
Supplementary Material: Model Class Reliance for
Random Forests

Gavin Smith
N/LAB

University of Nottingham
Nottingham, UK

Roberto Mansilla
N/LAB

University of Nottingham
Nottingham, UK

{first.last}@nottingham.ac.uk

James Goulding
N/LAB

University of Nottingham
Nottingham, UK

1 Implementation Availability

Our RF-MCR method for both Classification and Regression Random Forests is available as a pip
installable python3 package on github: https://github.com/gavin-s-smith/mcrforest

2 Empirical Evaluation

All experiments were run from a Google Colaboratory notebook connected to a local instance utilizing
an Intel R© CoreTM i7-3930K CPU @ 3.20GHz with 64GB RAM and running Ubuntu 20.04, Python
3.6.10 and R 3.6.3. Unless otherwise specified all algorithms were timed on single core versions
even though, for instance, the proposed method is in places trivially parallelizable (i.e. during forest
build). An exception was the grid search across meta-parameters to find the best (optimal) reference
model where parallelization was used when required as this stage does not form part of the time
comparisons.

2.1 Notes for Replication of Results

Replication is facilitated through the provision of four hosted Python notebooks which replicate
the paper results. Hosted on Google Colaboratory they enable the use of hosted or local runtime
environments. When tested hosted runtimes were running Python 3.6.9 and R 3.6.3. Please note that
while a hosted runtime can be used for ease of replication, all timings reported in the paper were
based on using a local runtime environment as previously indicated NOT a hosted environment.

The URLs for the notebooks are:

1. Synthetic Experiments:
https://colab.research.google.com/drive/1nHaP8iNnTyY8txptNASWT2fjRPvrOSy4

2. COMPAS Experiments:
https://colab.research.google.com/drive/1JiJpC8KJAeALt1wxmluUWCCGnkWfsZCG

3. Breast Cancer Experiments:
https://colab.research.google.com/drive/1VYzSf9vg6-kzQHJwdi-vUrwvjr-djqjQ

4. RF-MCR Analysis:
https://colab.research.google.com/drive/1BFzoR9SDNRcKv1R9BX7dnRMcIG83TYdX

The notebooks, when run in the hosted environment will automatically install the required packages
developed as part of this work. The packages developed as part of this work are discussed below
and made available via the above notebooks. Note that the learning of meta-parameters for the
Disentangling Influence method from [4] is generally to time consuming for a hosted notebook and
the parameters from a prior run have been included. By default the notebooks will use these and skip
the meta-parameter search.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/gavin-s-smith/mcrforest
https://colab.research.google.com/drive/1nHaP8iNnTyY8txptNASWT2fjRPvrOSy4
https://colab.research.google.com/drive/1JiJpC8KJAeALt1wxmluUWCCGnkWfsZCG
https://colab.research.google.com/drive/1VYzSf9vg6-kzQHJwdi-vUrwvjr-djqjQ
https://colab.research.google.com/drive/1BFzoR9SDNRcKv1R9BX7dnRMcIG83TYdX

2.1.1 The proposed method RF-MCR source code

The code is written as an extension to the sklearn RandomForestRegressor and RandomForestClas-
sifer classes. To simplify installation, the implementation has been decoupled from sklearn and
packaged as a separate installable library. The code is available on github: https://github.com/
gavin-s-smith/mcrforest

Dependencies, download links and install instructions are included in the notebooks in the case a local
install is desired. If running the notebooks on a hosted instance this will be automatically installed.

2.1.2 A Python wrapper for the non-linear RBF-SVM MCR method from [1]

The wrapper calls the R code from the lead author’s github https://github.com/aaronjfisher/
mcr and derived from https://github.com/aaronjfisher/mcr-supplement.

Dependencies, download links and install instructions are included in the notebooks in the case a local
install is desired. If running the notebooks on a hosted instance this will be automatically installed.

