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Abstract

On-device learning promises collaborative training of machine learning models
across edge devices without the sharing of user data. In state-of-the-art on-device
learning algorithms, devices communicate their model weights over a decentralized
communication network. Transmitting model weights requires huge communica-
tion overhead and means only devices with identical model architectures can be
included. To overcome these limitations, we introduce a distributed distillation
algorithm where devices communicate and learn from soft-decision (softmax) out-
puts, which are inherently architecture-agnostic and scale only with the number
of classes. The communicated soft-decisions are each model’s outputs on a pub-
lic, unlabeled reference dataset, which serves as a common vocabulary between
devices. We prove that the gradients of the distillation regularized loss functions
of all devices converge to zero with probability 1. Hence, all devices distill the
entire knowledge of all other devices on the reference data, regardless of their
local connections. Our analysis assumes smooth loss functions, which can be
non-convex. Simulations support our theoretical findings and show that even a
naive implementation of our algorithm significantly reduces the communication
overhead while achieving an overall comparable accuracy to the state-of-the-art.
By requiring little communication overhead and allowing for cross-architecture
training, we remove two main obstacles to scaling on-device learning.

1 Introduction

Today, software applications and users’ personal data are located on the individual’s wireless edge
(e.g., smartphone or IoT) device, while the machine learning algorithms deployed in these applications
relegate their training to central servers. This necessitates the transfer of the users’ data to the central
server for training, which entails massive communication overhead and privacy issues, limiting the
scalability of model training. On the other hand, one device alone does not have enough data to
achieve state-of-the-art performance. The goal of on-device learning is to keep both the data and the
training on the device by coordinating collaborative training across devices. Achieving this goal will
unlock an unprecedented amount of training data that today is generated on user devices.

The first step was accomplished in Federated Learning (FL) [1-3[] where each device trains its deep
neural network (DNN) with stochastic gradient descent (SGD) on its personal data. The resulting
parameters of each DNN are then uploaded to a server where they are averaged and the average is
transmitted to every device involved for another round of training. This way, each device’s DNN
learns from the private data of its peers without ever seeing it. Beyond maintaining privacy, this
method has the efficiency of a learning algorithm trained over a huge amount of data without having
to ever communicate the often multi-media data itself. However, FL’s repeated communication of
large parameter vectors is infeasible for power-limited edge devices and its central parameter server
is a singular point of failure that can only handle up to a certain number of devices.

To remove the bottleneck of a single server, distributed (i.e device-to-device) SGD based DNN training
methods have been studied [4H7]. However, these schemes distribute the computation assuming all
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devices can access the entire dataset. The distributed equivalents of FL, with data parallelism, were
studied in [8-10]]. We broadly refer to these algorithms as Distributed-SGD (D-SGD). The theoretical
basis for these D-SGD algorithms is the seminal works on distributed optimization [[1 1H13]], which
were later generalized to non-convex cost functions in [14,|15]. Hence, by design, all these methods
transmit and average model parameters (i.e., DNN weights and biases) such that they can only include
in the training process devices that have the same model architecture and the communication overhead
is large due to the large models in modern applications [16].

To design a new approach, we want to rethink how DNNs can efficiently learn from each other.
Ensemble methods have addressed a similar question by making final predictions from the weighted
average of several DNNs’ predictions [[17]]. The work in [[18] distills the knowledge of an ensemble of
DNNs into one DNN by training a small, student DNN from the soft-decision outputs of an ensemble
of large, trained teacher DNNs. Knowledge distillation was introduced in [[19]] which used one teacher
DNN, incorporated labels into the soft-decision based training, and adjusted the temperature in the
soft-max function all to positive effects. Soft-decisions are the soft-max of the classification model’s
logit vector. As a result, learning via soft-decisions can occur between classifiers with different
model architectures, which is not possible in learning via weights (i.e., ResNet14 can teach logistic
regression, and AlexNet can teach ResNet14) [18]. Additionally, soft-decisions have been shown to
be more robust to staleness than weights [20].

