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Abstract

Off-policy evaluation of sequential decision policies from observational data is
necessary in applications of batch reinforcement learning such as education and
healthcare. In such settings, however, unobserved variables confound observed
actions, rendering exact evaluation of new policies impossible, i.e., unidentifiable.
We develop a robust approach that estimates sharp bounds on the (unidentifiable)
value of a given policy in an infinite-horizon problem given data from another
policy with unobserved confounding, subject to a sensitivity model. We consider
stationary unobserved confounding and compute bounds by optimizing over the
set of all stationary state-occupancy ratios that agree with a new partially identified
estimating equation and the sensitivity model. We prove convergence to the sharp
bounds as we collect more confounded data. Although checking set membership is
a linear program, the support function is given by a difficult nonconvex optimization
problem. We develop approximations based on nonconvex projected gradient
descent and demonstrate the resulting bounds empirically.

1 Introduction
Evaluation of sequential decision-making policies under uncertainty is a fundamental problem for
learning sequential decision policies from observational data, as is necessarily the case in application
areas such as education and healthcare Jiang & Li [11], Precup et al. [28], Thomas & Brunskill [36].
However, with a few exceptions, the literature on off-policy evaluation in reinforcement learning (RL)
assumes (implicitly or otherwise) the absence of unobserved confounders, auxiliary state information
that affects both the policy that generated the original data as well as transitions to the next state.
Precisely in the same important domains where observational off-policy evaluation is necessary due
to the cost of or ethical constraints on experimentation, such as in healthcare [27, 30] or operations, it
is also generally the case that unobserved confounders are present. This contributes to fundamental
challenges for advancing reinforcement learning in observational settings [7].

In this work, we study partial identification in RL off-policy evaluation under unobserved confounding,
focusing specifically on the infinite-horizon setting. Recognizing that policy value cannot actually be
point-identified from confounded observational data, we propose instead to compute the sharpest
bounds on policy value that can be supported by the data and any assumptions on confounding. This
can then support credible conclusions about policy value from the data and can ensure safety in
downstream policy learning.

Recent advancements [6, 8, 13, 17] improve variance reduction of unconfounded off-policy evaluation
by estimating density ratios on the stationary occupancy distribution. But this assumes unconfounded
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data. Other advances [14] tackle partial identification of policy values from confounded data but in
the logged bandit setting (single decision point) rather than the RL setting (many or infinite decision
points). Our work can be framed as appropriately combining these perspectives.

Our contributions are as follows: we establish a partially identified estimating equation that allows
for the estimation of sharp bounds. We provide tractable approximations of the resulting difficult
non-convex program based on non-convex first order methods. We then demonstrate the approach on
a gridworld task with unobserved confounding.

2 Problem setup
We assume data is generated from an infinite-horizon MDP with an augmented state space: S is
the space of the observed portion of the state and U is the space of the unobserved (confounding)
portion of the state. We assume the standard decision protocol for MDPs on the full-information
state space S ⇥ U : at each decision epoch, the system occupies state st, ut, the decision-maker
receives a reward �(st) for being in state st and chooses an action, at, from allowable actions.
Then the system transitions to the next state on S ⇥ U , with the (unknown) transition probability
p(s0, u0

| s, u, a). The full-information MDP is represented by the tuple M = (S ⇥ U ,A, P,�).
We let Ht = {(s0, u0, a0), . . . , (st, ut, at)} denote the (inaccessible) full-information history up to
time t. A policy ⇡(a | s, u) is an assignment to the probability of taking action a in state (s, u). For
any policy, the underlying dynamics are Markovian under full observation of states and transitions:
st ?? Ht�2 | (st�1, ut�1), at�1.

In the off-policy evaluation setting, we consider the case where the observational data are generated
under an unknown behavior policy ⇡b, while we are interested in evaluating the (known) evaluation

policy ⇡e, which only depends on the observed state, ⇡e(a | s, u) = ⇡e(a | s). Both policies are
assumed stationary (time invariant). The observational dataset does not have full information and
comprises solely of observed states and actions, that is, (s0, a0), . . . , (st, at).2 Thus, since the action
also depends on the unobserved state ut, we have that transition to next states are confounded by ut.

