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Our Motivation (R1,R3,R4,R5): is to enable on-device learning on power and bandwidth limited devices, where2

the communication reduction offered by current state-of-the-art compressed D-SGD is a good start, but is simply not3

enough for large DNNs with millions of parameters. It is therefore necessary to develop a strictly complementary4

source of communication reduction. Our paper provides a proof of concept for such a new source of communication5

reduction, establishing the theory and validating it on DNN experiments. Our algorithm isn’t designed to compete (or6

be compared) with other decentralized algorithms (R1, R4) but instead to be combined with them to substantially7

reduce the communication overhead further. Our algorithm can be combined with: communicating only every τ gradient8

updates (R1 [3]), adaptively communicating only updates of significant magnitude (R1 [4]), and compression of the9

communication (R1 [5,6]). We have expanded our literature review to discuss these algorithms (R4) and our interplay10

with them. Our new experiment in Fig. A below shows that by combining (simple) communication reduction schemes11

with our method one can operate under significantly stricter bandwidth constraints than was previously possible. For12

the revised paper, we will test additional communication reduction schemes on D-Dist.13

Comparison to D-SGD (R1,R3,R4):Since on-device is a constrained setting there might be no choice but to lose some14

performance compared to the ideal D-SGD. However, in our new experiment in Fig. B we achieve close to D-SGD15

performance on MNIST with 16 nodes (R1, R4). Our new experiment in Fig. C demonstrates the gain from different16

local models (R1, R4) our method obtains, which can outperform D-SGD in practice by allowing more devices into17

the training process. Even by just joining two subsets with different models, our method matches D-SGD which is18

forced to run on each subset of 4 devices separately. We will add to the paper an experiment with 4 different models.19

Figure: A) We apply the schemes of only commu-
nicating every τ gradient steps (τ = 10) and com-
pression via quantization (8 bit) and TopK (keep
the top K = 3 elements in each soft decision)
included in (R1 [3,6]) to D-Dist. In the revised
paper, we will add the CIFAR10 counterparts for
experiments A) and B), and both the epoch and
communication plots for all experiments.
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Communication (R1): Our algorithm communicates soft-decisions on the reference dataset (network soft-decisions)21

but only communicates a "network batch size" number of soft-decisions (even as low as 16) at each iteration. Analogous22

to how mini-batch SGD operates, we can tune the "network batch size". Our experiments show that we save 100-600×23

(improved to 10,000× in Fig A) in communicated bytes versus D-SGD when comparing at the same accuracy level.24

The Reference Dataset (R4, R5): should as large as possible, up to device constraints similar to how we would select25

the training dataset size. While the gradient bounds in Lemma 5 increase, performance improves since the set of26

distillation stationary points gets more selective as devices have to agree on more data points (see experiment in Section27

12.2.2). Reference data can be synthetic and then it is easy to obtain (as in co-regularization, see R1’s comment).28

Lipschitz Continuous Gradients (LCG)(R1): This holds since s,y are bounded (line 133). If Ln (s,y) has LCG (for29

every y) then Ln (s,y) has bounded gradients since ‖∇sLn (s,y)−∇sLn (s0,y)‖ ≤ ‖s− s0‖ ≤ M (∇Ln (s0,y)30

is a constant). Then Ln (θ
n) is LC as a sum of compositions of LCs: Ln (s,y) and s (θ, x). ∇Ln (θ

n) has LCG from31

the chain rule, since s (θ, x) has LCG. We now explain that in detail. Simply assuming that Ln (θ
n) is LC is also fine.32

Graphs (R4, R5): Our results apply to undirected graphs, a special case of a directed graph where strong connectivity33

coincides with connectivity. The graph is pre-defined. It can be generalized to a time-varying graph with a more34

cumbersome analysis. The graphs in this work were randomly drawn for a given maximum number of degrees per node.35

Euclidean Distance & Smoothness (R1, R3): Our analysis needs the loss function to be Lipschitz smooth in both36

variables; KL-divergence is not. A smooth model is a common assumption in theoretical analyses ([4,7,9] in our paper).37

First-order Necessary Condition (R4): We prove that devices not only converge, each to a local stationary point, but38

that they also agree on the reference soft-decisions. A device that accidentally converged to a local maximum or saddle39

point will suffer from poor performance and wouldn’t produce the correct soft-decisions to agree with all other devices.40

Lines 228, 233-234 (R4): If znt is a probability vector ∀n then so is W̃zt (stochastic matrix) and the sum over41

znt (x)− s (θnt , x) is zero, making znt+1 a probability vector for all n. The averaging step is a matrix multiplication that42

if operating "in a vacuum", has a geometrical convergence rate (Lemma 7). The norm of the consensus error is O(ηt)43

(Lemma 4). In comparison, even centralized SGD has an error of O( 1√
t
) at best (non-convex), slower than O(ηt).44

The "second moment" bound of Lemma 5 (R4): holds with probability 1, so it does not need an expectation.45

We now refer to the highly relevant line of work of Co-Regularization (R1). Our theory applies to Regression (R1)46

with minor modifications, and that’s a very nice insight that we now discuss in the paper. Thanks!47

Minor Comments: We have fixed all minor issues. Section 12.2.2 starts at line 589 and Section 12.2.3 at line 617.48