In a network of devices there is no teacher, only many students who must learn from each other.
Co-distillation methods have successfully, jointly trained small numbers of students over a fully-
connected (ie., complete) communication graph [20,21]. These results empirically demonstrated that
co-distillation between two small student DNNs can outperform the teacher-student hierarchy [21]]
and achieve comparable performance to a DNN ensemble [20]]. However, in [21] all DNNs have
the same data and communicate every soft-decision. While in [20], they use data parallelism but
communicate every DNN’s weights so that each local node can evaluate its own data’s soft-decisions
produced by every other node’s DNN and integrate them in training regularization. Both of these
methods are concerned with improving the accuracy of a DNN trained in one silo, which does not
have the communication constraints or privacy restrictions of the on-device setting.

1.1 Distributed Distillation Algorithm

To enable distillation for on-device learning, we introduce Distributed Distillation (D-Distillation),
where the students are no longer nodes in the same server but different data silos. Our work is mainly
motivated by the setting of mobile and IoT edge devices belonging to different users. In this setting,
students have non-overlapping user data that cannot be shared, and every device is connected to only
a few nearby devices. These devices are typically battery-limited so it is necessary to reduce the
communication overhead and thereby the transmission power consumption.

To maintain a basic level of privacy and avoid massive communication, devices never share any of
their private data in D-Distillation. Instead, to generate the soft-decisions that enable distillation, we
deploy a public, unlabeled reference dataset. Each device may receive this dataset as a part of the
algorithm’s software that all participating devices must receive, which leaves open the possibility of a
custom-designed and selected dataset. Alternatively, public data points some devices have access to
can be propagated. Either way, the reference dataset is simple to construct since unlabeled data points
are far easier to collect than labeled data points. Furthermore, a semi-supervised learning regime
with a subset of unlabeled data has been beneficial for other deep learning goals such as adversarial
robustness [22]]. This reference data set serves as a common vocabulary for the devices to share what
they learned from their private data without ever sharing the data itself.

D-Distillation is a distributed algorithm that works on a strongly connected, directed communication
network where each device communicates with its neighbors. Hence, devices no longer have
immediate access to the whole communication network’s average soft-decisions as assumed in the
classic distillation literature [[18-20L{23]]. This constitutes the main technical challenge in our analysis.

We prove that our D-Distillation algorithm converges such that the gradients of the distillation loss
functions of all devices converge to zero with probability 1. This proves that all the knowledge
in the network on the reference data is distilled into every device in the network. Our algorithm
communicates only network soft-decisions and can naturally incorporate devices with different DNN
architectures, or even other types of classifiers. We demonstrate in simulations with DNNs that a



vanilla implementation of D-Distillation significantly reduces the communication overhead while
achieving comparable accuracy to weight sharing methods, which varies by regime. This makes our
algorithm appealing for wireless applications where communication bandwidth and transmission
power are scarce resources. It leaves open for future work improvements that can be gained in
practice by a detailed design of the parameters our algorithm introduces.

1.2 Previous Work

FL’s introduction in [[1]] spurred the development of algorithms to mitigate the huge overhead that
communicating weights entails. Communication reduction schemes include reducing the frequency
of communication relative to training rounds, sketching, sparsification, and quantization [3}[7,24H31].
While our algorithm also reduces communication, it achieves this by changing the object that is
communicated, which in turn changes the type of stationary points our algorithm converges to.
Not only can previously developed communication reduction schemes be applied to D-Distillation’s
network soft-decisions, but D-Distillation introduces the tunable communication parameter of network
batch size: the number of network soft-decisions communicated in each training iteration. As a
result, it does not directly compete with these communication reduction schemes, but instead can be
combined with them (as demonstrated in Fig. ). It is only the combination of novel techniques such
as ours with compression methods that can reduce communication by a factor of millions, which is
crucial to enable on-device learning for bandwidth and power-limited wireless devices.

While our algorithm is a distributed extension of knowledge distillation, it also can be thought of
as an extension of co-regularization [32,33]]. Distillation requires sharing the private datapoints to
communicate soft-decisions, which D-Distillation overcomes by employing a reference dataset of
publicly available, unlabeled data. This idea has some resemblance to the bootstrap methods of
co-training and co-Expectation-Maximization (co-EM) where two (Naive Bayes or SVMs) classifiers
train on disjoint sets of labeled data, provide (noisy) labels on unlabeled data, and then train on the
expanded labeled dataset [34,[35]]. Co-regularization, similar to distillation, learns from classifier
provided labels on unlabeled data through a regularization term in the loss function, instead of
augmenting the dataset like in standard co-training. Our distillation-based algorithm shares soft-
decisions as opposed to labels as in co-regularization. In any case, our approach generalizes aspects
of distillation and co-regularization to the large-scale decentralized network setting with limited
communication between many devices. As such, our main focus is analyzing the convergence of
D-Distillation over the network and studying the resulting performance.