Notationally, we reserve s, u (respectively, s
0
, u

0) for the random variables representing state
(respectively, next state) and we refer to realized observed state values (respectively, next observed
state values) using j (respectively, k). We assume that S is a discrete state space, while U may be
general.

We next discuss regularity conditions on the MDP structure which ensure ergodicity and that the
limiting state-action occupancy frequencies exist. We assume that the Markov chain induced by ⇡e
and any ⇡b is a positive Harris chain, so the stationary distribution exists.
Assumption 1 (Ergodic MDP). The MDP M is ergodic: the Markov chains induced by ⇡b and ⇡e is
positive Harris recurrent.

In this work, we focus on the infinite-horizon setting. Let p(t)⇡ (s) be the distribution of state st when
executing policy ⇡, starting from initial state s0 drawn from an initial distribution over states. Then
the average state-action-next-state visitation distribution exists, and under Assumption 1 the (long-run
average) value of a stationary policy ⇡e is given by an expectation with respect to the marginalized
state visitation distribution:

p
1
e
(s, u, a, s0, u0) = lim

T!1

1

T

TX

t=0

p
(t)
e
(s, u, a, s0, u0), Re = Es⇠p1

e
[�(s)].

We similarly define the marginalized total-, unobserved-, and observed-state occupancy distributions
as p1

⇡
(s, u), p1

⇡
(u), and p

1
⇡
(s), given by appropriately marginalizing the above. Notice we assumed

that the reward only depends on the observed state3.

Notationally, E denotes taking expectations over the joint stationary occupancy distribution of the
behavior policy, where self-evident. We denote p

1
e
, p

1
b

for visitation distributions induced under
2Our model differs from typical POMDPs [12], since rewards are a function of observed state, as we clarify

in the related work, Section 8.
3This does not preclude, however, dependence on action: if we are given observed-state-action reward

function �0(s, a), we may simply define �(s) =
P

a ⇡e(a | s)�0(s, a), since ⇡e(a | s) is assumed known.
Then Re gives ⇡e’s value with respect to the given observed-state-action reward function.
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Figure 1: A causal model satisfying Assumption 2.

⇡e,⇡b. Since at times it is useful to distinguish between expectation over the marginalized occupancy
distribution p

1
b
(s, a, s0), and total expectation over full-information transitions p1

b
(s, u, a, s0, u0),

we include additional subscripts on the expectation whenever this is clarifying.

If we were able to actually run the MDP using the policy ⇡e, which is only a function of s, the
dynamics would be Markovian with the marginalized transition probabilities:

p(s0 | s, a) :=
X

u,u0

p(s0, u0
| s, u, a)p1

e
(u | s)

Note that p(s0 | s, a) is not identifiable from the observational data collected under ⇡b. We analogously
define (partially) marginalized transition probabilities p(s0 | s, u, a).

3 Off-policy evaluation under unobserved confounding
In the following, we first discuss a population viewpoint, computing expectations with respect to
the true marginalized stationary occupancy distribution p

1
b
(s, a, s0) (identifiable from the data). We

discuss finite-sample considerations in Section 6.

Given sample trajectories generated from ⇡b, the goal of off-policy evaluation is to estimate Re,
the value of a known (observed-state-dependent) evaluation policy ⇡e(a | s). The full-information
stationary density ratio is w(s, u). If w(s, u) were known, we could use it to estimate policy value
under ⇡e using samples from ⇡b by a simple density ratio argument:

w(s, u) =
p
(1)
e (s, u)

p
(1)
b

(s, u)
, Re = E[w(s, u)�(s)]

From observational data, we are only able to estimate the marginalized behavior policy, ⇡b(a | s) =
E[⇡b(a | s, u) | s], which is insufficient for identifying the policy value or the true marginalized
transition probabilities.

