorem 1 states that Q(Smax, log( 225 - Q)) samples
guarantees a solution to Problem 2 when I/ is finite.

In prior work, [AKM"19] proves that (s, log(s,.- + 3)) samples guarantees a solution to
Problem 1, and that this bound is tight for many common kernels. Since Problem 2 reduces to
Problem 1 when @) = 1, the sample complexity in Theorem 1 must be tight up to logarithmic factors.
Additionally, note that union bounding this result from [AKM™ 19] over the Q kernels would yield
a sample complexity linear in @), instead of the logarithmic rate we prove. This logarithmic rate is
important, since the next section will take @) to be exponentially large.

It remains unclear if the dependence on % in the approximation error is neccessary if we want a
logarithmic sample complexity dependence on (). The standard randomized numerical linear algebra
approach method requires O(()) many matrix-multiplication claims, which then incurs a O(%)
sample complexity. This remains as an interesting open problem even in the case of least squares
regression, where we choose one of () different design matrices.

So, Theorem 1 tells us that we can choose from a finite set of kernels without worry, but practitioners
do not consider finite sets of kernels in practice. Instead, they usually consider fitting kernels like the
SM Kernel, which is parameterized by several continuous real-valued parameters. So, we cannot
directly apply Theorem 1 to SM Kernel fitting; one more step is needed.

5 Discretization of Spectral Mixture Hyperparameters

We now return to the original goal of hyperparameter tuning for kernels. At a high level, we expect that
a sufficiently small change to a kernel’s hyperparameters should not substantially impact the quality
of the kernel as an interpolant. So, instead of considering the continuous range of all hyperparameters,
we create a finite “net” of hyperparameters U.In particular, any selection of hyperparameters 1 € U
has a corresponding selection of hyperparameters z that lies in the net U. Since we design /i to
be sufficiently similar to [i, we can then prove that i cannot achieve a much smaller error than f.
Intuitively, we can think U as being a discretization of the full continuous set of hyperparameters /.

Then, once we have constructed the discretization U , we can then use Theorem 1 to prove that
1N = O(Smax,c log( =25 S"‘a" 2 |L{ |)) observations suffice to interpolate y with a near-optimal choice of

hyperparameters. Smce Theorem 1 admits a logarithmic dependence on the size of our net |L~{ |, we
can create an exponentially large net while achieving polynomial sample complexity bounds.

This broad principle of discretization can easily apply to many kernels; for demonstration purposes,
we only consider the SM Kernel in this work. If the reader would like to bound the sample complexity
of other kernels, they would only need to form a bound like Theorem 2 below. Here we assume
that I/ is the set of Gaussian Mixture hyperparameters, mixing ¢ Gaussians with means in [—-W, W],
lengthscales in [m, M], and weights in [0, 1].

Theorem 2. Fix the constants W, m, M as described above. Define the discretization set for means
as
C:={-W,-W+m,-W+2m,...,(k—=2)m, W}

*This parametrization simply ensures that §(¢) = [F}:§](t)



and the discretization set for lengthscales as
S :={m,2m,4m,8m, ..., 2" 3m, M, 2M}
where k = | 2% | = |C| and ¢ = [log,(M/m)]| + 1 = |S|. Then we have

min Hfi,aé—(y+Z)H%+€H§H3,aSS'gELI(Hin NFeowd =+ 27 +lgll2 o w

gEL2 (pe,o): 2(pe,o,w):
cec? ce[-W, W]
oS oc[m,M]?
we[0,1]¢

Theorem 2 is proven in Appendix B. Note that we take w to be the all-ones vector without loss
of generality. Statistically, increasing the scale of the kernel matrix (i.e. increasing the weight w;)
uniquely increases the statistical dimension and decreases the mean squared error. So, as long as we
have enough samples to satisfy the statistical dimension requirement when w is the all ones vector,
we should take w to be all-ones without loss of generality.

In Gaussian Process Regression, the weights in w are regularized by the likelihood function, which
does not apply in the current setting. Instead, since we assume have enough samples to satisfy the
all-ones w vector, we do not need to regularize against the norm of the w vector.

Intuitively, Theorem 2 reduces the search space for SM kernel hyperparameters down to a finite set
of kernels. This allows us to apply Theorem 1 to general SM Kernel fitting. Using Claim 1 as well,
we form the following conclusion on the statistical cost of learning SM Kernel hyperparameters:

Corollary 3. Suppose we want to fit a signal using a SM Kernel with g Gaussians whose means
lie in [0, W], lengthscales lie in [m, M|, and weights lie in [0,1]. Then, with probability 0.99,
n = O0(@PMT log(%)) time samples drawn from the Universal Sampling Distribution suffice to
have the KRR interpolant § give

ly =gl < - (3 += _min__nl)

s

nel,y=F;

where U is the set of valid SM kernels capable of representing y.