Published in the same proceedings as this paper, [[36}37] integrate distillation techniques to show
promising empirical improvements for FL, for the case of one central server. In [36] they enable
cross-architecture learning by communicating model parameters to a central server, performing
FedAvg within model types, then distillation across model types, and finally communicating the
updated model parameters back to each device. This approach has the same communication overhead
as FL and is not suitable for a decentralized network. To improve the computational efficiency, [38]]
integrates distillation as a mediator between FL and Split Learning [37].

2 Problem Formulation

Consider the classification task where the goal is to learn a function that maps every input data point
to the correct class out of K possible options. Each device n has access to its own private data
D, = {:%:’}f\i’i of inputs and their corresponding labels y(Z;). All labels y(Z;) are hard-decision,
one-hot vectors over the set of classes. We emphasize that devices do not have access to the private
data of other devices, and private data points are never communicated. Instead, devices communicate

with respect to a reference dataset of unlabeled data points, denoted D, = {x J }?:1, that all devices
have access to. In this sense our distributed training algorithm is semi-supervised; namely, private
learning is done on labeled data and distributed learning is done on unlabeled data.

Each device n has a classification model (e.g., DNN) with p,, parameters (e.g., weights), 8" € RP».
All these classification models produce a logit vector to which a soft-max function is applied. This
results in a probability vector over the K classes, which is the output of the classification model. The
class with the highest probability is the learned class for the input. We will refer to the probability
vector over the classes as the soft-decision s, (8", z) : RP» x (D,, UD,.) — AKX, We assume that
for every « and n, the soft-decision function s,, (68", x) with respect to 8™ is L,-Lipschitz continuous



(as a vector-valued function) and has L 4-Lipschitz continuous gradients (as a matrix-valued function).
We use the Euclidean norm for vectors and its induced spectral norm for matrices. This amounts to
assuming smoothness of the classification model. Note that we do not assume that s,, is convex. With
a slight abuse of notation, we use s instead of s,, when the index is clear through 6".

Define the loss function £(s,y) : A% x AKX — RT. We define the local loss function of device n as

L,(0")2 > L(s(6",%),y(%)). (1)
€D,
Since s (6", %) and y (&) are bounded as probability vectors, then £,, (™) is L,-Lipschitz continuous
with Lipschitz continuous gradients for some L, (for details, see Lemma[I0). We note that our results
hold for any £,, (™) that is Lipschitz continuous and has Lipschitz continuous gradients. However,
L, (0™) does not have to be convex and our results hold for non-convex loss functions.

Let X be the unknown distribution of a labeled data point (&, y(Z)). The goal of distributed training
algorithms is to learn the parameters 0',...,0" that minimize the total generalization error in the
network: £* 2 E;ox {25:1 L(s(0™",%),y (i))} . Let 6 = [91 : --ON} € RXn-17n be the
concatenated vector of all weights. As with any supervised learning, since the distribution &’ is
unknown, we try to fit the model 6 that minimizes £* based on training samples. With on-device

learning, the challenge is to minimize £* based on the private training samples of all devices, without
actually sharing them between devices. To that end, we propose the following training objective:

Definition 1. Let {£,,},, be the local loss functions. Let D, be the set of size () unlabeled reference

data. Define the distillation loss function of device n as [|20]:
2

N
3 1 m n
Laisin (0) =Ln (0")+p Y |5 D 50 2) —5(6",2) )
z€D,. m=1
where p > 0 is a regularization parameter. Our objective is to minimize
N
min Y - Lo (6). 3)

n=1

The second term in () is a distillation regularization term that facilitates each device learning from
all other devices in the network. We focus on the L2 loss for the regularization term since our analysis
requires the loss function to be smooth in both the variables inside the L2 loss.

This objective in @ is what co-distillation [20] would minimize in our on-device scenario if we
had a fully-connected (complete) graph. However, in a decentralized network (e.g., mobile network,
I0T) every device can communicate with only several others based on its position in space, available
infrastructure, or social network. Therefore, the main challenge that we overcome in this work is to
design a distributed algorithm that provably distills the information from all over the network for every
strongly connected, directed communication graph, despite the fact that devices are only connected to
their neighbors on this graph. We now define our communication graph and communication matrix,
whose values are the weights devices assign to their peers to incorporate their received information.