3.1 Model restrictions on unobserved confounding
To make progress, we introduce restrictions on the underlying dynamics of the unobserved confounder,
u, under which we will conduct our evaluation. In particular, we will seek to compute the range
of all values of Re that match our data, encapsulated in p

1
b
(s, a, s0), and the following structural

assumptions.
Assumption 2 (Memoryless Unobserved Confounding).

p
(1)
e (s, u)

p
(1)
b

(s, u)
=

p
(1)
e (s, u0)

p
(1)
b

(s, u0)
8s 2 S, u, u

0
2 U

Lemma 1. Assumption 2 holds if the MDP transitions satisfy

p(s0, u0
| s, u, a) = p(s0, ũ0

| s, u, a), 8u0
, ũ

0
2 U .

Assumption 2 essentially requires no time-varying confounders, i.e., confounders that are influenced
by past actions. This assumption may appear strong but it is necessary: if confounders could be
time-varying and the dependence on them may be arbitrary, we may need to be “exponentially
conservative” in accounting for them (or even “infinitely conservative” in the infinite-horizon case)4.

4We discuss this in Appendix A.1 of the appendix in considering a finite-horizon off-policy estimate.
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For example, Assumption 2 holds if the unobserved confounder is exogenously drawn at each
timestep, as in Figure 1, (which satisfies the sufficient condition of Lemma 1). Lemma 1 also holds if
a confounded behavior policy arises from agents optimizing upon exogenous realizations of private
information, as in econometric discrete choice models.

Under Assumption 2, we simply define w(s) = w(s, u) as it does not depend on u. Note that w(s)
remains unidentifiable even under Assumption 2.

3.2 Sensitivity model
Next, we introduce a sensitivity model to control the level of assumed dependence of the behavior
policy on the unobserved confounders. Sensitivity analysis allows a practitioner to assess how
conclusions might change for reasonable ranges of �. Following [2, 14] we phrase this as lower and
upper bounds on the (unknown) inverse behavior policy, l(a | s),m(a | s):5

�(a | s, u) := ⇡b(a | s, u)�1
, l(a | s)  �(a | s, u)  m(a | s) 8a, s, u. (1)

The set B consists of all functions �(a | s, u) that satisfy Eq. (1). This ambiguity set is motivated by
a sensitivity model used in causal inference, which restricts how far propensities can vary pointwise
from the nominal propensities [34] and which has also been used in the logged bandit setting [14].
Given a sensitivity parameter � � 1 that controls the amounts of allowed confounding, the marginal
sensitivity model posits the following odds-ratio restriction:

��1


(1� ⇡b(a | s))⇡b(a | s, u)

⇡b(a | s)(1� ⇡b(a | s, u))
 �, 8a, s, u. (2)

Eq. (2) is equivalent to saying that Eq. (1) holds with

l(a | s) = �/(⇡b(a | s)) + 1� �, m(a | s) = 1/(�⇡b(a | s)) + 1� 1/�.

Lastly, � functions which are themselves valid inverse probability distributions must satisfy the
next-state conditional constraints:

Es,u,a,s0⇠p
1
b


I[a = a

0]

⇡b(a0 | s, u)
| s

0 = k

�
= p

1
b
(k | a

0) 8k 2 S, a
0
2 A (3)

We let B̃ denote the set of all functions �(a | s, u) that satisfy both Eqs. (1) and (3).

3.3 The partially identified set
Given the above restrictions, we can define the set of partially identified evaluation policy values.
To do so, suppose we are given a target behavior policy ⇡e, the observed stationary distribution
p
1
b
(s, a, s0), and bounds l(a | s),m(a | s) on �. We are then concerned with what w could be, given

the degrees of freedom that remain. So, we define the following set for what values w can take:6

⇥ =

(
p
(1)
e (s, u)

p
(1)
b

(s, u)
:

M is an MDP,
M satisfies Assumptions 1 and 2 with respect to ⇡b and the given ⇡e,
⇡b(a | s, u) is a stationary policy with � 2 B and p

1
b
(s, a, s0) as given

)

We are then interested in determining the largest and smallest that Re can be. That is, we are interested
in

R
e
= inf

w2⇥
E[w(s)�(s)], Re = sup

w2⇥
E[w(s)�(s)]. (4)

Notice that this is equivalent to computing the support function of ⇥ at �� and � with respect to
the L2 inner product defined by p

1
b
(s), hf, gi = E[f(s)g(s)] =

P
j
p
1
b
(j)f(j)g(j). The support

function of a set S is  (v) = sup
s2S hv, si [32].