2.1.3 A Python wrapper for the Disentangling Influence method from [4]

The wrapper is based on the authors code from https://github.com/charliemarx/
disentangling-influence. The wrapper extends the code base from the author to:

• include code to grid search for the neural network meta-parameters to find the optimal
parameters per (encoder, discriminator, decoder) triple, noting that there is one triple per
feature of interest. This code is parallelized. For the encoder and decoder neural networks
two layers were used (reflecting [4]). The grid search considered 80 different model meta-
parameterizations:

– four values for the latent dimension equally spaced between the number of input
features and the cardinally of output.

– four values for each of the hidden layers in the encoder and decoder selected to be
equally spaced between the latent dimension and two times the number of covariates.
For the encoder, combinations of these for the two layers such that the first layer had
more neurons than the second were considered. For the decoder reversed combinations
were considered.

– two different learning rates were considered 0.001 and 0.01
– beta was set at 0.5 or 1 based on discussion in [4] and preliminary experimentation
– the maximum number of training steps was set to 10000

• include early stopping to reduce runtime. Tolerance was set to 0.00001 and patience to 100.
• provide a simple object to simply the following:

– (re)fit a set of triples based on a set of meta-parameters for all variables of in-
terest. This simply calls the code from https://github.com/charliemarx/
disentangling-influence.

– computation of the influence value. This calls the code from https://github.com/
charliemarx/disentangling-influence however, following [4] the off-the-shelf
use of SHAP as the underpinning direct influence function is replaced by unconditional
permutation importance. In addition the reporting of influence as either a difference or
a ratio is coded.

– a method to replicate the diagnostic graphs shown in [4] from the output is included

Dependencies, download links and install instructions are included in the notebooks in the case a local
install is desired. If running the notebooks on a hosted instance this will be automatically installed.

2.1.4 Source code for a modified version of the R package party

A modified version of https://cran.r-project.org/web/packages/party/index.html as
an installable package has been made. The modification is minor, slightly altering the varimp function
(in varimp.R) to, on request, return the conditional permutation importance as a ratio instead of a
difference. The party version modified was 1.3-4.

2

https://github.com/gavin-s-smith/mcrforest
https://github.com/gavin-s-smith/mcrforest
https://github.com/aaronjfisher/mcr
https://github.com/aaronjfisher/mcr
https://github.com/aaronjfisher/mcr-supplement
https://github.com/charliemarx/disentangling-influence
https://github.com/charliemarx/disentangling-influence
https://github.com/charliemarx/disentangling-influence
https://github.com/charliemarx/disentangling-influence
https://github.com/charliemarx/disentangling-influence
https://github.com/charliemarx/disentangling-influence
https://cran.r-project.org/web/packages/party/index.html

Dependencies, download links and install instructions are included in the notebooks in the case a local
install is desired. If running the notebooks on a hosted instance this will be automatically installed.

2.2 Synthetic Experiments

The following implementation points are of note beyond those detailed in the paper:

• The reference model for the RF MCR is a model trained as required by the MCR method
(no bootstrapping, a small number of variables considered at each split, in this case 1 given
there are only three variables). The model is able to learn the relationship perfectly.

• Conditional Variable importance (Random Forest version) used the implementation from the
R package party https://rdrr.io/cran/party/man/varimp.html. Default parame-
ters were used.

• The disentanglement (INFL) method had it’s meta-parameters optimised via the previously
discussed grid search method. This learns an optimised model per input variable. Despite
this significant tuning (and some further manual tuning attempts), the method was relatively
unstable leading to a number of solutions depending on the different random seed used.
Figure 1 shows the the diagnostic graphs as considered in [4]. They indicate that the
resulting networks are relatively acceptable for the run reported in the paper. With respect to
interpreting these graphs, [4, pg 6] note that: Optimal is reconstruction error and prediction
error of 0 for all features (indicating no errors in autoencoding), and disentanglement
error of 1 for all features. We note that some of the alternative solutions for different seeds
observed corresponded to a slightly better performance of the method in the context of
the paper, though with worse diagnostic graphs. In all cases the discussion regarding this
method in the paper holds regardless of the exact observed result during experimentation.
Note that the notebook does not have a fixed seed and this instability can be explored by
re-running the notebook.