Definition 2. Let G = (V, £) be the directed communication graph, where ¥V = {1,..., N} and
device n can send messages to device m if and only if (n,m) € £. We assume that G is strongly con-
nected (i.e., connected when G is undirected). Define the communication matrix W = {w,, ,,, > 0}
of G such that w,, ,,, > 0 if and only if (n,m) € £. We assume that W is doubly stochastic, so

Zﬁ:l Wpm = 1 and 22:1 W, = 1 for each n, and that w,, , > 0 for all n.

3 Distributed Distillation Algorithm

By communicating over the graph, each device can receive its neighbors’ soft-decisions on the
reference data. However, to minimize @) a device has to know the soft-decisions of all devices. To
overcome this difficulty, our algorithm solves the following problem instead of directly solving

N
min 3|07+ p 3 " (@) - s (67
91""’61\] n=1 z€D, (4)

ceey

s.t. 2" (z) = 2™ (), ¥V (m,n) € £ and Vx € D,.



The form in (@) allows for a distributed algorithm since devices only need to communicate with their
neighbors to satisfy the constraints. The learning process of each device, which consists of taking
SGD steps on its local regularized loss function, is now only coupled to other devices’ learning
processes through the auxiliary variable z™ (x), which we call the network soft-decision. Since the
graph G is strongly connected, the constraint in (@) implies that 2™ (z) = 2™ () for every z € D,
and every pair of devices n, m. We employ a distributed consensus step and show that by solving (@),
the devices learn a solution to (3).

Algorithm 1 Distributed Distillation

Initialization: Let 6 and z{j be the initial variables of device n. Let {S] }, be a common random
sequence of reference data, such that S C D, and |S]| = b for all ¢, for some b > 1. Let
W = {wy, m} be a doubly stochastic communication matrix with positive diagonal elements. Let
B > 0. Let the step size sequence be {7, }, and T’ be the number of training epochs.

Fort =1,...,T each device runs:

1. Communication: For every x € S, broadcast z}* () to all m such that (n,m) € £ and
receive z}* (x) from all m such that (m,n) € &.

2. Training: Using a random subset of private data S;' C D,, and S}, update the classifier:

01?+1 ‘ Z V‘C ) )7y( ))

zeSY

~ b O [(Vs 070 (070 -2 @)]

TEST

3. Consensus on Network Soft-Decisions: For each x € S} , update:

ziy (@ Z Win 24" — 2B (2 () — 5 (67, 2)). (6)
End

(a) (b)
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Figure 1: In D-Distillation, (a) on each device is its DNN and private data. We provide all devices
with the same reference dataset. The device evaluates the DNN on its private data and the reference
data to produce its private soft-decisions and its reference soft-decisions respectively. (b) At each
iteration, every device communicates a subset of its current network soft-decisions and receives its
neighbors’ corresponding network soft-decisions. The device then updates its network soft-decisions
via a consensus step, combined with a gradient step to better match its own reference soft-decisions.
(c) Each device updates its weights with an SGD step on its local regularized loss function.

Our algorithm is summarized in Algorithm|[I] and the idea behind it is depicted in Fig. [T} Similarly to
DSGD algorithms, the doubly stochastic communication matrix W is agreed upon in advance by the
governing application or distributedly between the devices (for details, see [11,39]).

Algorithm |I|uses the common random sequence of reference data subsets {S; }, such that S; C D,.
for all t. We emphasize that our algorithm requires the devices to communicate at each iteration only
a small random subset of the reference dataset D, (as small as one datapoint). This is analogous to
the small random subset of data used for training in batch-SGD. In fact, the size of this subset is a
convenient way to control the communication overhead of our algorithm, as can be seen in Section 5]



Devices can obtain {S;}, in advance from the application that governs the distributed training.
Alternatively, {S; }, can be generated from any common randomness that is available to all devices
(e.g., common clock). In case a fully distributed solution is needed, each device can generate a
candidate sequence, and add a random identifier from a Gaussian distribution to create a packet. Then
devices propagate only the packet with the maximal identifier they possess, and after a bounded time
(the diameter of the graph), all devices will agree on a common {57 }, sequence.

Our main theorem provides convergence guarantees for Algorithm 1. The proof is postponed to
Section[I0]of the Appendix.