4 Characterizing the partially identified set

In this section we derive a linear program to check membership in ⇥ for any given w.
5Our approach immediately generalizes to any linearly representable ambiguity set.
6Note that, as defined, ⇥ is a set of functions of (s, u) but because we enforce Assumption 2, all members

are constant with respect to u for each s; we therefore often implicitly refer to it as a set of functions of s alone.
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The partially identified estimating equation We begin by showing that w is uniquely
characterized by an estimating equation characterizing its stationarity, but where some parts of
the equation are not actually known.

Lemma 2. Suppose Assumptions 1 and 2 hold. Then w(s) = p
(1)
e (s,u)

p
(1)
b (s,u)

8s, u if and only if

E[⇡e(a | s)w(s)�(a | s, u) | s0 = k] = w(k) 8k, (5)
E[w(s)] = 1. (6)

The forward implication of Lemma 2 follows from Theorem 1 of [17] applied to the state variable
(s, u) after recognizing that w(s, u) only depends on s under Assumption 2 and marginalizing out u0.
The backward implications of Lemma 2 follows from the recurrence of the aggregated MDP obtained
from the transform (s, u) 7! s [16]. A complete proof appears in the appendix.

Fortunately, Eqs. (5) and (6) exactly characterize w. Unfortunately, Eq. (5) involves two unknowns:
�(a | s, u) and the distribution p

1
b
(s, u, a, s0) with respect to which the expectation is taken. In that

sense, the estimated equation is only partially identified. Nonetheless, this allows to make progress
toward a tractable characterization of ⇥.

Marginalization We next show that when optimizing over � 2 B, the sensitivity model can be
reparametrized with respect to marginal weights gk(a | j) (in the following, j, a, k are generic indices
into S,A,S , respectively):

gs0(a | s) :=
X

ũ

p
(1)
b

(s, ũ, a | s
0)

p1
b
(s, a | s0)

�(a | j, ũ) =

 
X

ũ

⇡b(a | j, ũ)
p
1
b
(ũ | s)p(s0 | s, ũ, a)

p(s0 | s, a)

!�1

Note that the values of the gs0(a | s) weights are not equivalent to the confounded ⇡b(a | s)�1:
the difference is exactly the variability in the underlying full-information transition probabilities
p(s0 | s, u, a). We will show that gs0(a | s) 2 B̃ satisfies the following constraints, where Eq. (7)
corresponds to Eq. (3):

l(a | s)  gs0(a | s)  m(a | s), 8s, s
0
2 S, a 2 A

p
1
b
(s0 | a) =

X

s2S
p
1
b
(s, a, s0)gs0(a | s), 8s

0
2 S, a 2 A (7)

Reparametrization with respect to gs0(a | s) follows from an optimization argument, recognizing
the symmetry of optimizing a function of unknown realizations of u with respect to an unknown
conditional visitation density. Crucially, reparametrization improves the scaling of the number of
nonconvex bilinear variables from the number of samples or trajectories, O(NT ), to O(|S|2|A|).

Unlike sensitivity models in causal inference, it is possible that the partial identification set is
empty, ⇥ = ;, even if its associated sensitivity model B̃ is nonempty in the space of weights. In
Appendix B.1 of the appendix, we explain this further by studying the state-action-state polytope [20],
the set of all valid visitation distributions achievable by some policy. The next result summarizes that
imposing constraints on the marginalized joint distribution p

1
b
(s, a, s0) is insufficient to ensure the

full (unobserved) joint distribution corresponds to a valid MDP stationary distribution.
Proposition 1. The implementable implications of the marginalized state-action and marginalized

state-action-state polytopes are: p
1
b
(s0 | a) =

P
s
p
1
b
(s, a, s0)gs0(a | s), 8s, s0 2 S, a 2 A.