• SHAP values are calculated on an identical RandomForestClassifier as used for the RF
MCR.

• Unconditional and exact conditional permutation importance is computed on the same
RandomForestClassifier as RF MCR.

Figure 1: Graph of diagnostic measures for the neural networks trained as part of the Disentangling
Influence (INFL) method from [4] for the Synthetic experiments. Graphs indicate the networks are
reasonably well trained according to [4].

2.3 COMPAS Experiments

The following implementation points are of note beyond those detailed in the paper:

• The data set was the same as used in [1] and was downloaded from https://github.com/
aaronjfisher/mcr-supplement. The training and test sets as defined by [1] were used.
The notebook file details the instructions to convert the data from that repository to csv for
use in Python.

3

https://rdrr.io/cran/party/man/varimp.html
https://github.com/aaronjfisher/mcr-supplement
https://github.com/aaronjfisher/mcr-supplement

• Reference models were trained (included cross-validated meta-parameter search when
applicable) using the training data. Reported model performance scores for the reference
models were are for the test data set.

• In this work we consider the in-sample estimation of the MCR. While in-sample estimation
is motivated in [1] the reported figures for grouped admissible and inadmissible variables
in their evaluation based on the COMPAS data is based on sample-splitting. In order to
verify the RBF-SVM implementation an exact replica of their experiment was run which
confirmed the results they reported.

• The graphs generated by the Notebooks are per MCR estimation method, rather than the
comparison graphs shown in the paper. This format was generated separately from the
outputs. The information is the same.

• For RF MCR a Grid Search was performed to determine the optimal meta-parameters
underpinned by 5-Fold cross-validation based on the training set. The reported MSE was
computed on a held out test set. The grid search considered five different levels of minimum
decrease in impurity and two different values for the number of features to be considered
in each split (1 and the square root of the number of input features). Bootstrapping was
disabled.

• For RBF-SVM the optimal meta-parameters found within the evaluation on this dataset by
[1] were used. This was based on a meta-parameter search as per [1].

• The disentangling influence method utilized the same Random Forest reference model as
RF-MCR. When learning the neural network as part of the variable importance procedure,
the meta-parameters were set via the grid search method previously detailed. Diagnostic
graphs for this process are shown in Figure 2. They indicate that the neural networks
have done a reasonable, but imperfect, job of learning a disentangled representation. This
provides some explanation as to the differing performance of this hybrid method compared
to RF MCR+ and RBF-SVM MCR+. The error profile is not too dissimilar to those reported
in the original authors work [4] in their empirical evaluations (on different datasets), and it
is unclear if it is possible to learn a better representation. As discussed in the main paper,
the requirement and time needed to tune this approach additionally makes its re-purposing
to the use as an MCR+ measure less desirable (grid search took a several hours despite
utilization of 10 cores). Further, as discussed in the section RF-MCR Analysis in the paper
and below, the requirement to learn neural networks (even with fixed meta-parameters) as
part of generating importance values results in run-times significantly greater than RF-MCR
and RBF-SVM MCR. For COMPAS this took 20 minutes. In contrast RF-MCR runs in < 5
seconds. Note that in both the disentanglement method and RF MCR used the same trained
reference model in the experiments.

Figure 2: Graph of diagnostic measures for the neural networks trained as part of the Disentangling
Influence (INFL) method from [4] for the COMPAS experiments.

2.4 Breast Cancer Experiments

The following implementation points are of note beyond those detailed in the paper:

4

• The data set used was accessed directly from sklearn, via a corresponding API call (sklearn
version 0.23.1). In order to reduce the number of variables, and allow clearer interpretation
of results, a lightweight variable selection process was applied. This took the form of
a traditional approach based on unconditional variable importance for a Random Forest
re-run many times with different random seeds. This process took place before any methods
reported in this work were considered. Input variables retained were: mean compactness,
mean symmetry, area error, compactness error, symmetry error, worst radius, worst texture,
worst perimeter, worst compactness, worst concave points and worst symmetry. The data
was then randomly split into a training (66%) and test set (33%).
• Reference models were trained (included cross-validated meta-parameter search when

applicable) using the training data. Reported model performance scores for the reference
models were using the test data set, and achieved an accuracy of 95.74%.

