
A OTDD is a True Distance
Proposition A.1. dOT(DA, DB) defines a valid metric on P(X ⇥ P(X )) the space of measures over
feature and label-distribution pairs.

Proof. Whenever the cost function used is a metric in a given space X , the optimal transport problem
itself defines a distance (the Wasserstein distance) on P(X ) [52, Chapter 6]. Therefore, it suffices
to show that the cost function dZ defined in Eq. (5) is indeed a distance. Clearly, it is symmetric
because both dX and Wp are. In addition, since both of these are distances:

dZ(z, z
0) = 0 , dX (x, x

0) = 0 ^ Wp(↵y, ↵
0
y) = 0 , x = x

0
, ↵y = ↵

0
y , z = z

0

Finally, we have that

dZ(z1, z3) =
�
dX (x1, x3)

p + Wp(↵y1 , ↵y3)
p
� 1

p


�
dX (x1, x2)

p + dX (x2, x3)
p + Wp(↵y1 , ↵y2)

p + Wp(↵y2 , ↵y3)
p
� 1

p

=
�
dZ(z1, z2)

p + dZ(z2, z3)
p
� 1

p = dZ(z1, z2) + dZ(z2, z3)

where the last step is an application of Minkowski’s inequality. Hence, dZ satisfies the triangle
inequality, and therefore it is a metric on Z = X ⇥ P(X ). We therefore conclude that the value of
the optimal transport (6) that uses this metric as a cost function is a distance itself.

B Proof of Proposition 4.1
Proposition 4.1 is a direct extension of the following well-known bound for the 2-Wasserstein distance
due to Gelbrich [26]:

Lemma B.1 (Gelbrich bound). Suppose ↵, � 2 P(Rd) are any two measures with mean vectors
µ↵, µ� 2 Rd and covariance matrices ⌃↵, ⌃� 2 Sd

+
respectively. Then,

W2

2

�
N (µ↵, ⌃↵), N (µ� , ⌃�))  W2

2
(↵, �) (10)

where W2

2

�
N (µ↵, ⌃↵), N (µ� , ⌃�)) is as in Eq. (7).

Obtaining an upper bound is trivial, noting that for any two measures ↵, �,

W2

2
(↵, �) = kµ↵ � µ�k2

2
+ tr(⌃↵ + ⌃�) � 2 max

⇡2⇧

tr(⌃⇡)  kµ↵ � µ�k2
2

+ tr(⌃↵ + ⌃�). (11)

Let dUB(DA, DB) denote the OT distance obtained by using the cost d
2

Z(z, z
0) = dX (x, x

0)2+kµy �
µy0k2

2
+ tr(⌃y + ⌃y0). Then, for our setting, we have:

Proposition 4.1. For any two datasets DA, DB , we have:

dOT-N (DA, DB)  dOT(DA, DB)  dUB(DA, DB) (12)

where dUB is a distribution-agnostic OT upper bound. Furthermore, the first two distances are equal
if all the label distributions ↵y are Gaussian or elliptical (i. e., dOT-N is exact in that case).

Proof. In the notation of Section 3, Lemma B.1 implies that for every feature-label pairs z = (x, y)
and z

0 = (x0
, y

0), we have:

dX (x, x
0)2 + W2

2

�
N (µy, ⌃y), N (µy0 , ⌃y0))  dX (x, x

0)2 + W2

2
(↵y, ↵y0), (13)

and therefore Z
dZ(z, z

0)2 d⇡ 
Z

dZ(z, z
0)2 d⇡ (14)

for every coupling ⇡ 2 ⇧(↵, �). In particular, for the minimizing ⇡
⇤, we obtain that

dOT-N (DA, DB)  dOT(DA, DB) (15)

We obtain the upper bound analogously.

Clearly, Gelbrich’s bound holds with equality when ↵ and � are indeed Gaussian. More generally,
equality is attained for elliptical distributions with the same density generator [34]. This immediately
implies equality of the first two terms in equation (15) in that case.
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C Time Complexity Analysis
For the analyses in this section, assume that DS and DT respectively have n and m labeled examples
in Rd and ks, kt classes. In addition, let NS

D(i) := {x 2 X | (x, y = i) 2 D} be the subset of
examples in DS with label i, and define analogously NT

D(j). The denote the cardinalities of these
subsets as n

i
s , |N(i)

s | and analogously for n
j
t .

Direct computation of the distance (5) involves two main steps:

(i) computing pairwise pointwise distances (each requiring solution of a label-to-label OT
sub-problem), and

(ii) a global OT problem between the two samples.

Step (ii) is identical for both the general distance dOT and its Gaussian approximation counterpart
dOT-N , so we analyze it first. This is an OT problem between two discrete distributions of size n

and m, which can be solved exactly in O
�
(n + m)nm log(nm)

�
using interior point methods or

Orlin’s algorithm for the uncapacitated min cost flow problem [46]. Alternatively, it can be solved
⌧ -approximately in O(nm log(max{n, m})⌧�3) time using the Sinkhorn algorithm [3].

We next analyze step (i) individually for the two OTDD versions. Combined, they provide a proof of
Theorem 5.1.

C.1 Pointwise distance computation for dOT

Consider a single pair of points, (x, y = i) 2 DA and (x0
, y

0 = j) 2 DB . Evaluating
kx � x

0k has O(d) complexity, while W (↵y, �y0) is an n
i
s ⇥ n

j
t OT problem which itself re-

quires computing a distance matrix (at cost O(ni
sn

j
td)), and then solving the OT problem, which

as discussed before, be done exactly in O
�
(ni

s + n
j
t )n

i
sn

j
t log(ni

s + n
j
t )
�

or ⌧ -approximately in
O(ni

sn
j
t log(max{n

i
s, n

j
t})⌧�3).