Proposition 1 justifies our restrictions on B̃. However, it also implies that further imposing constraints
on B̃ cannot ensure compatibility of gs0(a | s) for the observed p

1
b
(s, a, s0) (and therefore ⇥), where

compatibility is the requirement that p1
b
(s, a, s0) is stationary for gs0(a | s).

Feasibility Linear Program We next show that w 2 ⇥ can be expressed using the linear program
F (w) that minimizes the L1 norm of residuals of the estimating equation of Lemma 2, for a given w,
over the sensitivity model g 2 B̃

7:

F (w) := min
g2B̃

X

s02S

������

X

s2S,a2A
p
(1)
b

(s, a | s
0)w(s)⇡e(a | s)gs0(a | s)� w(s0)

������
. (8)

7Linearity of F (w) also holds if an instrument function is used to convert the conditional moment equality
to an unconditional one, as in Eqn. 10 [17], and as we use in Section 5 and Proposition 4.
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Figure 2: Confounded random walk.

Figure 3: Varying transition models on (s, u).
? is true policy value.

Proposition 2 (Feasibility Linear Program).

w 2 ⇥ () F (w)  0, E[w(s)] = 1 (9)

In relation to Proposition 1, the analysis for Eq. (9) shows that it is exactly the partially identified
estimating equation, Lemma 2, which enforces compatibility such that combining the restrictions on
B̃ and Lemma 2 verifies membership of w in ⇥. A consequence of Proposition 2 is sharpness of the
partially identified interval [R

e
, Re]; each point in the interval corresponds to some policy value.

Theorem 1 (Sharpness).
{E[w(s)�(s)] : w 2 ⇥} = [R

e
, Re].

5 Optimizing over the partially identified set

Eq. (9) suggests computing R
e
, Re by solving

inf / sup {E[w(s)�(s)] : F (w)  0, E[w(s)] = 1}. (10)

The restriction F (w) = 0 implicitly encodes an optimization over g, resulting in a hard nonconvex
optimization problem. We outline some computational approaches.

Global optimization Computationally, global optimization is possible via branch and bound
approaches for the nonconvex quadratic program obtained by solving Equation (10) directly,
simultaneously over w, g. We take this approach in the experiments, where we use Gurobi version 9.
However, this approach is not scalable for large or moderately sized state spaces.

Disjunctive reformulation We show that the structure of the feasibility program admits
reformulation as a disjunctive program.
Proposition 3. Eq. (10) can be reformulated as a disjunctive program (hence a finite linear program).

However, the size of the resulting program is super-exponential in the cardinality of the state space,
hence not practical. In Appendix E we also discuss the computational intractability of lifted SDP
relaxations, which incur O(|S|9) iteration complexity. Therefore, for small state spaces, we suggest
to solve Eq. (10) directly via Gurobi.

Nonconvex nonconvex-projected gradient method We next develop a more practical
optimization approach based on non-convex first-order methods. First we restate the estimating
equation Eq. (5) for a fixed g as a matrix system. To evaluate expectations on the unconditional
joint distribution, we introduce instrument functions �s,�s0 2 R|S|⇥1, random (row) vectors
which are one-hot indicators for the state random variable s, s

0 taking on each value, �s =

6



Algorithm 1 Nonconvex nonconvex-projected gradient descent

Input: step size ⌘0, exponent  2 (0, 1], initial iterate g0, number of iterations N
for k = 0, . . . , N � 1 do
⌘k  ⌘0t

�k

w
⇤
gk
2 argmin

w�0
{kA(gk)wk1 ,E[w(s)] = 1}, g̃k 2 argmin

g2B̃
{kg � gkk1 : A(g)w⇤

gk
= 0}

gk+1  ProjB(gk + ⌘trg̃k('
T
Ã(g)�1

v))
end for Return gk with the best loss.

