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Abstract

Recent theoretical works have characterized the dynamics of wide shallow neural
networks trained via gradient descent in an asymptotic mean-field limit when the
width tends towards infinity. At initialization, the random sampling of the parame-
ters leads to deviations from the mean-field limit dictated by the classical Central
Limit Theorem (CLT). However, since gradient descent induces correlations among
the parameters, it is of interest to analyze how these fluctuations evolve. In this
work, we derive a dynamical CLT to prove that the asymptotic fluctuations around
the mean limit remain bounded in mean square throughout training. The upper
bound is given by a Monte-Carlo resampling error, with a variance that depends
on the 2-norm of the underlying measure, which also controls the generalization
error. This motivates the use of this 2-norm as a regularization term during training.
Furthermore, if the mean-field dynamics converges to a measure that interpolates
the training data, we prove that the asymptotic deviation eventually vanishes in the
CLT scaling. We also complement these results with numerical experiments.

1 Introduction

Theoretical analyses of neural networks aim to understand their computational and statistical ad-
vantages seen in practice. On the computation side, the training of neural networks often succeed
despite being a non-convex optimization problem known to be hard in certain settings [41, 31, 20].
On the statistics side, neural networks often generalize well despite having large numbers of pa-
rameters [70, 8]. In this context, the notion of over-parametrization has been useful, by providing
insights into the optimization and generalization properties as the network widths tend to infinity
[36, 21, 2, 4, 63, 67, 38]. In particular, under appropriate scaling, one can view shallow (a.k.a. single-
hidden-layer or two-layer) networks as interacting particle systems that admit a mean-field limit.
Their training dynamics can then be studied as Wasserstein Gradient Flows [47, 51, 12, 58], leading
to global convergence guarantees in the mean-field limit under certain assumptions. On the statistics
side, such an approach lead to powerful generalization guarantees for learning high-dimensional
functions with hidden low-dimensional structures, as compared to learning in Reproducing Kernel
Hilbert Spaces (RKHS) [5, 30]. However, since ultimately we are concerned with neural networks of
finite width, it is key to study the deviation of finite-width networks from their infinite-width limits,
and how it scales with the width m. At the random initial state, neurons do not interact and there-
fore a standard Monte-Carlo (MC) argument shows that the fluctuations in the underlying measure
scale as m

�1/2, which we refer to as the Central Limit Theorem (CLT) scaling. As optimization
introduces complex dependencies among the parameters, the key question is to understand how the
fluctuation evolves during training. To make this investigation tractable, we aim to obtain insight
on an asymptotic scale as the width grows, and focus on the evolution in time. An application of
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Grönwall’s inequality shows that this asymptotic deviation remains bounded at all finite time [46],
but the dependence on time is exponential, making it difficult to assess the long-time behavior.

The main focus of this paper is to investigate this question in-depth, by analyzing the interplay
between the deviations from the mean-field limit and the gradient flow dynamics. First, we prove a
dynamical CLT to capture how the fluctuations away from the mean-field limit evolve as a function of
training time to show that the fluctuations remain on the initial m

�1/2-scale for all finite times. Next,
we examine the long-time behavior of the fluctuations, proving that, in several scenarios, the long-time
fluctuations are controlled by the error of Monte-Carlo resampling from the limiting measure. We
focus on two main setups relevant for supervised learning and scientific computing: the unregularized
case with global convergence of mean-field gradient flows to minimizers that interpolate the data,
and the regularized case where the limiting measure has atomic support and is nondegenerate. In the
former setup, we prove particularly that the fluctuations eventually vanish in the CLT scaling. These
asymptotic predictions are complemented by empirical results in a teacher-student model.

Related Works: This paper continues the line of work initiated in [47, 12, 51, 58] that studies
optimization of over-parameterized shallow neural networks under the mean-field scaling. Global
convergence for the unregularized setting is discussed in [47, 46, 58, 51]. In the regularized setting,
[12] establishes global convergence in the mean-field limit under specific homogeneity conditions on
the neuron activation. Other works that study asymptotic properties of wide neural networks include
[29, 28, 6, 23, 34, 35, 69, 43, 1], notably investigating the transition between the so-called lazy and
active regimes [14], corresponding respectively to linear versus nonlinear learning. Our focus is on
the dynamics under the mean-field scaling, which encompasses the active, nonlinear regime.

