
A Uncertainty Estimation

A.1 Choice of Uncertainty Quantification

Besides using the uncertainty estimate of the surrogate model to quantify the uncertainty for the
PDP mean estimate (our method), it is also possible to estimate uncertainty w.r.t. the variance over
different ICE curves. However, if the uncertainty was estimated via computing the variance over
ICE curves, we describe how the levels of the mean prediction vary along the �S dimensions. In
contrast, we propose to capture model uncertainty along the �S dimensions. For example, consider a
constant surrogate function ĉ(�) = � with high uncertainty estimation ŝ2(�) = 100. Computing the
variance over ICE curves on this example will result in an uncertainty estimate of 0 (all ICE curves
are identical). Our method, however, would return a variance estimate of 100 and thus capture model
uncertainty.

A.2 Covariance Estimates under Misspecification of Kernels

Figure 8: The figures show the NLL of the true PDP c1(�1) under the estimated PDPs with variance
estimates (4) and (5) and for a misspecified kernel (Gaussian) and a correctly specified kernel
(Matérn-3/2), respectively.

Table 3: The table shows the NLL of the true PDP c1(�1) under the estimated PDPs with variance
estimates (4) and (5) and for a misspecified kernel (Gaussian) and a correctly specified kernel
(Matérn-3/2), respectively. Shown are the mean across 50 replications, and the standard deviation in
brackets.

Correct specification Misspecification

d Estimate (5) Estimate (4) Estimate (5) Estimate (4)

3 3.61 (2.02) 4.47 (0.27) 5.10 (5.91) 4.62 (0.32)
5 3.93 (2.00) 4.87 (0.23) 4.33 (3.72) 4.89 (0.28)
8 4.05 (1.12) 5.18 (0.14) 4.24 (2.12) 5.13 (0.17)

In order to provide evidence for the claim that estimate Eq. (4) is more sensitive to misspecifications
in the kernel (and thus in the covariance structure) than Eq. (5), we performed some prior experiments.

We assume that we are given an objective function that is generated by a Gaussian process (GP)
with a Matérn-3/2 kernel. In our experiments, that function was created by fitting a GP on tuples�
�(i), y(i)

�
i=1,...,30

, with �(i)
⇠ Unif

�
[�5, 5]d

�
and y(i) corresponding to the value of the d-

dimensional Styblinski Tang function for �(i). The posterior mean of this GP will further serve
as our true objective c to pretend that we know the correct kernel specification of the ground-truth.
Subsequently, we fit both a GP surrogate model with correctly specified kernel (i.e., a Matérn-3/2
kernel) and a surrogate model with a misspecified kernel (in our case, we chose a Gaussian kernel)
to the data

�
�(i), c

�
�(i)

��
i=1,...,30

. In both cases, we compute the PDPs for �1 with both variance

13

estimates Eq. (4) and Eq. (5) and measure the negative log-likelihood (NLL) of cS under the respective
estimated PDP. We performed 50 repetitions of the experiments for d 2 {3, 5, 8}, respectively.

Figure 8 shows that the median of the NLL across all 50 replications is slightly lower for the
covariance estimate in Eq. (4). However, the variance of the NLL is much higher for estimate in
Eq. (4) as compared to Eq. (5). Table 3 confirms that, when using variance estimate Eq. (4), the
standard deviation of the NLL values is lower. We conclude that the reliability of the estimate is
particularly sensitive to a correct choice of the kernel function. The NLL for the PDPs computed
with variance estimate Eq. (5) is - independent of whether the kernel is correctly specified or not -
less sensitive to misspecifications in the kernel.

B Hierarchical Hyperparameter Spaces

Search spaces in HPO and AutoML are often hierarchical, i.e., some hyperparameters are only active
conditional on the value of another hyperparameter (the latter usually being a categorical choice, e.g.,
using a certain method). The underlying dependency structure can be visualized by a tree structure
(Figure 9 (a)). If one hyperparameter can activate another hyperparameter, we call the former a parent
and the latter is subordinate to the former and called a child. A hyperparameter that has no parents is
called a global hyperparameter. Sampled configurations can be presented in a nested block matrix
(Figure 9 (b)), with missing entries for inactive hyperparameters.