Theorem 3. Assume Algorithm (I| is initialized with f > 0 and step-size sequence {n}, such
that Y o= = 00, Y 1oy n? < 0o, and limy_yo0 141 /n: exists. Assume that Definition 2| on the
communication graph holds. Assume that the soft-decision functions {s,} are Lipschitz continuous
and have Lipschitz continuous gradients. Assume that the loss function L(s,y) : AK x AK — Rar is
twice continuously differentiable. If Algorithm([I|is run, then the gradient of the distillation regularized
loss function ([2) of each device converges to zero with probability 1, i.e., for every n,

N 2

% Z s (07", 2) — s (07, x)

m=1

. n ﬂ
A [ Ver | Lo <"t>+ﬁ,§
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3.1 Comparison with Federated Learning and Distributed-SGD

Problem (B can be viewed as a relaxation of the FL problem [3]]. To see this, substitute 8 for
s(0™, z) and select a very large 8. Then the regularization term in (3 forces the weights of all

devices to coincide, as in FL and Distributed-SGD. Hence, the solution of (3) is ming 25:1 L (0),
and devices communicate their weight vectors. The fact that D-Distillation, as opposed to FL, is
not limited to this regime is the source for its communication reduction and its architecture-agnostic
nature. Consequently, D-Distillation aims to minimize a different objective than FL, given in (3).

Matching weights is impossible in a network with heterogeneous devices that have different types
of classifiers. This is the case for an IoT network, where many devices have proprietary classifiers
(perhaps integrated chips) but still need software that can run distributed training across all of them.
From an engineering point of view, one wants to include different DNN architectures to enjoy the
diversity gain and mitigate overfitting, as done in ensemble learning [[17].

Even in a homogeneous network, requiring 8" = 0™ for all n, m might be excessive for non-convex
environments. With DNNss, the loss landscape consists of plenty of local minima with very similar
loss. Therefore, there is simply no need for all devices to agree on the same local minima, which only
entails communicating the entire weight vectors. Our simulations confirm this intuition by showing
that comparable performance gains to that of D-SGD can be achieved by only sharing soft-decisions.

Distributed-SGD [8H10] Distributed Distillation

Data & Privacy Private training data is generated locally and is never communicated to peers.

Orchestration No central system. Communication is in a peer-to-peer fashion.

Communicate DNN weights: scales with the size of the DNN,  Soft-decisions: scales with K classes,
23 million parameters for ResNet-50 model 10 for CIFAR-10 dataset

Architecture Identical classifier architectures required (e.g., Arbitrary DNNs (or other classification
same DNN model). models) allowed on any device.

4 Convergence Analysis

In this section, we detail the proof strategy of Theorem [3|and discuss the main Lemmas, whose proofs
are postponed to the Appendix. Our convergence analysis follows in two steps. First we establish that
our algorithm reaches consensus on the network soft-decisions {2" ()}, for all z € D,. Then, we
use a Lyapunov analysis to show that, given a consensus on the network soft-decisions, the gradients
of the loss function in (3) all converge to zero. Our result follows by combining these two facts. The
separation of these two converging processes is only for analysis purposes. In practice, they occur
simultaneously and interact with each other.



Throughout the analysis, we let z; (z) = [2{ (z) -+ 21 (z)] € REY be the concatenated vector of

the network soft-decisions for x € D,.. These vectors are further stacked to form the vector of all
network soft-decisions z; = [z (71) - - - 2¢ (vg)] € REN®. We also define the vector of the network

soft-decisions of device n over all x € D,., 2} = [z} (x1) - -+ 2} (zg)] € REC.
We use the following filtration throughout the analysis, which summarizes the history of the algorithm:
]‘—tZU({077ZT7S:71,S};71|T§t}). (8)

It will be useful to write (6) in matrix-vector form. To that end we define the stochastic gradient vector
of the network soft-decisions, for all z € D,., by ¢, () = [} () @} ()] € REN, where

o (z) =28 (2{ (z) — s (0, 2)). ©)
Then
zip1 () = (W @ Ik) 2 () — nepy (2) (10)
—
W

where we defined W = W ® I'x and I is the identity matrix of size /. Note that since W is doubly
stochastic, so long as z7'() is a probability vector, then W z?(x) is a probability vector (i.e., in AX).
Since s (8}, x) € AK,if 27 (x) € AKX, then the sum over the elements of 27 (z) — s (8}, x) is zero.
Hence, if we initialize 29 (z) € AX for all n and =, then it follows by induction on ¢ that 27 () is a

probability vector for all £, n and z. As a result, no projection is needed in our algorithm.