A relevant work concerning the sparse optimization of measures is [11], where under a different metric
for gradient flow and additional assumptions on the nature of the minimizer, it can be established that
fluctuations vanish for sufficiently large m. Our results are only asymptotic in m but apply to broader
settings in the context of shallow neural networks. Concerning the next-order deviations of finite
neural networks from their mean-field limit, [51] show that the scale of fluctuations is below that of
MC resampling for unregularized problems using non-rigorous arguments. [60] provides a CLT for
the fluctuations at finite time under stochastic gradient descent (SGD) and proves that the fluctuations
decay in time in the case where there is a single critical point in the parameter space. Our focus is
on the long-time behavior of the fluctuations in more general settings. Another relevant topic is the
propagation of chaos in McKean-Vlasov systems, which study the deviations of randomly-forced
interacting particle systems from their infinite-particle limits [10, 66, 65, 7]. In particular, a line of
work provides uniform-in-time bounds to the fluctuations in various settings [19, 16, 55, 56, 22], but
the conditions are not applicable to shallow neural networks. Concurrently to our work, [17] studies
quantitative propagation of chaos of shallow neural networks trained by SGD, but the bound grows
exponentially in time, and therefore cannot address the long-time behavior of the fluctuations.

Learning with neural networks exhibits the phenomenon that generalization error can decrease with
the level of overparameterization [8, 64]. [48] proposes a bias-variance decomposition that contains
a variance term initialization in optimization. They show in experiments that this term decreases
as the width of the network increases, and justifies this theoretically under the strong assumption
that model parameters remain Gaussian-distributed in the components that are irrelevant for the task,
which does not hold in the scenario we consider, for example. [27] provides scaling arguments for
the dependence of this term on the width of the network. Our work provides a more rigorous analysis
of the dependence of this term on the width of the network and training time.

2 Background

2.1 Shallow Neural Networks and the Integral Representation

On a data space ⌦ ✓ Rd, we consider parameterized models of the following form

f
(m)(x) =

1

m

mX

i=1

'(✓i,x), (1)

where x 2 ⌦, {✓i}mi=1 ✓ D is the set of model parameters, and ' : D ⇥ ⌦ ! R is the activation
function. Of particular interest are shallow neural network models, which admit a more specific form:
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Assumption 2.1 (Shallow neural networks setting) D = R⇥ D̂, ✓ = (c, z) 2 D, and '(✓,x) =
c'̂(z,x) with '̂ : D̂ ⇥ ⌦ ! R. Thus, (1) can be rewritten as f

(m)(x) = 1
m

Pm
i=1 ci'̂(zi,x).

As many of our results hold for general models of the form (1), we will invoke Assumption 2.1 only
when needed. We shall also assume the following:

Assumption 2.2 ⌦ is compact; D is an Euclidean space (or a subset thereof); '(✓,x) is twice
differentiable in ✓; r✓r✓'(✓,x) is Lipschitz in ✓, uniformly in x.

The regularity assumptions are standard in the literature [11, 37, 10]. We note that they are not
satisfied by ReLU units (i.e., '̂(z,x) = max{0, ha,xi + b}, where z = [a, b]

|, with a 2 Rd and
b 2 R), though prior work [12, 13] has considered differentiable approximations of these models.

As observed in [47, 12, 51, 58, 24], a model of the form (1) can be expressed in integral form in
terms of a probability measure over D as f

(m) = f [µ(m)], where we define

f [µ](x) =

ˆ
D

'(✓,x)µ(d✓) , µ
(m)(d✓) =

1

m

mX

i=1

�✓i(d✓) . (2)

Suppose we are given a dataset {(xl, yl)}nl=1, which can be represented by an empirical data measure
⌫̂ = 1

n

Pn
l=1 �xl , and yl = f⇤(xl) are generated by an target function f⇤ that we wish to estimate

using least-squares regression. A canonical approach to this regression task is to consider an Empirical
Risk Minimization (ERM) problem of the form

min
µ2P(D)