⇤

k algorithm

SVM

C kernel

linear rbf

�

xgboost

⌘ nrounds

(a) Dependency structure

k algorithm ⌘ nrounds C kernel �
3 svm NA NA 1 linear NA
...

...
...

...
...

7 svm NA NA 2 linear NA
3 svm NA NA 10 rbf 0.2
...

...
...

...
...

7 svm NA NA 0.4 rbf 0.02
2 xgboost 0.01 100 NA NA NA
...

...
...

...
...

...
5 xgboost 0.1 300 NA NA NA

(b) Sampled configurations

Figure 9: Hyperparameter k 2 N represents the number of selected components of PCA, applied as a
preprocessing step. While it is global, always active, and has no subordinate children, algorithm –
dependent on its values SVM and xgboost – is parent to hyperparameters C, kernel, ⌘ and nrounds.

Various surrogate models exist, which can learn on such hierarchical spaces, e.g., GPs with specialized
kernels [Levesque et al., 2017, Swersky et al., 2014], specialized trees in random forests [Hutter et al.,
2014b] or handling the missing entries through imputation [Bischl et al., 2018].

The specialized tree algorithm (in normal AutoML, without PDP) can be briefly summarized as
follows: We run a normal recursive partitioning as in CART, but in each split, a hyperparameter
is only then eligible for potential splitting if the path leading to the current node satisfies all of its
preconditions and therefore activates it.

In order to generalize this tree building in the context of hierarchical dependency structures to a
regional PDP computation as in Section 5, we now make the following three modifications:

First, after having selected a hyperparameter �S for which we want to estimate the PDP, we subset
the uniformly sampled test data on which we are going to fit our regional PDP algorithm to all rows
for which �S is not missing, i.e., only to configurations in which �S is active11.

Second, we now run the specialized tree algorithm as described above, but never allow to split on �S .
Obviously, this will then never activate any child of �S , so we can never split on these.

11This will likely result in constant values for hyperparameters in the path leading to �S , and consequently
the tree will not split on these.

14

Third, we now adapt the estimation of the PDPs in a given tree node and the associated data block N

ĉS (�S) =
1

|N |

X
i2N

m̂
⇣
�S ,�

(i)
C

⌘
ŝ2S (�S) =

1

|N |

X
i2N

ŝ2
⇣
�S ,�

(i)
C

⌘
(7)

in the presence of hierarchical structures. If hyperparameter �S is a parent, sampling from the
marginal �C ⇠ P(�C) (which refers to all hyperparameters except �S) can still yield invalid
combinations (�S ,�C).

We now simply average only over valid configurations w.r.t. to the dependency structure. Formally,
let q(�) : ⇤ �! {0, 1} be a binary predicate function which is 1 if and only if � is valid w.r.t. to
the dependency structure. Now let v(�S ,N) = {i 2 N|q(�S ,�

(i)
C) = 1} ⇢ N be the set of valid

configurations in N w.r.t. the dependency structure if we insert a given �S value. The dependency
adapted PDPs now are:

ĉS (�S) =
1

|v(�S ,N)|

X

i2v(�S ,N)

m̂
⇣
�S ,�

(i)
C

⌘
(8)

with an analogous modification for ŝ2S (�S).

For example, to calculate the PDP of a child hyperparameter such as nrounds w.r.t. the example in
Figure 9, we first need to subset the test dataset to all rows for which nrounds is not missing (in this
specific example this is the same as only keeping the instances where algorithm takes the value
xgboost). Due to the dependency structure only k, algorithm and ⌘ are active hyperparameters in
�C . To calculate the PDP of a parent hyperparameter such as algorithm, there are (in this example)
no missings w.r.t. �S . However, we will obtain invalid configurations, e.g., when we replace the
value svm by xgboost for the parent hyperparameter algorithm. Thus, we need to use the third
modification from the above described adjustments and average only over all valid configurations
w.r.t. to the dependency structure: if we insert svm, then the invalid configurations are dropped and
we average only over those configurations that were activated when choosing svm, i.e., that contain
non missing values in the child hyperparameters of the svm algorithm. If we insert xgboost then we
only average over those configurations that contain non missing values for ⌘ and nrounds.

