
A Proof of Lemma 3.7

Before moving forward we state the following lemma which follows via a simple calculation.
Lemma A.1. For any positive real number ⌫ � 1/2 and any x � 0, we have that
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Further for any positive reals ⌫1 � ⌫2, x we have that
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Proof. The first inequality follows easily from the definition of � and by noting that the function
xp

1+x2  min(x, 1). For the second inequality, by the definition of � we have that
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Now, consider the scalar function f(x) = xp
1+x2 for x � 0. Note that the function is monotonically

increasing, concave and has values between [0, 1] with f 0(x)  f 0(0) = 1. Putting these facts
together we have that for any x1 � x2
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Using Lemma 3.8 and Lemma A.1 we have the following Lemma
Lemma A.2. Given two non-negative integers ⌫,� we have that
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We are now ready to provide the proof of Lemma 3.7.

Proof of Lemma 3.7. We prove the statement for � � 0, a similar analysis applies for the case �  0
by switching X to �X .

Since 3.8 applies only in the case when ⌫ is positive, we need to handle the negative case via noting
that for integer ⌫ I⌫(x) = I|⌫|(x). This necessitates the requirement for multiple cases. We begin
with the first case

Case 1 - X � ↵�

In this case replacing setting Y = X � ↵� we get that
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where we know that Y � 0. Now consider the following calculation.
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where the first inequality follows from Lemma 3.8 and the second inequality follows from the fact
that for all 0  x  y we have that arcsinh(y)�arcsinh(x)  y�x and the third inequality follows
from Lemma A.1.

Case 2 - X  0

In this case replacing setting Y = �X we get that

�X,↵,�(µ) = log

 
IY+�(µ)

IY+↵�(µ)

✓
IY+�(µ)

IY (µ)

◆↵�1
!
. (A.2)

where we know that Y � 0. Now consider the following calculation.
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where the first inequality follows from Lemma 3.8 and the second inequality follows from the fact
that for all 0  x  y we have that arcsinh(y)�arcsinh(x)  y�x and the third inequality follows
from Lemma A.1.

Case 3 - X 2 [0,�/2]

In this case we first note that
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Next consider the following calculation which corresponds to applying Lemma A.2 to the above
expression we get that,
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We again intend to use the inequality arcsinh(y)� arcsinh(x)  y � x for y � x. To this end first
note that the number of terms on the left summation in the above inequality are at least as many
as the number of terms on the RHS (taking the multiplicity via ↵� 1 into account). Therefore for
those terms we can apply the above inequality. For the remaining we simply use the inequality
arcsinh(x)  x. Therefore we get the following simplification,
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We can now use the upper and lower bounds on �2, �0 given by Lemma A.1. To this end consider the
following calculation,
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Now a direct application of Lemma A.1 yields
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Case 4 - X 2 [�/2,�]

In this case we first note that
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Next consider the following calculation which corresponds to applying Lemma A.2 to the above
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Now a direct application of Lemma A.2 yields
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Case 5 - X 2 [�, (↵+ 1)�/2]

In this case we first note that
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Next consider the following calculation which corresponds to applying Lemma A.2 to the above
expression and collecting the terms corresponding to �2+2⌫�
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Case 6 - X 2 [(↵+ 1)�/2,↵�]

In this case we first note that
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Next consider the following calculation which corresponds to applying Lemma A.2 to the above
expression we get that,
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We again intend to use the inequality arcsinh(y)� arcsinh(x)  y � x for y � x. To this end first
note that the number of terms on the left summation in the above inequality are at least as many
as the number of terms on the RHS (taking the multiplicity via ↵� 1 into account). Therefore for
those terms we can apply the above inequality. For the remaining we simply use the inequality
arcsinh(x)  x. Therefore we get the following simplification,
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We can now use the upper and lower bounds on �2, �0 given by Lemma A.1. To this end consider the
following calculation,
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Now a direct application of Lemma A.2 yields
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B Additional Results

B.1 Shakespeare

We additionally evaluate our methods on Shakespeare, a public federated language modeling
dataset [31, 41]. The dataset is built on the collective works of William Shakespeare, where each
of the total N = 715 clients corresponds to a speaking role with at least two lines. The task of this
dataset is to predict the next word based on the preceding words in a line. The dataset is split into
training set and test set by partitioning the lines from each client. The model used for this task follows
that of [41], to which we refer the reader for more details on the dataset and the experimental setup.

Our hyperparameters mostly follow those from [6, 41] and limited tuning was performed; see Table 2
for a complete list of hyperparameters. We do a small grid search over the `2 clipping values
c 2 {0.25, 0.5}. We set the number of clients per round n = 100 and we train for T = 1200 rounds.
In particular, note that it is challenging to obtain a small " on this dataset due to the small N and the
minimal n sufficient for convergence; we thus follow [6] and [33] to report privacy with a hypothetical
population size N = 106.