L(µ) with L(µ) := 1
2 kf [µ] � f⇤k2

⌫̂ + �

ˆ
D

r(✓)µ(d✓) . (3)

where P(D) is the space of probability measures on D, kf � f⇤k2
⌫̂ =

´
⌦ |f(x) � f⇤(x)|2⌫̂(dx)

denotes the function reconstruction error averaged over the data, and �
´
D r(✓)µ(d✓) is some optional

regularization term. While we can allow r to be a general convex function, in Appendix F we will
motivate a choice of r in the shallow neural networks setting that is related to the variation norm [5]
or Barron norm [44] of functions.

2.2 Approximation and Optimization with a Finite Number of Neurons

Integral representations with a probability measure such as those defined in (2) are amenable to
efficient approximation in high dimensions via Monte-Carlo sampling. Namely, if the parameters ✓i

in f
(m) are drawn i.i.d. from an underlying measure µ on D, then by the Law of Large Numbers

(LLN), the resulting empirical measure µ
(m) converges µ almost surely, and moreover,

Eµ(m)kf [µ(m)] � f [µ]k2
⌫̂ =

1

m

✓ˆ
D

k'(✓, ·)k2
⌫̂µ(d✓) � kf [µ]k2

⌫̂

◆
, (4)

Such a Monte-Carlo estimator showcases the benefit of normalized integral representations for high-
dimensional approximation, as the ambient dimension appears in the rate of approximation only
through the term

´
D k'(✓, ·)k2

⌫̂µ(d✓). In the case of shallow neural networks, this is connected to
the variation norm or Barron norm of the function we wish to approximate [5, 44].

While the Monte-Carlo sampling strategy above can be seen as a ‘static’ approximation of a function
representable as (2), it also gives rise to an efficient algorithm to optimize (3). Indeed, in terms of the
empirical distribution µ

(m), the loss L(µ(m)) becomes function of the parameters {✓i}mi=1:

L(✓1, . . . ,✓m) =
1

2
kf

(m) � f⇤k2
⌫̂ +

�

m

mX

i=1

r(✓i) . (5)

In the shallow neural network setting, with suitable choices of the function r, the regularization term
corresponds to weight decay over the parameters.

2.3 From Particle to Wasserstein Gradient Flows

Expanding (5), we get

L(✓1, . . . ,✓m) = Cf⇤ � 1

m

mX

i=1

F (✓i) +
1

2m2

mX

i,j=1

K(✓i,✓j), (6)
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where we have defined Cf = 1
2kfk2

⌫̂ , and

F (✓) =

ˆ
⌦

f⇤(x)'(✓,x)⌫̂(dx) � �r(✓), K(✓,✓0) =

ˆ
⌦

'(✓,x)'(✓0
,x)⌫̂(dx) . (7)

Performing GD on L amounts to discretizing in time the following ODE system for {✓i}mi=1:

✓̇i = �m@✓iL(✓1 . . .✓m) =rF (✓i) � 1

m

mX

j=1

rK(✓i,✓j) =: �rV (✓i, µ
(m)
t ). (8)

where we defined the potential

V (✓, µ) = �F (✓) +

ˆ
D

K(✓,✓0)µ(d✓0) . (9)

Heuristically, the ‘particles’ ✓i perform GD according to the potential V (✓, µ
(m)
t ) which itself

evolves, depending on the particles positions through their empirical measure. Such dynamics can
also be expressed in terms of the empirical measure via the continuity equation:

@tµ
(m)
t = r · (rV (✓, µ

(m)
t )µ(m)

t ) (10)

This equation should be understood in the weak sense by testing it against continuous functions
� : D ! R, and it can be interpreted as the gradient flow on the loss defined in (3) under the
2-Wasserstein metric [12, 51, 47, 58]. This insight provides powerful analytical tools to understand
convergence properties, by considering the mean-field limit when m ! 1.

2.4 Law of Large Numbers and Mean-Field Gradient Flow

From now on, we assume that the particle gradient flow is initialized in the following way:

Assumption 2.3 The ODE (8) is solved for the initial condition ✓i(0) = ✓0
i , with ✓0

i drawn i.i.d.
from a compactly supported measure µ0 2 P(D) for each i = 1, . . . , m.

