
A Deriving Jacobians for matrix transformations

Following the approach in (Mathai, 1997; Mathai & Haubold, 2008), we define the Jacobian of a
function from x to y as the ratio of volume elements,

jacobian =
dy1dy2 · · · dyN
dx1dx2 · · · dxN

.

Critically, dxi and dyi are basis-vectors, not scalars. As we are multiplying vectors, not scalars, we
need to be careful about our choice of multiplication operation. The correct choice in our context is
an anti-symmetric exterior product, representing a directed area or volume element, such that,

dxidxj = −dxjdxi.
As the product is antisymmetric, the product of a basis-vector with itself is zero,

dxidxi = −dxidxi = 0,

which makes sense because the product represents an area, and the area is zero if the two vectors are
aligned. To confirm that this matches usual expressions for Jacobians, consider a 2× 2 matrix-vector
multiplication, y = Ax:(

dy1

dy2

)
=

(
A11 A12

A21 A22

)(
dx1

dx2

)
=

(
A11dx1 +A12dx2

A21dx1 +A22dx2

)
.

Thus,

dy1dy2 = (A11dx1 +A12dx2) (A21dx1 +A22dx2)

dy1dy2 = A11A21dx
2
1 +A11A22dx1dx2 +A12A21dx2dx1 +A12A22dx

2
2

As dx2
1 = dx2

2 = 0, and dx1dx2 = −dx1dx2, we have,

dy1dy2 = (A11A22 −A12A21) dx1dx2

dy1dy2 = |A| dx1dx2,

so that the Jacobian computed using the determinant definition is equivalent to the expression for the
determinant obtained by working with volume elements.

B Jacobian for the product of a lower triangular matrix with itself

In this section, we compute the Jacobian for the transformation from Λ = LA to G = ΛΛT . We
begin by noting that the top-left block of the product of a lower-triangular matrix with itself is a
product of smaller lower-triangular matrices:(

Λ:N,:N 0
ΛN :,:N Λ:N,:N

)(
ΛT

:N,:N ΛT
N :,:N

0 ΛT
:N,:N

)
=

(
Λ:N,:NΛT

:N,:N . . .
...

. . .

)
.

As such, we can incrementally compute the Jacobian for this transformation by starting with the
top-left 1× 1 matrix,

G11 = Λ2
11 (18)

dG11 = 2Λ11dΛ11. (19)

Next, we consider the top-left 2× 2 matrix,(
G11 G12

G21 G22

)
=

(
Λ11 0
Λ21 Λ22

)(
Λ11 Λ21

0 Λ22

)
=

(
Λ2

11 Λ21Λ11

Λ21Λ11 Λ2
21 + Λ2

22

)
.

Thus

dG21 = Λ21dΛ11 + Λ11dΛ21

dG22 = 2Λ22dΛ22 + 2Λ21dΛ21.

14

Combining dG11 and dG21 gives

dG11dG21 = (2Λ11dΛ11) (Λ21dΛ11 + Λ11dΛ21)

dG11dG21 = 2Λ2
11 (dΛ11dΛ21) ,

and then combining dG11dG21 and dG22 gives

dG11dG21dG22 =
(
2Λ2

11 (dΛ11dΛ21)
)

(2Λ22dΛ22 + 2Λ21dΛ21)

dG11dG21dG22 = 4Λ2
11Λ22 (dΛ11dΛ21dΛ22) .

Thus, we can prove by induction that the volume element for the top-left p× p block of G, and in
addition the first K < p+ 1 off-diagonal elements of the p+ 1th row is(

p∏
i=1

i∏
k=1

dGik

)
︸ ︷︷ ︸
vol. elem. for G:p,:p

(
K∏
k=1

dGp+1,k

)
︸ ︷︷ ︸
vol. elem. for Gp+1,:K

= 2p

(
p∏
i=1

i∏
k=1

ΛkkdΛik

)(
K∏
k=1

dΛkkΛp+1,k

)
.