[I[s = 0] . . . I[s = |S|]]. Let A(g) = E[�s0(⇡e(a | s)gs0(a | s)�s � �s0)>] and bs = p
1
b
(s).

Let  be the set of g 2 B̃ that admit a feasible solution to the estimating equation for some w 2 ⇥:

 := {g 2 B̃ : 9 w � 0 s.t. A(g)w = 0, b>w = 1} (11)

Define Ã(g) by replacing the last row of A(g) by b and let v = (0, . . . , 0, 1) 2 R|S|.

Proposition 4. If g 2  then Ã(g) is invertible. Moreover, ⇥ = {Ã(g)�1
v : g 2  }.

Proposition 4 suggests computing R
e
, Re by solving

inf / sup {'
T
Ã(g)�1

v : g 2  }, (12)

where 's = �(s)p1
b
(s). This optimization problem has both a non-convex objective and a

non-convex feasible set, but it has small size. As a way to approximate R
e
, Re, we propose

a gradient descent approach to solving Eq. (12) in Algorithm 1. Since the feasible set is itself
non-convex, we use an approximate projection that corrects each gk variable at iteration k to a
feasible point but may not be a projection. This is based on taking alternating projection steps on
w

⇤
gk
2 argmin{kA(gk)wk1 : E[w(s)] = 1} and g̃k 2 argmin{kg � gkk1 : A(g)w⇤

gk
= 0, g 2 B̃};

each of these is a linear program with |S| or |S|2|A| many variables, respectively.
Remark 2. Since the tabular setting is a special case of linear function approximation for w, our
approach directly handles the case where w = ✓

>
s is a linear function of the state, but further requires

well-specification. See Appendix D.1 for detail and discussion of additional challenges.

6 Consistency
The above analysis considered the population setting, but in practice we use the empirical state-action
occupancy distribution, p̂1

b
(s, a, s0). Define R̂e, R̂e

as the corresponding values when we solve
Eq. (4) with this estimate in place of p1

b
(s, a, s0). We establish consistency of the estimated bounds.

Theorem 3 (Consistency). If p̂
1
b
(s, a, s0)! p

1
b
(s, a, s0), then

R̂e ! Re, R̂e
! R

e
.

Since the empirical distributions satisfy p̂
1
b
(s, a, s0)!p p

1
b
(s, a, s0) [see, e.g., 20], Theorem 3 and

the continuous mapping theorem would then together imply that R̂e !p Re, R̂e
!p R

e
. Since the

perturbation of p1
b

to p̂
1
b

introduces perturbations to the constraint matrix of the LP, to prove this
result we leverage a general stability analysis due to [31, Theorem 1].

7 Empirics

Illustrative example: Confounded random walk We introduce a simple example in Figure 2.
Figure 2 satisfies a sufficient condition of Lemma 1 this is graphically denoted by arrows from (s, u)
tuples to s

0 states. The confounded random walk is parametrized by the transition probabilities under
action a = 1: p(s1 | s1, u1, a = 1) = pu1 , p(s1 | s1, u2, 1) = 1

2 � pu2 , where u is generated
exogenously upon transiting a state s. Transitions are antisymmetric under action a = 2, so that
p(s1 | s1, u1, 1) =

1
2 � pu1 , p(s2 | s1, u2, 1) = pu2 . Then, a stationary policy that is uniform over

actions generates a random walk on S . See Appendix E for a full description.
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G

Figure 4: 3x3 gridworld.
�(s) of green is 1, red -0.3.

Figure 5:
Statistical consistency

Figure 6: Bounds when ⇡b
is ⌘�weighted mixture of
⇡
⇤,u=0
b

, the (s, 0)-optimal
policy, and uniform.

Figure 7: ⇡b is mixture
policy of ⇡⇤,S

b
, S optimal

policy, to uniform.