We use P0 to denote the probability measure associated with the set {✓0
i }i2N with each ✓0

i drawn
i.i.d. from µ0, and use E0 to denote the expectation under P0. The Law of Large Numbers (LLN)
indicates that P0-almost surely, µ

(m)
t * µt as m ! 1, where µt satisfies the mean-field gradient

flow [52, 12, 47, 61]:

@tµt = r · (rV (✓, µt)µt) , µt=0 = µ0 . (11)

The solution to this equation should be understood via the representation formulaˆ
D

�(✓)µt(d✓) =

ˆ
D

�(⇥t(✓))µ0(d✓) , (12)

where � is a continuous test function � : D ! R and ⇥t : D ! D is the characteristic flow
associated with (10), which in direct analogy with (8) solves

⇥̇t(✓) = �rV (⇥t(✓), µt), ⇥0(✓) = ✓ . (13)

Using expression (9) for V as well as (12), this equation can be written in closed form explicitly as

⇥̇t(✓) = rF (⇥t(✓)) �
ˆ
D

rK(⇥t(✓),⇥t(✓
0))µ0(d✓

0), ⇥0(✓) = ✓ . (14)

It is easy to see that this equation is itself a gradient flow since it is the continuous-time limit of a
proximal scheme (mirror descent), as stated in Appendix B.

2.5 Long-Time Properties of the Mean-Field Gradient Flow

In the shallow neural networks setting, a series of earlier work [12, 51, 47, 58] has established
that under certain assumptions µt will converge to a global minimizer of the loss functional L. In
particular, [12] studies global convergence for the regularized loss L under homogeneity assumptions
on '̂, and [50] considers modified dynamics using double-lifting. Here, to study the long time
behavior of the fluctuations, we will often work with the following weaker assumptions:
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Assumption 2.4 The solution to (14) exists for all time, and has a limit:

⇥t ! ⇥1 µ0-almost surely as t ! 1. (15)

Assumption 2.5 The limiting ⇥1 is a local minimizer of (59).

With these assumptions, we have

Proposition 2.6 Under Assumptions 2.3 and 2.4, we have

[t�0 supp µt = [t�0{⇥t(✓) : ✓ 2 supp µ0} is compact, (16)

and µt * µ1 weakly as t ! 1, with µ1 satisfyingˆ
D

�(✓)µ1(d✓) =

ˆ
D

�(⇥1(✓))µ0(d✓), (17)

for all continuous test function � : D ! R. Additionally, if Assumption 2.5 also holds, then

rrV (⇥1(✓), µ1) is positive semidefinite for µ0-almost all ✓ (18)

We prove this proposition in Appendix C. Here, rrV (⇥1(✓), µ1) denotes

rrV (⇥1(✓), µ1) = �rrF (⇥1(✓)) +

ˆ
D

rrK(⇥1(✓),⇥1(✓0))µ0(d✓
0) , (19)

which will appear in Section 3.2 for studying the fluctuations from the mean-field limit in long time.

Remark 2.7 Assumptions 2.4 and 2.5 impose conditions on the initial measure µ0 [51, 47, 12].
While the convergence of gradient flows in finite-dimensional Euclidean space to local minimizers is
guaranteed under mild assumptions [62, 39], its infinite-dimensional counterpart, Assumption 2.5,
may require further technical assumptions, left for future study. Also, while Assumption 2.4 implies
that µ1 is a stationary point of (11), Assumption 2.5 does not imply that µ1 minimizes L.

3 Fluctuations from Mean-Field Gradient Flow

The main goal of this section is to characterize the deviations of finite-width shallow networks from
their mean-field evolution, by first deriving an estimate for f

(m)
t �ft for t � 0 (Section 3.1), and then

analyzing its long-time properties (Section 3.2). The bound on the long-time fluctuations derived in
Section 3.2 motivates a choice of the regularization in (3), which is also connected to generalization
via the variation norm or Barron norm of functions [5, 44], as we discuss in Appendix F.