The proof consists of three parts: the base case, adding an off-diagonal element and adding an
on-diagonal element. For the base-case, note that the expression is correct for p = 1 and K = 0
(Eq. 19). Next, we add an off-diagonal element, Gp+1,K+1, where K + 1 < p + 1. We begin by
computing dGp+1,K+1. Note that the sum only goes to K+1, because ΛK+1,j = 0 for j > (K+1):

Gp+1,K+1 =

K+1∑
j=1

Λp+1,jΛK+1,j ,

dGp+1,K+1 =

K+1∑
j=1

(ΛK+1,jdΛp+1,j + Λp+1,jdΛK+1,j) .

Remembering that dΛ2
ij = 0, the only term that does not cancel when we multiply by the volume

element for the previous terms is that for dΛp+1,K+1:(
p∏
i=1

i∏
k=1

dGik

)
︸ ︷︷ ︸
vol. elem. for G:p,:p

(
K+1∏
k=1

dGp+1,k

)
︸ ︷︷ ︸

vol. elem. for Gp+1,:K+1

=

(
p∏
i=1

i∏
k=1

dGik

)(
K∏
k=1

dGp+1,k

)
dGp+1,K+1

= 2p

(
p∏
i=1

i∏
k=1

ΛkkdΛik

)(
K∏
k=1

dΛkkΛp+1,k

)
dGp+1,K+1

= 2p

(
p∏
i=1

i∏
k=1

ΛkkdΛik

)(
K∏
k=1

dΛkkΛp+1,k

)
(ΛK+1,K+1dΛp+1,K+1)

= 2p

(
p∏
i=1

i∏
k=1

ΛkkdΛik

)(
K+1∏
k=1

dΛkkΛp+1,k

)
.

So the expression is consistent when adding an on-diagonal element. Finally, the volume element for
Gp+1,p+1 is,

Gp+1,p+1 =

p+1∑
j=1

Λ2
p+1,jdGp+1,K+1 =

K+1∑
j=1

Λp+1,jdΛp+1,j .

15

Remembering that dΛ2
ij = 0, the only term that does not cancel when we multiply by the volume

element for the previous terms is that for dΛp+1,p+1,

(
p+1∏
i=1

i∏
k=1

dGik

)
︸ ︷︷ ︸

vol. elem. for G:p+1,:p+1

=

(
p∏
i=1

i∏
k=1

dGik

)
︸ ︷︷ ︸
vol. elem. for G:p,:p

(
p+1∏
k=1

dGp+1,k

)
︸ ︷︷ ︸

vol. elem. for Gp+1,:p+1

=

(
p∏
i=1

i∏
k=1

dGik

)(
p∏
k=1

dGp+1,k

)
dGp+1,p+1

= 2p

(
p∏
i=1

i∏
k=1

ΛkkdΛik

)(
p∏
k=1

dΛkkΛp+1,k

)
dGp+1,p+1

= 2p

(
p∏
i=1

i∏
k=1

ΛkkdΛik

)(
p∏
k=1

dΛkkΛp+1,k

)
(2Λp+1,p+1dΛp+1,p+1)

= 2p+1

(
p∏
i=1

i∏
k=1

ΛkkdΛik

)(
p+1∏
k=1

dΛkkΛp+1,k

)

= 2p+1

(
p+1∏
i=1

i∏
k=1

ΛkkdΛik

)
.

Thus, the final result is:

(
P∏
i=1

i∏
k=1

dGik

)
=

2P
min(P,ν)∏
i=1

ΛP+1−i
ii

(P∏
i=1

i∏
k=1

dΛik

)
. (20)

dG = dΛ

P∏
i=1

2ΛP+1−i
ii . (21)

B.1 Singular matrices

The above derivation can be extended to the singular case, where Λ has a form mirroring that of A in
Eq. (7a):

Λ =


Λ11 . . . 0

...
. . .