C Experimental Analysis

C.1 Maximum Mean Discrepancy

In Section 6.1 we analyze the first hypothesis how the sampling bias affects the PDP estimation. An
indicator of the size of the sampling bias is the exploration factor ⌧ . The smaller ⌧ the higher the
sampling bias compared to a uniformly distributed dataset (e.g. see Figure 1). To put it in other
words, the sampling bias can be quantified by the distributional shift between a uniformly distributed
sample and the sample generated by the BO process. A commonly used measure to quantify such
distributional differences is the Kullback-Leibler divergence. However, since the joint distribution of
the generated sample is not known, the Kullback-Leibler divergence might not be the most appropriate
measure here. Another metric that tests if two different samples belong to the same distribution, is the
maximum mean discrepancy (MMD) [Gretton et al., 2012]. It is defined by the maximum deviation
in expectation and based on the function class of reproducing kernel Hilbert space (RKHS). This is
equivalent to ‘the norm of the difference between distribution feature means in the RKHS’ [Gretton
et al., 2012].

An unbiased empirical estimate of the MMD for samples X = {x(1), ...,x(n)
} and Y =

{y(1), ...,y(m)
} is given by

MMD2(X,Y) =
1

n(n� 1)

nX

i=1

nX

j 6=i

k
⇣
x(i),x(j)

⌘
+

1

m(m� 1)

mX

i=1

mX

j 6=i

k
⇣
y(i),y(j)

⌘

�
2

nm

nX

i=1

mX

j=1

k
⇣
x(i),y(j)

⌘

15

It follows that for X and Y being drawn from the same distribution, the MMD is small while it
becomes large for increasing distributional differences.

Here, X represents the sample that is drawn from a uniform distribution over the hyperparameter
space ⇤, while Y is the sample generated by the BO process. The kernel k is chosen to be the radial
basis function kernel with parameter � being set to the median L2-distance between sample points.
This heuristic is commonly used [Gretton et al., 2012].

C.2 Experimental Design

All experiments only require CPUs (and no GPUs) and were computed on a Linux cluster (see
Table 4).

Table 4: Description of the infrastructure used for the experiments in this paper.
Computing Infrastructure

Type Linux CPU Cluster
Architecture 28-way Haswell-EP nodes
Cores per Node 1
Memory limit (per core) 2.2 GB

The computational complexity of the PDP estimation with uncertainty is O (G · n) · O(ĉ), with O(ĉ)
being the runtime complexity of single surrogate prediction, n denoting the size of the dataset to
compute the Monte Carlo estimate and G being the number of grid points. In the context of HPO, the
general assumption is that the evaluation time of ĉ is negligibly low as compared to evaluation c. So
we argue that the runtime complexity of computing a PDP with uncertainty estimate can be neglected
in this context. When computing ICE curves and their variance estimates beforehand, the algorithmic
complexity of Algorithm 1 corresponds to the algorithmic complexity of the tree splitting [Breiman
et al., 1984b].

In our experiments, the runtimes to compute the PDPs and perform the tree splitting lies within a few
minutes. We consider them to be negligible and will thus not report these.

C.2.1 BO on a Synthetic Function

The Styblinski-Tang function

c : [�5, 5]d ! R (9)

� 7!
1

2

dX

i=1

�
�4
i + 16�2

i + 5�i

�
(10)

was optimized via BO for d 2 {3, 5, 8} with a total budget of {80, 150, 250} objective function eval-
uations, respectively, to allow sufficient optimization progress depending on the problem dimension.

We computed an initial random design of size 4d12. We performed BO with a GP surrogate model
with a Matérn-3/2 kernel and the LCB acquisition function a(�) = m̂(�) + ⌧ · ŝ(�) with different
values ⌧ 2 {0.1, 1, 5}. A nugget 10�8 was added for for numerical stability. We denote the best
evaluated configuration, measured by ĉ, by �̂.

Based on the last surrogate model, we performed the partitioning in Algorithm 1 for a total number
of 5 splits, with the different splitting criteria (see Section C.3.2), with PDPs being computed with a
G = 20 equidistant grid points, and n = 1000 samples for the Monte Carlo approximation13.

For all subsequent analysis, we considered the subregions ⇤0, for which �̂ 2 ⇤0, and computed the
PDPs according to Estimate (5).