3.1 A Dynamical Central Limit Theorem

Let us start by defining
g
(m)
t := m

1/2
�
f

(m)
t � ft

�
. (20)

By the static Central Limit Theorem (CLT) we know that, if we draw the initial values of the
parameters ✓i independently from µ0 as specified in Assumption 2.3, g

(m)
t=0 has a limit as m ! 1,

leading to estimates similar to (4) with µ
(m) and µ replaced by the initial µ

(m)
0 and µ0, respectively.

For t > 0, however, this estimate is not preserved by the gradient flow: the static CLT no longer
applies and needs to be replaced by a dynamical variant [10, 66, 65, 60]. Next, we derive this
dynamical CLT in the context of neural network optimization.

To this end let us define the discrepancy measure !
(m)
t such thatˆ

D
�(✓)!(m)

t (d✓) := m
1/2

ˆ
D

�(✓)
⇣
µ

(m)
t (d✓) � µt(d✓)

⌘
, (21)

for any continuous test function � : D ! R. We can then represent g
(m)
t in terms of !

(m)
t as

g
(m)
t =

ˆ
D

'(✓, ·)!(m)
t (d✓) . (22)
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Hence, we will first establish how the limit of !
(m)
t as m ! 1 evolves over time. This can be done

upon noting that the representation formula (12) implies thatˆ
D

�(✓)!(m)
t (d✓) = m

1/2

ˆ
D

⇣
�(⇥(m)

t (✓))µ(m)
0 (d✓) � �(⇥t(✓))µ0(d✓)

⌘
, (23)

where ⇥(m)
t solves (14) with µ0 replaced by µ

(m)
0 . Defining

T (m)
t (✓) = m

1/2
�
⇥(m)

t (✓) � ⇥t(✓)
�

, (24)

we can write (23) asˆ
D

�(✓)!(m)
t (d✓) =

ˆ
D

�(⇥t(✓))!(m)
0 (d✓)

+

ˆ 1

0

ˆ
D

r�
�
⇥t(✓) + m

�1/2
⌘ T (m)

t (✓)
�

· T (m)
t (✓)µ(m)

0 (d✓)d⌘ .

(25)

As shown in Appendix D.1, we can take the limit m ! 1 of this formula to obtain:

Proposition 3.1 (Dynamical CLT - I) Under Assumptions 2.2 and 2.3, 8t � 0, as m ! 1 we have
!

(m)
t * !t weakly in law with respect to P0, where !t is such that given a test function � : D ! R,ˆ

D
�(✓)!t(d✓) =

ˆ
D

�(⇥t(✓))!0(d✓) +

ˆ
D

r�(⇥t(✓)) · T t(✓)µ0(d✓) . (26)

Here !0 is the Gaussian measure with mean zero and covariance

E0

⇥
!0(d✓)!0(d✓

0)
⇤

= µ0(d✓)�✓(d✓0) � µ0(d✓)µ0(d✓
0) , (27)

where E0 denotes expectation over P0, and T t = limm!1 m
1/2(⇥(m)

t �⇥t) is the flow solution to

Ṫ t(✓) = � rrV (⇥t(✓), µt)T t(✓) �
ˆ
D

rr0
K(⇥t(✓),⇥t(✓

0))T t(✓
0)µ0(d✓

0)

�
ˆ
D

rK(⇥t(✓),⇥t(✓
0))!0(d✓

0)
(28)

with initial condition T 0 = 0 and where ⇥t solves (13) and rrV (⇥t(✓), µt) is a shorthand for

rrV (⇥t(✓), µt) = �rrF (⇥t(✓)) +

ˆ
D

rrK(⇥t(✓),⇥t(✓
0))µ0(d✓

0) . (29)

A direct consequence of this proposition and formula (22) is:

Corollary 3.2 Under Assumptions 2.2 and 2.3, 8t � 0, as m ! 1 we have g
(m)
t ! gt pointwise in

law with respect to P0, where gt is given in terms of the limiting measure !t or the flow T t as

gt =

ˆ
D

'(✓, ·)!t(d✓) =

ˆ
D

'(⇥t(✓), ·)!0(d✓) +

ˆ
D

r'(⇥t(✓), ·) · T t(✓)µ0(d✓) . (30)