Proof. [AKM™19] shows that the statistical dimension of a mixture of ¢ Gaussians is at most
Smax,e < ¢ - (MT+/log(1/e) + log(1/e)). Theorem 2 tell us that we need to consider Q) =

O((¥ 1og(2L1)4) specific prior hyperparameters. Then, Theorem 1 tells us that O(spax, - log(*2%
Q)) samples suffice to satisfy the precondition for Claim 1, giving us a sample complexity of

O(q2 - (MT+/log1/= +log 1/e) -log (MT Y log;/s—i—logl/a . %log (?j)) )

-ofeuria()

Note that the O notation hides a logarithmic dependence on % and a sublogarithmic dependence on
M " Further note that [AKM*19] proves that a single Gaussian kernel with lengthscale M would

m "’ ~

already require O(MT') samples, so hyperparameter tuning for a single Gaussian only increases
the sample complexity by logarithmic factors. However, when we consider multiple Gaussians, our
analysis does introduce an extra factor of ¢ beyond statistical dimension Syax,c = O(¢gMT).

O

6 Conclusion

Despite how useful SM Kernels are [WA13, WGNC13, YWSS15, HSSM15, TBT15], practitioners
find that tuning SM Kernels is hard in practice [WN15, BMS™ 19, BHH* 16, HDS17, WDLX15]. A
practitioner could consider two reasons why it is hard to fit the SM Kernel: either they have too little
data to information-theoretically find a good model, or their algorithms fail to find such a model
despite having enough information. Our final result, Corollary 3, shows that the statistical complexity



of learning the SM kernel’s hyperparameters is not too large, even against adversarial noise. A natural
conclusion is that practitioners should likely place effort in finding more effective algorithms.

We see several interesting potential future directions for this work. First, this paper focuses its
applications to the Spectral Mixture kernel. Other popular kernels like the Matern, sinc, and Rational
Quadratic kernels can also be analyzed under our framework. Further, we provide statistical bounds
for finding optimal hyperparameters by designing a discrete optimization problem over exponentially
many PDFs, but we do not provide any polynomial time algorithm to solve this problem. We frame
hyperparameter optimization as a Fourier fitting problem, so we suspect that such an algorithm can
come from recent research in signal processing. In particular, the compressed sensing [BD09, TGS06,
BCDH10, CKPS16] and sparse Fourier transform [GIIS14, HIKP12] and literature provides fast
algorithms with strong guarantees for many Fourier fitting problems. Lastly, we would like to know
if the dependence on % in the approximation error of Theorem 1 is necessary if we want a logarithmic
dependence on () in the sample complexity.
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Broader Impact

This is a theoretical paper, so discussion of broader impacts has to speculate on future applications
for this broad line of research. In particular, this paper considers active regression that is robust and
sample-efficient. In other words, we advance our understanding of learning patterns when samples
are expensive and noise is large. We speculate on the various impacts of machine learning in these
high-sample-cost and high-noise settings.

One of the most common guiding positive benefits is the benefit to medical imaging, where instru-
ments have biased noisy measurements and are expensive to run. So, having ML techniques with
low sample complexity and high robustness can give medical practitioners high confidence in their
medical conclusions while keeping costs low.

However, this broad framework can just as easily apply to large-scale illegal surveillance through
“Internet of Things” (IoT) devices. Many IoT devices are known to have cheap microphones, weak
security, and internet access. Well crafted internet crawling code could plausibly access a massive
number of such [oT devices, and hence be able to access a massive number of private microphones.

Without progress in our line of research, it may be prohibitively expensive to process or store all
the speech heard from all of these microphones. Alternatively, the internet download patterns might
be too noticeable for such an operation to secretly run at a large scale. However, progress toward
statistically efficient algorithms in the high-sample-cost and high-noise regime might allow code that
sends very few messages online while still transmitting all the interesting audio to a third party. This
would allow such illegal surveillance on a massive scale.

Both of these settings, the medical and the surveillance, look equivalent from our current level of
mathematical/statistical abstraction. Notably, our current research is still too abstract to directly
benefit either application. It will require more research to connect results like ours to either the
medical or the surveillance applications. Note that the specific examples of medical imaging and IoT
surveillance are just two examples of highly positive or highly negative ML applications. So, under
the assumption that the research community will focus on positive applications like medical imaging
while avoiding negative applications like large scale IoT surveillance, we believe that the benefits of
our theoretical research outweigh the negative potential ramifications. Admittedly, this may be an
optimistic assumption.
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