For simplicity, let us denote ns = maxi n
i
s, and nt = maxj n

j
t the size of the largest label cluster

in each dataset, and n = max{ns, nt} the overall largest one. Using these, and combining all of the
above, the overall worst case complexity for the computation of the n ⇥ m pairwise distances can be
expressed as

O
�
nm(d + n3 log n + dn2)

�
, (16)

which is what we wanted to show.

C.2 Pointwise distance computation for dOT-N

As before, consider a pair of points (x, y = i) 2 DA and (x0
, y

0 = j) 2 DB whose cluster sizes are
n

i
s and n

j
t respectively. As mentioned in Section 5, for dOT-N we first compute all the per-class means

and covariance matrices. This step is clearly dominated by latter, which is O(d2ni
s).3 Considering all

labels from both datasets, this amounts to a worst-case complexity of O
�
d
2(ksns + ktnt)

�
.

Once the means and covariances have been computed, we precompute all the ks ⇥ kt pair-wise
label-to-label distances W2(↵y, �y0) using Eq. (7). This computation is dominated by the matrix
square roots. If done exactly, these involve a full eigendecomposition, at cost O(d3), so the total cost
for this step is O(ksktd

3).

Finally, while computing the pairwise distance, we will incur in O(nmd) to obtain kx � x
0k. Putting

all of these together, and replacing ns, nt by n, we obtain a total cost for precomputing all the
point-wise distances of:

O(nmd + ksktd
3 + d

2n(ks + kt),

which concludes the proof.

3technically, this would be O(d!
n
i
s) where ! is the coefficient of matrix multiplication, but we take ! = 3

for simplicity.
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D Dataset Details

Information about all the datasets used, including references, are provided in Table 1.

Dataset Input Dimension Number of Classes Train Examples Test Examples Source

USPS 16 ⇥ 16
⇤

10 7291 2007 [30]
MNIST 28 ⇥ 28 10 60K 10K [36]

EMNIST (letters) 28 ⇥ 28 26 145K 10K [12]
KMNIST 28 ⇥ 28 10 60K 10K [11]

FASHION-MNIST 28 ⇥ 28 10 60K 10K [54]

TINY-IMAGENET 64 ⇥ 64
‡

200 100K 10K [20]
CIFAR-10 32 ⇥ 32 10 50K 10K [33]

AG news 768
†

4 120K 7.6K [56]
DBPedia 768

†
14 560K 70K [56]

YELPREVIEW (Polarity) 768
†

2 560K 38K [56]
YELPREVIEW (Full Scale) 768

†
5 650K 50K [56]

AMAZONREVIEW (Polarity) 768
†

2 3.6M 400K [56]
AMAZONREVIEW (Full Scale) 768

†
5 3M 650K [56]

YAHOO ANSWERS 768
† 10 1.4M 60K [56]

Table 1: Summary of datasets used. ⇤: we rescale the USPS digits to 28 ⇥ 28 for comparison to the
*NIST datasets. ‡: we rescale Tiny-ImageNet to 32 ⇥ 32 for comparison to CIFAR-10. †: for text
datasets, variable-length sentences are embedded to fixed-dimensional vectors using BERT.

E Optimization and Training Details

For the adaptation experiments on the *NIST datasets, we use a LeNet-5 architecture with ReLU non-
linearities trained for 20 epochs using ADAM with learning rate 1 ⇥ 10�3

, weight decay 1 ⇥ 10�6
,

and fine-tuned for 10 epochs on the target domain(s) using the same optimization parameters.

For the Tiny-ImageNet to CIFAR-10 adaptation results, we use a ResNet-50 trained for 300 epochs
using SGD with learning rate 0.1 momentum 0.9 and weight decay 1 ⇥ 10�4 It was fine-tuned for
30 epochs on the target domain using SGD with same parameters except 0.01 learning rate. We
discard pairs for which the variance on adaptation accuracy is beyond a certain threshold.

For the text classification experiments, we use a pretrained BERT architecture (the bert-base-
uncased model of the transformers4 library). We first embed all sentences using this model.
Then, for each pair of source/target domains, we first fine-tune using ADAM with learning rate
2 ⇥ 10�5 for 10 epochs on the full source domain data, and the fine-tune on the restricted target
domain data with the same optimization parameters for 2 epochs.

Our implementation of the OTDD relies on the pot5 and geomloss6 python packages.

F Ablation Experiments on Dataset Selection for Transfer Learning

We repeat the experimental setting of Section 6.2, now using three ablated versions of the OTDD: one
which completely ignores the labels (i. e., uses dZ = dX ), one that completely ignores the features
(dZ = dY ), and one that uses a means-only comparison of the label-induced distributions, that is,
takes dY(y, y

0) = kµy � µyk, which can be seen as using a first-order moment approximation of
the Bures-Wasserstein distance. Comparing Figure 8 to Figure 6a, we see that both feature and
label information is crucial for the OTDD to be predictive of transferability, although, interestingly,
dropping the features is not as detrimental, probably because there is already substantial information
about these encoded implicitly in the label distributions. On the other hand, the poor performance of
the means-only distance shows that second order moment information is crucial.

4huggingface.co/transformers/
5pot.readthedocs.io/en/stable/
6www.kernel-operations.io/geomloss/
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Figure 8: Comparison of ablated versions of OTDD for transferability prediction.
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Figure 9: Robustness Analysis: distances computed on subsets of varying size (rows: MNIST,
columns: USPS), over 10 random repetitions, for two values of the regularization parameter ".
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