It is interesting to comment on the origin of both terms at the right hand side of (26) and, consequently,
(30). The first term captures the deviations induced by fluctuations of µ

(m)
0 around µ0 assuming

that the flow ⇥(m)
t is unaffected by these fluctuations, and remains equal to ⇥t. In particular, this

term is the one we would obtain if we were to resample µ
(m)
t from µt at every t � 0, i.e. use

µ̄
(m)
t = m

�1
Pm

i=1 �✓̄i
t

with {✓̄i
t}mi=1 sampled i.i.d. from µt, so that ⇥(m)

t is identical to ⇥t in (23).
In this case, the limiting discrepancy measure !̄t would simply be given byˆ

D
�(✓)!̄t(d✓) =

ˆ
D

�(⇥t(✓))!0(d✓) , (31)

while the associated deviation in the represented function would read

ḡt =

ˆ
D

'(✓, ·)!̄t(d✓) =

ˆ
D

'(⇥t(✓), ·)!0(d✓) . (32)
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The second term at right hand side of (26) and (30) captures the deviations to the flow ⇥t in (14)
induced by the perturbation of µ0, i.e. how much ⇥(m)

t differs from ⇥t in (23). In the limit as
m ! 1, these deviations are captured by the solution T t to (28), as is apparent from (25).

The difference between gt and ḡt can also be quantified via the following Volterra equation, which
can be derived from Proposition 3.1 and relates the evolution of gt to that of ḡt.

Corollary 3.3 (Dynamical CLT - II) Under Assumptions 2.2 and 2.3, 8t � 0, pointwise on ⌦, we
have g

(m)
t ! gt in law with respect to P0 as m ! 1, where gt solves the Volterra equation

gt(x) +

ˆ t

0

ˆ
⌦

�t,s(x,x0)gs(x
0)⌫̂(dx0)ds = ḡt(x) . (33)

Here ḡt is given in (32) and we defined

�t,s(x,x0) =

ˆ
D

hr✓'(⇥t(✓)), Jt,s(✓)r✓'(⇥s(✓))iµ0(d✓) , (34)

where Jt,s is the solution to
d

dt
Jt,s(✓) = �rrV (⇥t(✓), µt)Jt,s(✓), Js,s(✓) = Id . (35)

This corollary is proven in Appendix D.2. In a nutshell, (33) can be established using Duhamel’s
principle on (28) by considering all terms at the right hand side except the first as the source term
(hence the role of Jt,s) and inserting the result in (30).

3.2 Long-Time Behavior of the Fluctuations

Next, we study the long-time behavior of gt and, in particular, evaluate

lim
t!1

E0kgtk2
⌫̂ = lim

t!1
lim

m!1
mE0kf

(m)
t � ftk2

⌫̂ . (36)

This limit quantifies the asymptotic approximation error of f
(m)
t around its mean field limit ft after

gradient flow, i.e. if we take m ! 1 first, then t ! 1 – taking these limits in opposite order is of
interest too but is beyond the scope of the present paper. Our main result is to show that, under certain
assumptions to be specified below, the limit in (36) is not only finite but necessarily upper-bounded
by limt!1 E0kḡtk2

⌫̂ with ḡt given in (32). That is, the approximation error at the end of training is
no higher than that obtained by resampling the mean-field measure µ1 defined in Proposition 2.6.

It is useful to start by considering an idealized case, namely when the initial conditions are sampled
as in Assumption 2.3 with µ0 = µ1. In that case, there is no evolution at mean field level, i.e.
⇥t(✓) = ⇥1(✓) = ✓, µt = µ1, and ft = f1 =

´
D '1(✓, ·)µ1(d✓), but the CLT fluctuations

still evolve. In particular, it is easy to see that the Volterra equation in (33) for gt becomes

gt(x) +

ˆ t

0

ˆ
⌦

�1
t�s(x,x0)gs(x

0)⌫̂(dx0)ds = ḡ1(x) . (37)