• The reference model used in both RF-MCR and for the disentanglement influence method
as part of the Hybrid-VI MCR was the same. An identical grid search for the forest
meta-parameters was conducted as done for the COMPAS experiment. For conditional
permutation importance (MCR- as part of the Hybrid-VI MCR) a new Random Forest is
required to be trained in the R environment.

• As with the COMPAS experiments we report the in-sample estimation of the MCR.
• The disentangling influence method from [4], which is re-purposed to act as the MCR+

for the Hybrid-VI method, learnt the neural network’s meta-parameters via the previously
described grid search considering 80 different meta-parameterizations. The diagnostic
graphs are shown in Figure 3. The graphs again indicate that although the networks have
learnt relatively well, there remains per-feature error differences. Since these independently
affect each variable’s importance, it casts some doubts over the relative variable importances
implied by this method, as discussed in the paper.

• The graphs generated in the Notebooks are per-method (rather than the comparison graphs
collated and illustrated in the paper). This format was generated separately from the outputs.
The information is the same.

Figure 3: Graph of diagnostic measures for the neural networks trained as part of the Disentangling
Influence (INFL) method from [4] for the Cancer experiments. Variables are listed along the x-axis.

2.5 RF-MCR Analysis

Runtime analysis of RBF-SVM MCR and the proposed RF MCR with respect to the number of data
points was conducted on the aforementioned machine with an Intel R© CoreTM i7-3930K CPU @
3.20GHz with 64GB RAM and running Ubuntu 20.04, Python 3.6.10 and R 3.6.3. Both methods
used single core algorithms. A comparison to the Hybrid-VI method was not made due to the method
requiring the training of neural networks (and additionally the time to learn optimal meta-parameters
for these networks) which meant the approach ran orders of magnitude slower (20mins vs. <5 seconds
for a preliminary run on COMPAS). The runtime performance considered only the computation of
the MCR (both MCR- and MCR+) and excluded the time taken to train the reference model in both
cases, however, the reference model was retrained at each iteration. This is because the runtime of

5

the MCR algorithms are somewhat dependent on the complexity of the reference model structure.
Simply increasing the dataset on which the MCR is computed would not be an accurate reflection of
runtime in practice if a model trained on a smaller dataset was considered during a timing study. As
such we consider the computation of in-sample MCR where the training dataset and the data set used
to compute the MCR is of the same size at each iteration. A final note is that the two method differ
slightly in the permutation scheme used. RBF-SVM MCR is coded in the implementation by [1] to
use e-divide (Equation 3.4, pg. 9). In contrast in RF MCR we use repeated random permutations,
repeating 10 times. The latter is more computationally expensive meaning the proposed method, RF
MCR, is slightly disadvantaged. Given the results and the common place usage of repeated random
permutations e-switch was not implemented and compared to within RF MCR.

The convergence of MCR+/- to a fixed point was additionally investigated on both the COMPAS
and Breast Cancer data sets. For the COMPAS dataset an ε value of 3.1713 was used. To show
convergence under different ε, ε = 0.00001 was used for the Breast Cancer dataset. In the paper,
due to space constraints only two of the four graphs were presented, the convergence of MCR- for
COMPAS and MCR+ for Cancer. The full four graphs are shown in Figures 4 - 7. Note, due to a
different random seed being used during tree construction, the graphs are differ slightly to those in
the full paper. The graphs show the same information, however, that quick convergence to a point
of stability is achieved providing further evidence this occurs generally. Given the slight difference
(exaggerated due to the change in scale) more trees may be justifiable for the COMPAS dataset,
which might then enable the approach to report a slightly lower MCR- for age.