...
Λν1 . . . Λνν

...
...

...
ΛP1 . . . ΛPν

 . (22)

To form a valid Jacobian, we need the same number of inputs as outputs. We therefore consider
differences in only the corresponding part of G (i.e. Gi,j≤min(i,ν)). The recursive expression is

 p∏
i=1

min(i,ν)∏
k=1

dGik


︸ ︷︷ ︸

vol. elem. for G:p,:p

(
K∏
k=1

dGp+1,k

)
︸ ︷︷ ︸
vol. elem. for Gp+1,:K

= 2min(p,ν)

 p∏
i=1

min(i,ν)∏
k=1

ΛkkdΛik

(K∏
k=1

dΛkkΛp+1,k

)
,

16

where K < min(p, ν). For P ≤ ν, the recursion is exactly as in the full-rank case. For P > ν, the
key difference is that there are no longer any on-diagonal elements. As such, for K = ν we havep+1∏

i=1

min(i,ν)∏
k=1

dGik

 =

 p∏
i=1

min(i,ν)∏
k=1

dGik


︸ ︷︷ ︸

vol. elem. for G:p,:p

(
ν∏
k=1

dGp+1,k

)
︸ ︷︷ ︸
vol. elem. for Gp+1,:ν

= 2min(p,ν)

 p∏
i=1

min(i,ν)∏
k=1

ΛkkdΛik

(K∏
k=1

dΛkkΛp+1,k

)

= 2min(p,ν)

p+1∏
i=1

min(i,ν)∏
k=1

ΛkkdΛik

 .

The final expression, allowing for the possibility of singular and non-singular matrices, is thus P∏
i=1

min(i,ν)∏
k=1

dGik

 =

min(P,ν)∏
i=1

2ΛP+1−i
ii

 P∏
i=1

min(i,ν)∏
k=1

dΛik


dG = dΛ

min(P,ν)∏
i=1

2ΛP+1−i
ii .

C Jacobian for product of two different lower triangular matrices

In this section, we compute the Jacobian for the transformation from A to Λ = LA. We begin by
noting that Λ (Eq. 22) is a potentially rectangular lower-triangular matrix, with the same structure as
A. Writing this out,

Λ11 0 0
Λ21 Λ22 0
Λ31 Λ32 Λ33

Λ41 Λ42 Λ43

Λ51 Λ52 Λ53

 =


L11 0 0 0 0
L21 L22 0 0 0
L31 L32 L33 0 0
L41 L42 L43 L44 0
L51 L52 L53 L54 L55



A11 0 0
A21 A22 0
A31 A32 A33

A41 A42 A43

A51 A52 A53

 .

For the first column, 
Λ11

Λ21

Λ31

Λ41

Λ51

 =


L11 0 0 0 0
L21 L22 0 0 0
L31 L32 L33 0 0
L41 L42 L43 L44 0
L51 L52 L53 L54 L55



A11

A21

A31

A41

A51

 ,

i.e.

Λ:,1 = LA:,1.

For the second column,
0

Λ22

Λ32

Λ42

Λ52

 =


L11 0 0 0 0
L21 L22 0 0 0
L31 L32 L33 0 0
L41 L42 L43 L44 0
L51 L52 L53 L54 L55




0
A22

A32

A42

A52

 .

We can eliminate the first row and column of C,Λ22

Λ32

Λ42

Λ52

 =

L22 0 0 0
L32 L33 0 0
L42 L43 L44 0
L52 L53 L54 L55


A22

A32

A42

A52

 ,

17

i.e.

Λ2:,2 = L2:,2:A2:,2.

For the third column, 
0
0

Λ33

Λ43

Λ53

 =


L11 0 0 0 0
L21 L22 0 0 0
L31 L32 L33 0 0
L41 L42 L43 L44 0
L51 L52 L53 L54 L55




0
0
A33

A43

A53

 ,

so we can eliminate the first two rows and columns of C:(
Λ33

Λ43

Λ53

)
=

(
L33 0 0
L43 L44 0
L53 L54 L55

)(
A33

A43

A53

)
,

i.e.