Here �1
t�s(x,x0) is the Volterra kernel obtained by solving (35) with rrV (⇥t(✓), µt) replaced by

rrV (✓, µ1) and inserting the result in (34) with ⇥t(✓) = ✓ and µ0 = µ1,

�1
t�s(x,x0) =

ˆ
D

hr✓'(✓,x), e�(t�s)rrV (✓,µ1)r✓'(✓,x0)iµ1(d✓) , (38)

and ḡ1 is the Gaussian field with variance

E0kḡ1k2
⌫̂ =

ˆ
D

k'(✓, ·)k2
⌫̂µ1(d✓) � kf1k2

⌫̂ . (39)

From (18) in Proposition 2.6 we know that rrV (✓, µ1) is positive semidefinite for µ1-almost
all ✓. As a result, we prove in E.1 that the Volterra kernel (38) viewed as an operator on functions
defined on ⌦ ⇥ [0, T ] is positive semidefinite. Therefore, we haveˆ T

0
kgtk2

⌫̂dt 
ˆ T

0
kgtk2

⌫̂dt +

ˆ T

0

ˆ t

0

ˆ
⌦⇥⌦

gt(x)�1
t�s(x,x0)gs(x

0)⌫̂(dx)⌫̂(dx0)dsdt

=

ˆ T

0
E⌫̂(gtḡ1)dt  T

1/2kḡ1k⌫̂

 ˆ T

0
kgtk2

⌫̂dt

!1/2

.

(40)

Together with (39), this implies that
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Theorem 3.4 Under Assumptions 2.2, 2.3, 2.4 and 2.5, with µ0 = µ1 and µ1 as specified in
Proposition 2.6, we have

lim
T!1

1

T

ˆ T

0
E0kgtk2

⌫̂dt 
ˆ
D

k'(✓, ·)k2
⌫̂µ1(d✓) � kf1k2

⌫̂ . (41)

This theorem indicates that, if we knew µ1 and could sample initial conditions for the parameters
from it, it would still be favorable to train these parameters as this would reduce the approximation
error. Of course, in practice we have no a priori access to µ1, and so the relevant question is whether
(41) also holds if we sample initial conditions from any µ0 such that Proposition 2.6 holds.

In light of (30), one way to address this question is to study the long-time behavior of T t. In the
setup without regularization (� = 0), we can do so by leveraging existing results that, under certain
assumptions, the mean-field gradient flow converges to a global minimizer which interpolates the
training data points exactly [52, 12, 47, 60]. In this case, the following theorem shows that we can
obtain stronger controls on the fluctuations than (41), which we prove in Appendix E.2.

Theorem 3.5 (Long-time fluctuations in the unregularized case) Consider the ERM setting with
� = 0 and under Assumptions 2.2, 2.3 and 2.4. Suppose that as t ! 1, µt converges to a global
minimizer µ1 that interpolates the data, i.e. the function f1 =

´
D '(✓, ·)µ1(d✓) satisfies

8x 2 supp ⌫̂ : f1(x) = f⇤(x) , (42)

and, furthermore, the convergence satisfies
ˆ 1

0
|L(µt)|1/2 dt < 1 (43)

Then (41) holds. Additionally,

1. if Assumption 2.1 also holds, i.e., in the shallow neural network setting, we further have

lim
T!1

1

T

ˆ T

0
E0kgtk2

⌫̂dt = 0 ; (44)

2. if µ0 = µ1, then kgtk⌫̂ decreases monotonically in t.

Hence, in the shallow neural networks setting and under these assumptions, the fluctuations will
eventually vanish in the O(m�1/2) scale of CLT. For (43) to hold, it is sufficient that L(µt) decays at
an asymptotic rate of O(t�↵) with ↵ > 2. We leave the search for weaker conditions for future work.

When the limiting measure µ1 does not necessarily interpolate the training data, we can proceed
with curvature assumptions in two ways. One one hand, with Theorem E.8 in Appendix E.3, we
prove that (41) holds under an assumption on the long-time behavior of the curvature, rrV (✓, µt).
On the other hand, in the regularized (� > 0) ERM setting, we can obtain the following result when
the support of µ1 is atomic, as expected on general grounds [71, 26, 5, 9, 18]:

Theorem 3.6 (Long-time fluctuations in the regularized case) Consider the ERM setting under
Assumptions 2.2, 2.3 and 2.4. Suppose further that as t ! 1, µt converges to µ1 satisfying

9� > 0 s.t. 8✓ 2 supp µ1 : rrV (✓, µ1) � �Id , and (45)
⇥t admits an asymptotic uniform convergence rate of O(t�↵) with ↵ > 3/2. (46)

Then (41) holds with the “lim" replaced by “lim sup" on its LHS.