The next lemma shows that by running Algorithm (I} the devices reach an agreement on the network
soft-decisions for each reference data point. Intuitively, the averaging step in (I0), via the weighted
multiplication by W, is aggressive enough that the gradient step with a decreasing step size cannot
steer the dynamics away from the average. However, this average is not static, and the gradient steps
of all devices move it towards convergence. This lemma justifies relaxing the problem from (3 to (@).

Lemma 4. Let Z, (x) = & S0 25 (x). Then Y0, Sy cp, 127 () — Z¢ (2)||” — 0 with prob-

ability 1 as t — oo and YN_| 3 E {||z? (x) — 24 (x)||2} < Cn?_, for some constant C > 0.

z€D,.

The second step of our convergence analysis is based on the following Lyapunov function:

D(0,,%) = Z.c G +7 > ant —5(07,2)|? (11)

n=1 a:eD n=1
for which
n 2 n n =
Vor® (0;, %) = VL, (07) + WB > (Vs (07.2) (5(07,7) — 2 (x)) (12)
z€D,

where Vs (0}, ) € REXPn and

2
Vi ® (01, %) = 52 ) — s (07, 7). (13)

The following lemma connects the algorithm updates in (B) and (6) to the gradients of the Lyapunov
function in (TI). As opposed to the usual SGD analysis, here the stochastic gradients are biased. This
bias arises since the stochastic gradients are computed with respect to the local network soft-decisions
z™ (z) and not the average network soft-decisions Z (x). However, the average of the stochastic
gradient with respect to z™ (x) over all devices n is unbiased. The bias of the stochastic gradient with
respect to 8" vanishes as the consensus on {z}'}  is reached, which is guaranteed by Lemma@

Lemma 5. Let S?, S be the random subsets used in (3). Define device n’s weight gradient at time t

o7 2 g > VEG(07.0) .y @) + gy O (Va(07.a)” (56 0) ~ 2 (2) (19

zeS? rES]

and for each x € D,. let the network soft-decision gradient be

pr (x) =26 (2 (x) — s (0, 2)). (15)
Then with probability 1, for every n and every x € D,.:



I B{g} | Fi} = Vor® (8, }) and |lg7|* < MZL2 + 228 M, LoL.Q + 3 L2Q™
2 {4500, 07 (0) | Fi} = Vaw® (61, 2) and |} (2)]]° < 857,

Finally we show that our Lyapunov function has Lipschitz continuous gradients, by showing that the
second term in (TT) also has Lipschitz continuous gradients.

Lemma 6. The function h(0,2) = 3 p ZnN:1 |z (z) — s (6™, 2)||* has Lipschitz continuous
gradients with some constant Ly, > 0 (specified in the proof).

5 Simulation Results

We conduct DNN simulations to evaluate the performance of Distributed Distillation (D-Distillation)
compared to two baselines: Distributed-SGD (D-SGD) and Silo-SGD (where each device trains its
DNN with only its private data and no communication). These simulations serve as a proof-of-concept
for the new D-Distillation archetype algorithm and evaluate the gain of distilling the knowledge from
the whole network as our main result guarantees. We selected the best hyperparameters for each
algorithm from a limited search as detailed in Appendix [T2.1]

Our simulations validate that D-Distillation transfers knowledge across devices, which results in
significant performance gains over Silo-SGD. Moreover, Fig. [2|shows that D-Distribution obtains
comparable accuracy to D-SGD for a 16 device network, but it reaches 95.8% with a 46x commu-
nication reduction versus D-SGD. As more devices are added to the network, the total private data
in the network, which each device distills, increases. Section[I2.2.1]in the Appendix confirms this
intuition and shows that D-Distillation’s performance generally improves with the number of devices.

Our experiment in Fig. |3|shows the accuracy gain D-Distillation obtains when the communication
network includes devices with different local models (e.g., as in an IoT network). In practice, this
means that D-Distillation can outperform D-SGD by allowing more devices (and thereby more private
data) into the training process. Even by joining just two subsets with different models, our method
outperforms D-SGD which is forced to run on each subset of devices separately. D-Distillation
further increases its performance over D-SGD when there are four subsets with different models.