Figure 6 compares the test accuracies (averaged over the last 100 rounds) across different mechanisms
and values of " and b. Figure 7 compares the mechanisms during training. The optimal clipping is
c = 0.5 for " = 7.5 and c = 0.25 otherwise. Note that Skellam matches DDGauss across all settings.
The slight performance gap from both Skellam and DDGauss to Gaussian is likely due to the effects
of modular clipping error from SecAgg (cf. Figure 10).

Figure 6: Summary of test accuracies on Shakespeare across different " and b averaged over the last
100 rounds with a hypothetical population size N = 106. � = 10�6. Left: k = 3. Right: k = 4.

B.2 Federated EMNIST

Figure 8 includes the omitted details of Figure 5 (left) and illustrates the effect of a larger k. Figure 9
compares the test accuracies of different methods on EMNIST over training T = 1500 rounds for
different values of " and b with k = 3.

B.3 Stack Overflow Next Word Prediction

Figure 10 illustrates the effect of k on the test accuracies. Note that for k = 3, there is a slight
performance gap between Gaussian and Skellam/DDGauss likely due to the modular clipping error
introduced by SecAgg. By increasing k, we can reduce scaling and sacrifice quantization errors
to close the gap. Figure 11 additionally shows the accuracies on the validation set over training
T = 1600 rounds for different values of " and b with k = 4.
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Figure 7: Test accuracies on Shakespeare over training T = 1200 rounds (averaged every 100
rounds) with a hypothetical population size N = 106. � = 10�6. k = 3.

Figure 8: Summary of test accuracies on Federated EMNIST across different " and b averaged over
the last 100 rounds. � = 1/N . Left: k = 3. Right: k = 4.

B.4 Comparison against Discrete Laplace

Figure 12 compares Skellam and (discrete) Gaussian against the discrete Laplace mechanism under
various accounting schemes on privacy compositions.

C Additional Details

C.1 Models for FL experiments

For Federated EMNIST, we use a small convolutional network similar to the architecture used in [41].
Our architecture is slightly smaller and has d̄ < 220 parameters to reduce the zero padding required
by the randomized Hadamard transform (see Algorithm 1). The architecture is summarized in Table 1.
For Stack Overflow NWP and Shakespeare (Section B.1), we use the architectures from [41] directly.6

6https://github.com/google-research/federated/tree/master/utils/models
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Figure 9: Test accuracies on Federated EMNIST over training T = 1500 rounds (averaged every
100 rounds). � = 1/N . k = 3.

Figure 10: Summary of test accuracies on Stack Overflow NWP across different " and b. � = 10�6.
Left: k = 3. Right: k = 4.

C.2 Datasets

License, Availability, and Curation The federated datasets used in our FL experiments (Federated
EMNIST [14], Stack Overflow Next Word Prediction [8], and Shakespeare [31]) are publicly avail-
able7 from TensorFlow Federated [24]. To our knowledge, they have been appropriately anonymized
and do not contain personally identifiable information. Federated EMNIST and Shakespeare is
licensed under the BSD 2-Clause License, while SO-NWP uses the CC BY-SA 3.0 License.

Dataset Splits For all FL datasets, we used the standard dataset split provided by TensorFlow. For
EMNIST and Shakespeare, the datasets are split into training set and test set, and performance is
reported on the test set. For Stack Overflow NWP, the dataset is split into training, validation, and test
sets; the summary plots (e.g. Figure 10) report performance on the test set and the validation plots
(e.g. Figure 11) report performance on the validation set. While other validation metrics/methods are
possible, we note that using the dataset splits available from TensorFlow is standard practice in recent

7https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets
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Figure 11: Validation accuracies on Stack Overflow NWP over training T = 1600 rounds (averaged
every 100 rounds). � = 10�6. k = 4.

Figure 12: Comparing privacy compositions across various mechanisms in the scalar case. � = 1.
DLaplace: Discrete Laplace. DGaussian: Discrete Gaussian. AC: Advanced Composition. RDP:
Rényi DP. PLD: Privacy Loss Distributions.

work (e.g. [41, 25, 33, 3]) and it allows our methods to be comparable in similar settings. Note also
that validation data are often unavailable for training real-world FL models, and techniques such as
k-fold validation can incur additional privacy costs.

C.3 Other Implementation Details

Privacy Amplification via Sub-sampling The privacy guarantees for FL experiments leverage
amplification via sub-sampling as a subset of the clients is selected in each of the T rounds to
participate in training (we use [37] for Gaussian and [51] for Skellam and DDGauss). We note that
the underlying assumptions – that the clients can be sampled uniformly, and that the identities of
the clients can be hidden from the sampler – do not always hold, particularly in federated learning
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Layer Output Shape # Params
Input 28⇥ 28⇥ 1 0
Conv 3⇥ 3, 32 26⇥ 26⇥ 32 320
MaxPool 13⇥ 13⇥ 32 0
Conv 3⇥ 3, 64 11⇥ 11⇥ 64 18496
Dropout, 25% 11⇥ 11⇥ 64 0
Flatten 7744 0
Dense 128 991360
Dropout, 25% 128 0
Dense 62 7998
Total # Params 1018174

Table 1: Model architecture for Federated EMNIST.