Figure 4: COMPAS dataset MCR- Results Figure 5: COMPAS dataset MCR+ Results

Figure 6: Breast Cancer dataset MCR- results Figure 7: Breast Cancer dataset MCR+ results

Finally an ablation study was conducted, in order to investigate the extent to which the two steps of
the approach (surrogate replacement and the use of prediction equivalent trees, the T+ transform)
contribute to final estimation of MCR bounds. Specifically, we examined how much each step either
increases (MCR+) or decreases (MCR-) the importance (from the reference model value) per variable
on both the COMPAS and Cancer datasets. Note that, for reasons as listed in Section 4.3 in the paper,
in the current implementation the epsilon parameter for surrogates is not implemented. The effect of
the surrogate transform, therefore, is likely to under-report, particularly for larger ε values. To limit
this effect ε was set to 0.1 for the ablation study. Results of the ablation study are shown in Figures

6

8 and 9, with both components evidenced as playing a notable role in determining the MCR- and
MCR+ values.

Figure 8: Ablation Study results for the COMPAS dataset

Figure 9: Ablation Study results for the Breast Cancer dataset. For variables where the reference
model’s importance equalled the MCR- value no increase occurred and so no percentage change is
shown.

3 Algorithm Reliance and Model Class Reliance

Algorithm reliance measures the predictive performance lost when training a model without one
or more variables, compared to the predictive performance of a model trained with all variables
included. By definition this is not a measure of MCR (see [1, §3.2]). [1, §9.1] consider two types of
AR, necessity and sufficiency. Necessity is computed by training a model with all features (M0) and a
second with all features except the feature of interest (M1). The difference in predictive performance
is then measured. Sufficiency is computed by again considering M0, but also considering a model
trained just on the variable of interest (M2). As [1] show empirically, AR necessity lower bounds
MCR-. AR sufficiency, however, does not provide a good upper bound for MCR+, failing to capture
and acknowledge the variables importance within interactions with other variables. Computing AR
necessity and sufficiency for both the COMPAS and Cancer datasets show results inline with those
reported by [1] when comparing AR and MCR. For COMPAS, AR necessity again lower bounds
reported MCR- (trivially for charge degree, sex and race while for Age and priors count ratios of
1.66 and 1.074 are reported). For the Cancer dataset, since MCR- already identifies all variables
as within some model not being required, the MCR- and AR are equivalent. AR sufficiency was
also computed and was always less than the MCR+ bound as expected, highlighting its inability to
attribute interaction effects to the variable.

7

4 Additional Empirical Analysis: Predicting negative birth outcomes

As part of the empirical analysis, our proposed methodology was also applied to a third dataset, with
a focus on the application of method to a pressing real-world problem, rather than comparison to
baselines. The data set selected is from an going project in East Africa looking at predicting negative
birth outcomes based on surveyed data from: (1) community health worker visits taken before a birth,
(2) living conditions and (3) features aggregated to a region level from alternative data sources such
as mobile money records and call detail records. The output feature was a binary encoded variable
indicating if the birth was subsequently a negative one or not.

The goal was to understand: (1) the predictive performance that could be obtained from modelling
this issue (2) the potential utility of using (easier to collect) area-level and living condition features,
under the assumption that the three feature types would likely share predictive information regarding
the output variable. This information was then used as a basis for a real-world review into the type
of information collected by the community health workers and as as basis for further future feature
engineering in order to better develop the predictive model. Figure 10 shows the results of the
RF-MCR analysis based on a reference model that achieved 66.5% accuracy on a held out test set.

In contrast to what would be seen by a traditional (e.g. permutation) variable importance analysis
we see that region level features (home_ct, avg_trans_sent, avg_contacts, avg_sent_overall_trans,
avg_trans_received) can range in importance, indicating well performing models exist where these
features are utilized. This was equally true of the living condition features. Equally it showed that a
number of survey questions did not seem to aid the prediction, with their almost zero MCR+ scores
indicating they could (at least for this task) be considered for removal from the survey. The remaining
survey questions (age, driver arranged in advance, partner permission, time of year of first visit,
abortions) however show relatively large MCR- scores. These should therefore not be considered
for exclusion from future surveying, as our MCR analysis indicates that they are indeed required in
all models. An exception is perhaps the requirement to collect information on abortions (previously
viewed as crucial), which might be revisited given the sensitive nature of the topic and the limited
predictive impact indicated. Finally, results indicate that the derived features and living condition
features share information about the output.