D-Distillation achieves substantial communication reduction compared to D-SGD by changing the
object that is being communicated and targeting a different type of stationary points. On top of this
novel source for communication reduction, one can apply state-of-the-art communication reduction
schemes such as [37,28]] to the network soft-decisions in D-Distillation with little effort. In Fig.
we demonstrate that D-Distillation can easily achieve an additional 90x communication reduction
with no accuracy loss for a total of 9,370 x communication reduction.

Our implementation of D-Distillation does not utilize all available degrees of freedom, so the full
potential of D-Distillation has yet to be unleashed. This has the potential of closing the 8 points
accuracy gap to D-SGD of Fig. ] or even surpassing D-SGD. For instance, we did not optimize
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Figure 2: Comparison of Silo-SGD, D-SGD, and D-Distillation mean test accuracy by training
epochs (left) and total communication (right) over 16 devices on a random communication graph
instance of maximum degree 3, training LeNet-5 on MNIST [40]. D-Distillation uses network batch
size b = 32. The reference dataset was composed of a random 40% of the MNIST training data and
the remaining training data was evenly distributed at random to be devices’ private training data.
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Figure 3: We simulate a network of 8 devices where different devices have different classification
models. On the left half the devices are training a LeNet-5 and half a ResNet-8 on CIFAR10 [41]]. On
the right there are two devices training each of the four models: LeNet-5 [40], ResNet-2, ResNet-8,
and ResNet-14 [42]. D-Distillation learns across all 8 devices with different models to outperform
the accuracy of D-SGD while achieving a 540x lower communication overhead per device.
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Figure 4: We demonstrate how D-Distillation can be combined with the existing communication
reduction schemes from [J3/7,28] of only communicating every 7 gradient steps (7 = 10), quantization
(8 bit) and Top-K compression (i.e., keep the largest K = 3 elements in each soft decision).
Furthermore, we show that we can reduce the network batch size, b, communicated in each round of
D-Distillation to further reduce communication. The default network batch size used on MNIST (left)
is b = 32 and on CIFAR10 (right) is b = 128, such that they both match the local SGD batch size. In
all of these methods there is little to no accuracy loss and sometimes even a gain.

the unlabeled reference dataset, which can be handcrafted and designed for improved performance.
Additional results and discussion are in Appendix[T2}

6 Conclusions

We presented a new distributed training paradigm where the devices’ classifiers learn from each other
by communicating soft-decision variables on a reference dataset. This way, devices never send their
private data. Assuming smooth but non-convex loss functions, we prove that our algorithm guarantees
that with probability 1, the gradients of all distillation loss functions of all devices converge to
zero, so devices distill the knowledge of all other devices in the communication network, despite
their limited local connections. Hence, our algorithm is a distributed version of the distillation
algorithms [[18-21}23]] for any strongly connected, directed communication graph.

Compared to FL algorithms that communicate model weights, our approach reduces the commu-
nication overhead significantly and allows for devices with different classifier architectures (e.g.,
proprietary models) to participate in the distributed training. Simulations show that a naive im-
plementation of our algorithm on a network of 16 devices achieves comparable accuracy while
reducing the communication overhead by 46 x compared to D-SGD without sacrificing performance.
Implementing common communication reduction schemes on top of our novel method results in a
total communication reduction of 9,370 x compared to D-SGD. Scaling up to larger communication
networks would make the communication reduction even more significant. The encouraging results of
our prototype algorithm call for experimental work to explore the full potential of our new approach.



Broader Impact

This work deals with combining the training efforts of edge devices to obtain better machine learning
models on each device. It scales up machine learning, making ML applications available on many
more devices and accessible to many more people with all the positive and the negative effects that
may ensue. At the same time, it maintains the setting where users keep their data on their device
which allows for increased privacy and prevents the monopolistic aggregation of user data by large
companies. A well functioning smart home IoT device that never records your conversations to
the company’s servers should be an important milestone. By addressing the decentralized regime,
Distributed Distillation further removes the dependency on a central authority, which contributes to
making machine learning more open and democratic in nature. With no central server required to
process any data or parameters, this work lowers the barrier to entry to deploy such an algorithm.
On the negative side, the issue of bias in machine learning potentially increases in a decentralized
system where it is harder to evaluate the decision outcomes and all countermeasures must also be
implemented in a decentralized fashion.
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