12The initial design was fixed across replications
13Both grid-points and the data to compute the MC estimate are fixed across replications

16

Table 5: Hyperparameter space 1 of Auto-PyTorch Tabular.
Name Range log type

Number of layers [1, 5] no int
Max. number of units [64, 512] yes int

Batch size [16, 512] yes int
Learning rate (SGD) [1e�4, 1e�1] yes float

Weight decay [1e�5, 1e�1] no float
Momentum [0.1, 0.99] no float

Max. dropout rate [0.0, 1.0] no float

Table 6: Hyperparameter space of the random forest that was tuned over to compute the empirical
performance model.

Name Range log type

Number of trees [10, 500] yes int
mtry {true, false} no bool

Minimum Size of Nodes [1, 5] no int
Number of Random Splits [1, 100] no int

For every subregions considered ⇤0, we compute a partial dependence of c for feature �1, denoted as
c1 (�1) to establish a ground-truth PDP estimate.

C.2.2 MLP

All experimental data were downloaded from the LCBench project14. As an empirical performance
model, we fitted a random forest (ranger) to approximate the relationship between hyperparameters
and balanced error rate (BER). For every dataset, we performed a random search with 500 iterations
and evaluation via 3-fold cross-validation to choose reasonable for the hyperparameters represented
in Table 6. The empirical performance model acts as ground-truth in our experiments, and thus, we
denote it by c. This function was used to compute the true PDP cS .

We computed an initial random design of size 2 · d15. We performed BO with a GP surrogate model
with a Matérn-3/2 kernel and the LCB acquisition function a(�) = m̂(�) + ⌧ · ŝ(�) with ⌧ = 1.
A nugget effect was modeled. The maximum budget per BO run was set to 200 objective function
evaluations. We denote the best evaluated configuration, measured by ĉ, by �̂.

Based on the last surrogate model, we performed the partitioning in Algorithm 1 for a total number
of 6 splits, with the different splitting criteria (see Section C.3.2), with PDPs being computed with a
G = 20 equidistant grid points, and n = 1000 samples for the Monte Carlo approximation16.

C.3 Detailed Results

C.3.1 Synthetic

In Section 6.1 we analyzed our tree-based partitioning method on the Styblinski-Tang function for
different dimensions and degrees of sampling bias. To make the results of Table 1 more tangible, we
visualized the associated PDPs and confidence bands for �1 and ⌧ = 1 of one iteration in Figure 10.
The plots show clearly, that the number of splits required to obtain more confident and reliable PDP
estimate in the sub-region containing the optimal configuration depends on the problem dimension.

C.3.2 MLP

In Section 6.2 we evaluated the reliability of PDP estimation for the partitioning procedure proposed
in Section 5. The results presented in Section 6.2 are aggregated over a total number of 35 different

14https://github.com/automl/LCBench, Apache License 2.0
15The initial design was fixed across replications
16The grid and the data used to compute the Monte Carlo estimate was fixed across replications

17

Figure 10: PDP (blue) and confidence band (grey) of the GP for hyperparameter �1 for the Styblinski-
Tang function in case of 3 (top), 5 (middle) and 8 (bottom) dimensions. The black line shows
the true PDP estimate of the Styblinski-Tang function. The orange vertical line marks the optimal
configuration �̂1.

datasets. In Tables 7 and 8 the relative improvement of the mean confidence (MC) and NLL are
presented on dataset level. The mean and standard deviation are averaged over all hyperparameters.
Furthermore, the mean values of the features providing the highest and lowest relative improvement
for each dataset are reported. Following on that, Table 9 shows for each hyperparameter the number
of datasets for which the respective hyperparameter led to the highest (lowest) relative improvement
for both evaluation metrics.