EMNIST Shakespeare Stack Overflow NWP
Client LR ⌘client 0.32 1 0.5

Server LR ⌘server 1 0.32 {0.3, 1}
Server momentum 0.9 0.9 0.9
Client Batch Size 20 4 16

Client epochs per round 1 1 1
Max examples per client - - 256

Clients uniform weighting X X X
`2 clipping c 0.03 {0.25, 0.5} 0.3

Clients per round n 100 100 100
Population size N 3400 715‡ 342477
Training rounds T 1500 1200 1600

Conditional rounding bias† � exp(�0.5) exp(�0.5) exp(�0.5)
Privacy � 1/N 10�6 10�6

Table 2: Summary of hyperparameters for the FL experiments. †Discrete mechanisms only. ‡A
hypothetical population size N = 106 was used when reporting privacy guarantees.

settings where the availability of the clients can be different at each round and the central server is
the entity initiating the training/sampling procedure. However, we note that the privacy guarantees is
applicable for external analysts that request the trained model from the central aggregator.

Random seeds For all experiments, we fixed both the seed for the client dataset randomness
(sampling, shuffling, etc.) and the seed of initializing the parameters of the model architectures. Note
that the FL experiments are not repeated for multiple seeds due to computational costs, though the
test accuracies on EMNIST/Shakespeare and the validation accuracies on SO-NWP are averaged
over the last 100 rounds.

Hyperparameters Table 2 summarizes the hyperparameters used for the FL experiments. We
adopt most hyperparameters from previous work and tuning is limited. We follow [25] for EMNIST,
[6] for Shakespeare, and [27] for Stack Overflow NWP. We sweep different server learning rates
for SO-NWP and different clipping thresholds c for Shakespeare and report the best results. We
also show the effect of k on the trade-off between modular clipping error and quantization error (e.g.
Figure 10), though the same values of k is used when comparing different methods.

D Practical Remarks

D.1 Ease of Sampling

One of the practical advantages of the Skellam mechanism compared to the (distributed) discrete
Gaussian mechanism is that the sampling routines for Skellam (Poisson) distribution are widely
available in data analysis and machine learning software packages such as NumPy, TensorFlow, and
PyTorch that ML / DP practitioners would use for development. However, we’d like to point out that
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discrete Gaussian sampling itself has been well explored in the lattice-based cryptography community
(e.g., [43, 18, 38]) and we would expect that the efficient sampling routines (often implemented in
C/C++, e.g. [4]) would perform as good as optimized Poisson samplers if compared under a similar
setting. While it is perceivable that discrete Gaussian samplers will become more accessible for
ML and DP practitioners in the future, the discrete Gaussian has only recently been introduced [15]
in the differential privacy context and thus the Skellam mechanism provides a practical advantage
as differentially private FL systems with compression and scalable secure aggregation are near
deployment today. We also provide a preliminary comparison of the sampling time against two
existing implementations of discrete Gaussian sampler [15, 25] available to DP practitioners; the
implementation from [15] is not vectorized and thus can be 1000⇥ slower than Skellam sampling,
and the implementation from [25] is still up to 40% slower in TensorFlow eager execution.

D.2 Closure Under Summation

The property that Skellam samples are closed under summation gives several practical advantages.

From a theoretical standpoint, being closed under summation removes the need for accounting for
the divergence errors, which, as measured in DDGauss [25] as an infinity divergence, grow with the
number of clients (as opposed to no such dependence for Skellam), which can be problematic with
settings of massively distributed client base (e.g. federated analytics).

Concretely, consider the simple quantile estimation problem [6] where we have a large number of
clients (n � 1000) and sensitivity-1 (binary) queries. With a large central noise standard deviation
�c � 5, we can achieve a strong privacy (as " ⇡ �/�c), but if this noise is to be added locally (via
the distributed DP with SecAgg model), the ⌧ term of DDGauss (Thm 1 of [25]) would significantly
degrade the privacy guarantees because large n means more additive divergence terms and smaller
local noise standard deviation which (exponentially) widens the divergence – this effect can be
inferred from the left of Figure 2 where DDGauss underperforms at small noise levels and, in
comparison, Skellam degrades more gracefully with smaller noises. For a specific example, consider
n = 10000 and �c = 50; in this case, the local noise standard deviation �l = 0.5, and at ↵ = 2, the
RDP "(↵) of Gaussian and Skellam is 4 ⇥ 10�4 and 4.0036 ⇥ 10�4 respectively, while the RDP
of DDGauss is > 723 (a factor of > 106) due to the sum divergence term ⌧ . While scaling both
the raw values and the noise variances can help alleviate this issue, it also introduces additional
communication costs.

From an engineering perspective, while the divergence term for discrete Gaussian is usually small
enough, we still need to keep track of it and its dependent parameters (number of clients, client
dimensions, variance) for privacy accounting. Skellam on the other hand only requires us to track the
variance and thereby allows easier switching between central DP (noise on the server) and distributed
DP (noise on the clients) implementations.
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