Theorem 3.6 is proven in Appendix E.4 by analyzing directly the Volterra equation (33) and estab-
lishing that its solution coincides with that of (37) in the limit as t ! 1, a property that we also
expect to hold more generally than under the assumptions of Theorem 3.6. In fact, we prove in
Appendix E.4 that (46) can be replaced by a weaker condition, (231). We also discuss the relation
between Theorem 3.6 and the work of [11] in Appendix E.5.
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4 Numerical Experiments

In Figure 1, we show the results of a student-teacher experiment whose setup is described in
Appendix G.1. We observe from Column 2 that the average fluctuation of the mean-squared training
loss indeed remains at a m

�1 scaling with a general tendency to decay over time. Moreover,
consistently with (44) in Theorem 3.5, the fluctuation vanishes during training in the unregularized
case, and hence also the training loss. Further discussions and additional experiments that consider
training under the exact population loss, different initializations of the parameters as well as a
non-planted target function are presented in Appendix G.
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Figure 1: Results of the experiments where student shallow neural networks of different widths are
trained to learn teacher networks of width 2 under the empirical loss. Row 1: using unregularized
square loss; Row 2: using regularized square loss with � = 0.01. In each row, Column 1 plots the
trajectory of the neurons, ✓i = (ci, zi), of a student network with width m = 128 during its training,
with x-coordinate being the angle between zi and that of a chosen teacher’s neurons and y-coordinate
being ci. The yellow dots, blue dots and cyan curves mark their initial values, terminal values, and
trajectory during training. Columns 2-5 plot the average fluctuation (rescaled by m), average loss,
average TV norm, and average 2-norm during training, respectively, computed across  = 20 runs
with different random initializations of the student network for each choice of m. These quantities are
defined in Appendix G.1. In Column 2, the solid curves give the average fluctuation in the training
loss, the dashed curves give the average fluctuation in the population loss computed analytically via
spherical integrals, and the black horizontal dashed line gives an approximate value of the asymptotic
Monte-Carlo bound in (41) computed in Appendix H for this setting. In Column 3, the solid curves
give the total training loss, the dotted curves give the unregularized training loss (for the regularized
case only), and the dashed curves give the unregularized population loss. In Columns 4 and 5, the
black horizontal dashed line give the relevant norm of the teacher network.

5 Conclusions

We studied the deviation of shallow neural networks from their infinite-width limit, especially how
this deviation evolves during gradient flow. In the ERM setting, we establish that under different sets
of conditions, the long-term deviation under the Central Limit Theorem (CLT) scaling is controlled
by a Monte Carlo (MC) resampling error, giving width-asymptotic guarantees that do not depend on
the data dimension explicitly. The MC resampling bound motivates a choice of regularization that is
also connected to generalization via the variation-norm function spaces.

Our results thus seem to paint a favorable picture for high-dimensional learning, in which the
optimization and generalization guarantees for the idealized mean-field limit could be transferred
to their finite-width counterparts. However, our results are still asymptotic, in that we take limits
both in the width and time. In the face of negative results for the computational efficiency of training
shallow networks [45, 41, 54, 20, 31], an important challenge is to leverage additional structure in
the problem (such as the empirical data distribution [32], or the structure of the minimisers [18]) to
provide nonasymptotic versions of our results, along the lines of [11] or [40]. Finally, another clear
direction for future research is to extend our techniques to deep neural architectures, in light of recent
works that consider deep or residual models [3, 59, 49, 42, 68, 25].
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Broader Impact

Our work contributes to the theoretical guarantees of neural network models, which are critical to
one day extend their applications to the broad spectrum of scientific computing. If successful, deep
learning with theoretical guarantees could transform scientific computing in domains where efficient
high-dimensional function estimation is critical, such as molecular dynamics, climate science, or
computational drug design.
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