Split Criteria In Section 5, we introduced Eq. 6 as split criteria within the tree-based partitioning
of Algorithm 1. This measure is based on splitting ICE curves based on curve similarities, which is
especially suitable in the underlying context as explained in Section 5. However, we also compared it
to two other measures that are based on uncertainty estimates provided by the probabilistic surrogate
model. The first one is also based on ICE curves of the variance function ŝ2(�S ,�

(i)
C) and its PD

estimate ŝ2S|N 0 (�S) within a sub-region N
0. However, instead of minimizing the distance between

curves and group the associated ICE curves regarding similar behavior, we can also minimize the
area under ICE curves of the variance function. The reasoning for this is as follows: If we aim for
tight confidence bands over the entire range of ⇤S , we want the ICE curves of the variance function
to be - on average - as low as possible. This is equivalent to minimizing the average area under ICE
curves of the variance function. Thus, the calculation of Eq. 6 changes such that we first calculate the
average area between each ICE curve of the uncertainty function and the respective sub-regional PDP

L (�S , i) =
1

G

XG

g=1

⇣
ŝ2

⇣
�(g)
S ,�(i)(g)

C

⌘
� ŝ2S|N 0

⇣
�(g)
S

⌘⌘
,

18

Table 7: Relative improvement of MC on
dataset level. The table shows the mean (µ)
and standard deviation (�) of the relative im-
provement (in %) over all 7 hyperparameters
and 30 runs after 6 splits. Additionally the
mean value of the hyperparameter with the
highest (µh) and lowest (µl) mean improve-
ment are shown.

Dataset µ � µh µl

adult 34 6 38 25
airlines 49 20 61 3
albert 57 26 78 14
Amazon_employee_access 58 17 69 21
APSFailure 46 17 60 22
Australian 41 7 46 32
bank-marketing 29 13 45 15
blood-transfusion-service 34 20 39 13
car 44 17 51 32
christine 47 14 54 19
cnae-9 66 26 83 7
connect-4 47 14 56 17
covertype 41 17 53 12
credit-g 57 21 69 7
dionis 49 21 63 5
fabert 64 21 75 18
Fashion-MNIST 41 12 47 18
helena 43 16 52 8
higgs 42 14 52 17
jannis 35 13 44 19
jasmine 46 11 56 27
jungle_chess_2pcs_raw 33 15 44 6
kc1 33 12 41 17
KDDCup09_appetency 52 21 63 3
kr-vs-kp 46 14 56 26
mfeat-factors 56 16 70 29
MiniBooNE 36 14 42 18
nomao 30 6 34 22
numerai28.6 60 28 76 -3
phoneme 29 7 32 25
segment 53 21 66 10
shuttle 48 11 58 32
sylvine 37 6 42 29
vehicle 34 8 41 30
volkert 44 16 55 12

Table 8: Relative improvement of the NLL
on dataset level. The table shows the mean
(µ) and standard deviation (�) of the relative
improvement (in %) over all 7 hyperparame-
ters and 30 runs after 6 splits. Additionally
the mean value of the feature with the highest
(µh) and lowest (µl) mean improvement are
shown.

Dataset µ � µh µl

adult 13 6 23 8
airlines 17 9 23 1
albert 31 13 40 6
Amazon_employee_access -0 36 29 -35
APSFailure 15 7 23 6
Australian 12 14 23 -4
bank-marketing 7 9 17 -1
blood-transfusion-service 6 17 10 -8
car 26 32 35 10
christine 10 11 17 1
cnae-9 67 37 93 -11
connect-4 -4 38 22 -84
covertype 28 13 38 8
credit-g 41 24 81 2
dionis 47 55 144 -18
fabert 37 17 54 8
Fashion-MNIST 15 11 28 2
helena -20 31 -9 -35
higgs 20 12 33 -2
jannis 17 7 21 8
jasmine 6 14 24 -11
jungle_chess_2pcs_raw 9 15 24 -7
kc1 11 10 17 4
KDDCup09_appetency 23 28 62 -33
kr-vs-kp 9 35 43 -17
mfeat-factors 25 19 51 10
MiniBooNE 9 14 17 -8
nomao 8 6 16 3
numerai28.6 17 9 23 4
phoneme 11 7 17 5
segment 22 57 41 -31
shuttle 35 24 84 19
sylvine 14 17 38 -0
vehicle 0 20 9 -14
volkert 23 18 40 5

Table 9: Number of datasets each of the hyperparameters had the highest µh and lowest µl average
relative improvement w.r.t. MC and NLL.