Figure 10: Negative Birth Outcomes dataset MCR Results

8

5 Proof

This section provides proof of the claim that:

MRX1
(F+

T ,Φ) ≥MRX1
(F+

S ,Φ) (1)

Here MR(.) is the model reliance of some random forest, F , on variable, X1 given the context of
Z = 〈X1, X2, Y 〉. X2 reflects the set of independent variables used in addition to X1 by the forest
to predict target variable, Y . Calculating MR(.) requires specification of a disruption function, Φ,
that is applied to Z, to generate a version of the variable interest, XΦ

1 ∈ ZΦ, that is rendered as
uninformative as possible in relation to Y . Finally, we recall that model reliance is defined as:

MRX1(F,Φ) = L(F,ZΦ)− L(F,Z) (2)

= L(F, 〈XΦ
1 , X2, Y 〉)− L(F, 〈X1, X2, Y 〉) (3)

Below we show that following transformation of model F+
S to model F+

T (as per equation [9] in the
full paper) model reliance on variable X1 must be greater than or equal to its previous level.

We note for the proof that the transformation to F+
T is constructed so as to ensure predictive

equivalence has be maintained. Specifically:

[The construction of F+
T] is achieved by a second transformation T +(F+

S), map-
ping each tree in F+

S to some other in F+
S that produces the same predictions but

which leverages our variable of interest the most (n.b. if a tree is already the most
reliant on X1 it is mapped to itself).

Formally this means that, by construction:

∀x ∈ Z, f ∈ F+
S : f(x) = T (f(x)) (4)

=⇒ ∀x ∈ Z : F+
S (x) = F+

T (x) (5)

=⇒ L(F+
S , Z) = L(F+

T , Z) (6)

Given these preliminaries, we first we substitute equation 3 into equation 1 to yield:

L(F+
T , Z

Φ)− L(F+
T , Z) ≥ L(F+

S , Z
Φ)− L(F+

S , Z) (7)

=⇒ L(F+
T , Z

Φ) ≥ L(F+
S , Z

Φ) (8)

Assuming that each F reflects a random forest regressor, and that we are using a squared loss function
to evaluate model reliance, then:

=⇒
∑

xΦ,y∈ZΦ

(
1

|F+
T |

∑
fT∈F+

T

fT (xΦ))− y

2

≥
∑

xΦ,y∈ZΦ

(
1

|F+
S |

∑
fS∈F+

S

fS(xΦ))− y

2

(9)

Note that both the LHS and the RHS of this inequality now corresponds the total error of a Random
Forest predictor against dataset ZΦ. This observation, however, allows us to leverage the ambiguity
decomposition derived in [2], which guarantees the generalization error of each ensemble to be lower
than the average generalization error of its constituents. Formally the decomposition states that for
any random forest, F ,:

L(F,Z) = E(F,Z)−A(F,Z) (10)

where:

E(F,Z) =
1

|F |
∑
f∈F

L(f, Z) (11)

A(F,Z) = EZ

 1

|F |
∑
f∈F

(f(x)− F+(x))2

 (12)

9

E(.) corresponds to the average generalization error of the individual trees in the forest, while the
second term is the ensemble ambiguity, reflecting the variance of individual predictions made by the
forest as a whole. Since A(.) is non-negative, the generalization error of the ensemble is therefore
always smaller than equal to the average generalization error of its constituents [3][pg. 63].