In Fig. 3, we vary the underlying transition model, varying pu1 = pu2 on a grid [0.1, 0.45], and we plot
the varying bounds with action-marginal control variates. We compute bounds via global optimization
with Gurobi version 9 (each problem solves within seconds). The true underlying behavior policy
takes action a = 1 with probability ⇡(1 | s1, u1) = ⇡(1 | s2, u1) = 1

4 (and the complementary
probability when u = u2), modeling the setting where a full-information behavior policy is correlated
with the full-information transitions. The behavior policy on S appears to be uniform; using these
confounded estimates results in biased estimates of the transition probabilities. As we vary the
transition model in Fig. 3, note that the true policy value when � = [1, 2] is 1.5, indicated by ?, and
it is within the bounds for large enough � = 3, uniformly over different data-generating processes.

3x3 confounded windy gridworld. We introduce unobserved confounding to a 3x3 simple windy
gridworld environment, depicted in Figure 4 in the appendix [33]. The the agent receives �(s) = 1
reward at a goal state but �(s) = �0.3 at hazard states (shaded red). We assume a binary unobserved
confounder u 2 {0, 1} that represents “wind strength”. Transitions in the action direction succeed in
that direction with probability p = 0.8, otherwise with probability 0.1 the agent goes east or west.
However, when u = 1, the “westward wind” is strong, but if the agent takes action “east”, the agent
instead stays in place (otherwise the agent transitions west). The wind is generated exogenously from
all else in the environment. An optimal full-information behavior policy (agent with wind sensors)
varies depending on ut by taking the left action, to avoid the penalty states. This models the setting
where unobserved confounding arises due to exogenous private information.

In Figure 5, we study the finite-sample properties of the bounds estimator, plotting ˆ
RT

e �
ˆ

R10k
e

for
differing trajectory lengths on a logarithmic grid, T 2 [250, 10000], and standard errors averaged
over 50 replications. (We plot the difference in order to normalize by an estimate of the large-sample
limit). We compute bounds via global optimization with Gurobi version 9 (each problem solves
within seconds). The bounds converge; optimizing over larger � values tends to increase finite sample
bias.

We illustrate bounds obtained by our approach in Figure 6 for evaluation policies which are mixtures
to ⇡⇤,u=0

b
, a suboptimal policy that is optimal for the transitions when u = 0 (no wind), and in

Figure 7, ⇡⇤S , a policy that is optimal on S given the true marginalized transition probabilities (which

8



are unknown to the analyst, but known in this environment). We display the bounds as we range
mixture weights on the non-uniform policy from 0.3 to 0.8. We display in a dashed line, with the
same color for corresponding mixture weight ⌘, the true value of Re.

8 Related work, discussion, and conclusions

Off-policy evaluation in RL. We build most directly on a line of recent work in off-policy policy
evaluation which targets estimation of the stationary distribution density ratio [6, 8, 13, 17], which
can be highly advantageous for variance reduction compared to stepwise importance sampling.

Sensitivity analysis in the batch setting in causal inference. Sensitivity analysis is a rich area
in causal inference. A related work in approach is [14], which builds on [2] and considers robust
off-policy evaluation and learning in the one-decision-point setting. In Appendix A.1, we discuss an
extension of their or other inverse-weight robust approaches to this setting and the inherent challenges
of such an approach with long horizons in introducing “exponential robustness”. The identification
approach in this work is very different: the partial identification region is only identified implicitly

as the solution region of an estimating equation. Unlike [14], [4] consider an identifiable setting
where we are given a well-specified latent variable model and propose a minimax balancing solution.
Finally, [15, 39] study bounds for conditional average treatment effects in the one-decision-point

setting. [40] consider sensitivity analysis under assumptions on the outcome functions for a marginal
structural model.

Off-policy evaluation in RL with unobservables. Various recent work considers unobserved
confounders in RL. [23] considers identification of counterfactuals of trajectories in an POMDP and
SCM model. [35] study off-policy evaluation in the POMDP setting, proposing a “decoupled POMDP”
and leveraging the identification result of [21], viewing previous and future states as negative controls.
[19] propose a “deconfounded RL method” that builds on the deep latent variable approach of [18].
[41] uses partial identification bounds to narrow confidence regions on the transition matrix to warm
start the UCRL algorithm of [10].