MC NLL

Hyperparameter # µh # µl # µh # µl

Batch size 1 3 3 4
Learning rate 6 2 6 3
Max. dropout 9 1 2 1

Max. units 4 7
Momentum 8 7 3

Number of layers 3 14 9 11
Weight decay 4 15 1 13

where ŝ2S|N 0

⇣
�(g)
S

⌘
:= 1

|N 0|
P

i2N 0 ŝ2
⇣
�(g)
S ,�(i)(g)

C

⌘
, and aggregate the quadratic value of it over

all observations in the respective sub-region:

Rarea(N
0) =

X
i2N 0

L(�S , i)
2. (11)

Second, we also used the uncertainty estimates of the probabilistic surrogate model for each obser-
vation of the test data itself to define an impurity measure. Therefore we calculated the squared
deviation of each observation to the mean uncertainty within the respective node. Hence, compared

19

to the other two approaches, we do not group curves but the observations themselves regarding their
uncertainty. We further refer to this approach as the variance (var) approach.

As a third measure that is not based on the uncertainty estimates, we used the MSE of the posterior
mean estimate of the surrogate model as split criterion. This is the most commonly used measure for
regression trees and hence a solid baseline measure.

We compared the four impurity measures for the partitioning procedure over all datasets and hyperpa-
rameters. We compare the results that we presented in Section 6.2 with the according results for the
other three measures in Table 10. The impurity measure based on curve similarities that we used for
our analysis (L2) outperforms the other three measures on average for all hyperparameters regarding
MC and especially regarding OC. With regards to NLL there is not one measure that outperforms all
others, but rather all measures perform on average over all hyperparameters equally good.

Table 10: Comparison of different impurity measures regarding the relative improvement of MC, OC
and NLL on hyperparameter level. The table compares the results of Table 2 (L2) with the according
results for the impurity measure based on Eq. 11 (area), the variance measure (var) and the mean
measure.

� MC (in %) � OC (in %) � NLL (in %)

Hyperparameter L2 area var mean L2 area var mean L2 area var mean
Batch size 41 40 38 36 62 58 55 53 20 19 16 19

Learning rate 50 50 50 42 58 57 57 51 18 18 18 19
Max. dropout 50 49 47 41 62 61 58 53 17 18 17 15

Max. units 51 51 50 45 59 58 58 53 25 24 25 25
Momentum 52 51 51 43 58 57 57 53 20 20 20 16

Number of layers 31 30 29 25 51 46 46 45 14 15 15 13
Weight decay 36 35 34 29 61 53 51 52 12 12 11 10

Baseline comparison To emphasize the significance of our results we compare our results from
Section 6.2 with the following naive baseline method: We consider the L1-neighborhood around
the optimal configuration – where the GP can be assumed to be quite confident due to the focused
sampling of BO – which has the same size as the sub-region found by our method. We compute the
PDP on this neighborhood, and compare it to the sub-regional PDP found by our method, in the same
way as in Section 6.2. We calculated the average improvement of the three evaluation metrics over all
datasets and repetitions on hyperparameter level as done in Table 2 of our paper. While the mean
confidence for our method improves on average by 30 - 52%, the naive baseline method improves
only by 8 - 23%. Close to the optimal configuration, the mean improvement of our method is between
50-62% while the baseline method only improves by 16-42%. While the negative log-likelihood does
not improve for the baseline method, it improves using our method by 12-24%. See Table 11 for
more detailed results. Hence, our method results in more reliable and confident PDP estimates than
this baseline method. These results justify using the more complex approach of grouping ICE curves
based on similarity of their uncertainty structure to receive more reliable and confident PDP estimates
in the sub-region close to the optimal configuration. Other disadvantages of the baseline method are
that we need to specify the size of the neighborhood and that we only receive a rather local view
around the optimal configuration. Our method on the other hand decomposes the global PDP in
several distinct and interpretable sub-regions which helps the user to understand which regions of the
entire hyperparameter space can be interpreted more reliably and which ones need to be regarded
with caution.

Increased confidence with more splits Furthermore, it needs to be noted that by using our method
the mean confidence and NLL improve on average if we use six splits. However, this does not
mean that they improve by design when splitting into sub-regions. As shown in Tables 7 and 8,
improvements heavily depend on dataset and HP. Different factors influence the optimal number of
splits, such as the sampling bias, size of the test-set, and dimensionality of the HP space. For some
of our benchmarks, the best results are reached with fewer splits. One example is shown in Figure
11, where improvements in both metrics are made until Split 2 and by splitting deeper, estimates get
less accurate especially when sample sizes in sub-regions become very small. Thus, the number of
splits is a (useful and flexible) control parameter in our method which can be determined within a

20

Table 11: Relative improvement of MC, OC and NLL on hyperparameter level. The table shows for
our method and the baseline method the respective mean (standard deviation) of the average relative
improvement over 30 replications for each dataset and 6 splits.