We applying the ambiguity decomposition directly to both sides of equation 9:

 1

|Z|
∑

xΦ,y∈ZΦ

1

|F+
T |
∑
fT

(fT (xΦ)− y)2

−
 1

|Z|
∑

xΦ,y∈ZΦ

1

|F+
T |

∑
fT∈FT

(
fT (xΦ)− F+(xΦ)

)2
≥ 1

|Z|
∑

xΦ,y∈ZΦ

1

|F+
S |
∑
fS

(fS(xΦ)− y)2

−
 1

|Z|
∑

xΦ,y∈ZΦ

1

|F+
S |

∑
fS∈FS

(
fS(xΦ)− S+(xΦ)

)2
(13)

Recognizing that the cardinality of the model doesn’t change following transformation, such that
|F+

T | = |F
+
S |, and rearranging gives us: ∑

xΦ,y∈ZΦ

∑
fT∈F+

T

(fT (xΦ)− y)2

−
 ∑
xΦ,y∈ZΦ

∑
fS∈F+

S

(fS(xΦ)− y)2

 ≥
 ∑
xΦ,y∈ZΦ

∑
fT∈F+

T

(
fT (xΦ)− F+

T (xΦ)
)2−

 ∑
xΦ,y∈ZΦ

∑
fS∈FS

(
fS(xΦ)− F+

S (xΦ)
)2 (14)

This equation must always hold. This can be proven by considering the behaviour of each term on
the left hand side of the equation (LHS:T1, LHS:T2) and right hand side (referred to as RHS:T1,
RHS:T2), in light of potential bijective mappings of F+

T as it is transformed from F+
S . Consider first

the degenerative case where the transformation T + : F+
S → F+

S , maps every element to itself so F+
T

= F+
S . In this case both terms on the LHS and RHS of equation 14 would be equivalent, both sides

resolving to zero.

However, if the mapping T + finds a tree that is substitutable for another in F+S (such a tree being
predictively equivalent yet of greater model reliance), then while both LHS:T2 and RHS:T2 stay the
same, both LHS:T1 and RHS:T1 must increase. This is guaranteed by construction, as the substitution
undertaken by T + only occurs if squared error against ZΦ) is increased (the definition of increased
model reliance). Consequently equation 14 holds if and only if the resulting change in LHS:T1 is
greater than or equal to the RHS:T1:

∆

 ∑
xΦ,y∈ZΦ

∑
fT∈F+

T

(fT (xΦ)− y)2

 ≥ ∆

 ∑
xΦ,y∈ZΦ

∑
fT∈F+

T

(
fT (xΦ)− F+

T (xΦ)
)2 (15)

To prove this is always the case, consider that both components are of the form:
∑

fS∈F+
T

(fT (x)−q)2.
Minimizing this equation across all datapoints, given q is a constant, gives us:

d

dq

∑
f∈FT

(f(x)− q)2

 = 0 =⇒ q̃ =
1

|F |
f(x) = F+

T (x)

Thus the right hand side term of equation 15 is minimized for any given, ZΦ - and as a consequence
the left hand side term can only be greater or equal to it. Therefore equation 15 holds, as does
equation 14, and consequently also equation 8. Thus:

MRX1(F+
T ,Φ) ≥MRX1(F+

S ,Φ) (16)

This completes the proof.

10

References
[1] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful:

Learning a variable’s importance by studying an entire class of prediction models simultaneously.
Journal of Machine Learning Research, 20(177):1–81, 2019.

[2] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active
learning. In Advances in neural information processing systems, pages 231–238, 1995.

[3] Gilles Louppe. Understanding Random Forests: From Theory to Practice. PhD thesis, Université
de Liège,Liège, Belgique, 2014. URL https://arxiv.org/pdf/1407.7502.pdf.

[4] Charles Marx, Richard Phillips, Sorelle Friedler, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Disentangling influence: Using disentangled representations to audit model predictions.
In Advances in Neural Information Processing Systems, pages 4498–4508, 2019.

11

https://arxiv.org/pdf/1407.7502.pdf

	Implementation Availability
	Empirical Evaluation
	Notes for Replication of Results
	The proposed method RF-MCR source code
	A Python wrapper for the non-linear RBF-SVM MCR method from fisher2019all
	A Python wrapper for the Disentangling Influence method from marx2019disentangling
	Source code for a modified version of the R package party

	Synthetic Experiments
	COMPAS Experiments
	Breast Cancer Experiments
	RF-MCR Analysis

	Algorithm Reliance and Model Class Reliance
	Additional Empirical Analysis: Predicting negative birth outcomes
	Proof