These generally consider a setting with sufficient assumptions or data to render policy values
identifiable, where in the general observational setting they are unidentifiable. Specifically, [35]
require an invertibility assumption that implies in a sense that we have a proxy observation for every

unobserved confounder, [19] assume a well-specified latent variable model, also requiring that every
unobserved confounder is reflected in the proxies, and [41] consider an online setting where additional
experimentation can eventually identify policy value. Our approach is complementary to these works:
we focus on the time-homogeneous, infinite-horizon case, and are agnostic to distributional or support
assumptions on u. Our structural assumption on u’s dynamics (Assumption 2) is also new.

In contrast to POMDPs in general, which emphasize the hidden underlying state and its statistical
recovery, our model is distinct in that we focus on rewards as functions of the observed state. In
contrast to robust MDPs, one may derive a corresponding ambiguity set on transition matrices (see
Lemma 4 in the appendix), but it is generally non-rectangular because the ambiguity set does not
decompose as a product set over states, which leads to a NP-hard problem in the general case [38].
See Appendix A.2 of the appendix for a fuller discussion.

Conclusions and future work Our work establishes partial identification results for policy
evaluation in infinite-horizon RL under unobserved confounding. We showed that the set of all
policy values that agree with both the data and a marginal sensitivity model can be expressed in terms
of whether the value of a linear program is non-positive and developed algorithms that assess the
minimal- and maximal-possible values of a policy. Further algorithmic improvements are necessary
in order to extend our results to infinite state spaces. Finally, an important next step is to translate the
partial identification bounds to robust policy learning.
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Broader Impact

As a contribution to offline RL, our work is of particular importance for RL in the context of social
and medical sciences, where experimentation is limited and observational data must be used. The
validity of the no-unobserved-confounders assumption is of particular importance to applied research
in these fields since the presence of unobserved confounding can bias standard evaluations that
assume the issue away and, unchecked, this may potentially hide harms done by the policy being
evaluated or learned. Our work is the first step in developing offline RL algorithms that directly
address this real, practical issue, and its primary purpose is to directly deal with such biases in the
data.

That said, it is well understood that there is generally a gap between theory and practice in RL as it is
applied to very complex and large-scale systems. It is therefore important to keep in mind practical
heuristics, stopgaps, and approximations from applied RL when translating this work into practice.
The systematic investigation of the use of these in the context of confounded offline RL and more
extensive experimental studies in larger environments may require additional future work.

Moreover, there are several general potential dangers to be cognizant of when applying any offline
RL tool in practice. First, if the observational data is not representative of the population, that is,
there is a covariate shift in the state distribution, then the evaluation will reflect these biases and
correspondingly be unrepresentative, under-emphasizing value to some parts of the population and
over-emphasizing value to others. More generally, even without covariate shift, here we focused on
evaluation of average welfare, which may average the harms to some and the benefits to others; it may
therefore be important in some applications to also conduct auxiliary evaluations on certain protected
subgroups to ensure equal impact, which can be done by segmenting the data. Third, it is possible
that any offline RL approach may be applied inappropriately when the assumptions are not met – here
we dealt directly with how to deal with violations of unconfoundedness assumptions but there may
still be other assumptions such as our Assumption 1 – and this will mislead any evaluation or learning.
For example, concerns about violations of absolute continuity of importance weights (overlap) are
especially relevant in the offline RL setting. Therefore, we strongly recommend considering such
offline RL and, in particular the sensitivity analyses we developed herein, as a way to inform further
investigation, additional data collection, and/or investment in a randomized trial, rather than as an
outright replacement for any of these. That said, offline evaluation, especially robust evaluation as we
propose herein, is crucial for assessing policies before even trialling them, where they may effect
actual negative impacts on study populations.
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