Tree-based partitioning Baseline method

Hyperparameter � MC (%) � OC (%) � NLL (%) � MC (%) � OC (%) � NLL (%)

Batch size 40.8 (14.9) 61.9 (13.5) 19.8 (19.5) 13.7 (12.1) 18.9 (16.0) 1.4 (21.6)
Learning rate 50.2 (13.7) 57.6 (14.4) 17.9 (20.5) 23.1 (17.7) 27.2 (20.7) -3.4 (27.0)
Max. dropout 49.7 (15.4) 62.4 (11.9) 17.4 (18.2) 21.1 (16.8) 26.7 (16.8) 3.3 (22.1)
Max. units 51.1 (15.2) 58.6 (12.7) 24.6 (22.0) 19.1 (16.5) 22.0 (17.1) -1.4 (19.7)
Momentum 51.7 (14.5) 58.3 (12.7) 19.7 (21.7) 21.9 (16.4) 25.3 (16.9) 2.1 (25.4)
Number of layers 30.6 (16.4) 50.9 (16.6) 13.8 (32.5) 8.1 (5.9) 15.4 (12.8) 0.9 (11.8)
Weight decay 36.3 (22.6) 61.0 (13.1) 11.9 (19.7) 22.6 (15.9) 41.7 (15.8) 2.2 (24.2)

human-in-the-loop approach (view plots after each split and stop when results are satisfying) or by
defining a quantitative measure (e.g., based on a threshold for confidence improvement).

Figure 11: Estimated PDP of GP (blue) and true PDP estimate (black). The relative improvements
after 2 (6) splits are � MC = 5% (0%) and � NLL = 5% (�28%).

D Code

All code related to this paper is made available via a public repository17. All methods are implemented
within the folder R, and all code used to perform the experiments are provided in benchmarks. All
analyses shown in this paper in form of tables or figures can be reproduced via running the notebooks
in analysis.

E Paper Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Yes, the contributions and scope are clearly stated in
1 and include (1) studying the sampling bias (see Section 3), (2) the derivation of an
uncertainty measure (see Section 4) and (3) the introduction of a method to split the
hyperparameter space into interpretable subregions (see Section 5). Related hypothesis
are clearly stated and proven in Section 6.

(b) Did you describe the limitations of your work? [Yes] Limitations of our work are stated
in Section 7.

17https://github.com/slds-lmu/paper_2021_xautoml

21

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We
consider our work as core research in the field of AutoML. In particular, we do not
address any specific application which may expose any potential negative societal
concerns. We emphasize that our work aims to increase transparency in AutoML and
foster a human-centered approach, which in our opinion can, in general, promote the
realization of ethical principles.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] Our work does not raise any potential negative societal concerns. We have
ensured that the paper conforms with the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions

are stated in Sections 2, 4, and 5.
(b) Did you include complete proofs of all theoretical results? [Yes] Derivations of the

uncertainty estimate are in Section 4.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
D.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] This is specified in Section 6 as well as in Appendix C.2 in an
even more detailed manner.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The standard deviation across 30 replications is reported,
see Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Table 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section C.2.2

and the first paragraph in Section 6.2.
(b) Did you mention the license of the assets? [Yes] The license for the LCBench data is

included (see Appendix C.2). All further code and generated data are proprietary.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Section C.2.2.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The datasets used only contain information about hyperparame-
ters and their performance, which is not personally identifiable information.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The datasets used only contain information
about hyperparameters and their performance, which is not personally identifiable
information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No crowdsourcing / research with human subjects was conducted.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] No crowdsourcing / research with human
subjects was conducted.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing / research with human
subjects was conducted.

22

	Introduction
	Background and Related Work
	Biased Sampling in HPO
	Quantifying Uncertainty in PDPs
	Regional PDPs via Confidence Splitting
	Experimental Analysis
	BO on a Synthetic Function
	HPO on Deep Learning

	Discussion and Conclusion