Λ3:,3 = L3:,3:A3:,3.

As such, the full computation Λ = LA can be written as a matrix-vector multiplication by rearranging
the columns of Λ and A into a single vector:

Λ1:,1

Λ2:,2

...
Λν:,ν

 =


L1:,1: 0 . . . 0

0 L2:,2: . . . 0
...

...
. . .

...
0 0 . . . Lν:,ν:




A1:,1

A2:,2

...
Aν:,ν

 .

The Jacobian is given by the determinant of the square matrix, and as the matrix is lower-triangular,
the determinant can be written in terms of the diagonal elements of L, P∏

i=1

min(i,ν)∏
k=1

dΛik

 =

(
P∏
i=1

L
min(i,ν)
ii

) P∏
i=1

min(i,ν)∏
k=1

dAik

 .

D Proving the singular Bartlett (above) corresponds to the Wishart

We need to change variables to Ajj rather than A2
jj

1:

P (Ajj) = P
(
A2
jj

) ∣∣∣∣∣∂A2
jj

∂Ajj

∣∣∣∣∣ ,
= Gamma

(
A2
jj ;

ν−j+1
2 , 1

2

)
2Ajj ,

=

(
A2
jj

)(ν−j+1)/2−1
e−A

2
jj/2

2(ν−j+1)/2Γ
(
ν−j+1

2

) 2Ajj ,

=
Aν−jjj e−A

2
jj/2

2(ν−j−1)/2Γ
(
ν−j+1

2

) .
Thus, the probability density for A under the Bartlett sampling operation is

P (A) =

ν̃∏
j=1

Aν−jjj e−T
2
jj/2

2
ν−j−1

2 Γ
(
ν−j+1

2

)︸ ︷︷ ︸
on-diagonals

p∏
i=j+1

1√
2π
e−A

2
ij/2

︸ ︷︷ ︸
off-diagonals

, (23)

1djalil.chafai.net/blog/2015/10/20/bartlett-decomposition-and-other-factorizations/

18

where ν̃ = min(ν, P). To convert this to a distribution on G, we need the volume element for the
transformation from A to Z = AAT , which is given in Appendix B (Eq. (21)):

dZ = dA

ν̃∏
j=1

2AP−j+1
jj .

Thus

P (Z) = P (A)

 ν̃∏
j=1

1
2A
−(P−j+1)
jj


=

ν̃∏
j=1

Aν−P−1
jj e−T

2
jj/2

2
ν−j+1

2 Γ
(
ν−j+1

2

) P∏
i=j+1

1√
2π
e−A

2
ij/2.

Now, we break this expression down into separate components and perform standard algebraic
manipulations. First, we manipulate a product over the diagonal elements of A to obtain the
determinant of Z:

ν̃∏
j=1

Aν−P−1
jj =

 ν̃∏
j=1

Ajj

ν−P−1

=
∣∣A:ν̃,:A

T
:ν̃,:

∣∣(ν−P−1)/2
= |Z:ν̃,:ν̃ |(ν−P−1)/2

.

Next, we manipulate the exponential terms to form an exponentiated trace. We start by combining on-
and off-diagonal terms, and noting that Aij = 0 for i < j, we can extend the sum

ν̃∏
j=1

e−A
2
jj/2

P∏
i=j+1

e−A
2
ij/2 =

ν̃∏
j=1

P∏
i=j

e−A
2
ij/2 =

ν̃∏
j=1

P∏
i=1

e−A
2
ij/2.

Then we take the product inside the exponential and note that as Z = AAT , we can write the sum as
a trace of Z,

= e
∑ν̃
j=1

∑P
i=1−A

2
ij/2 = e−Tr(Z)/2.

Next, we consider powers of 2. We begin by computing the number of 1/
√

2 terms, arising from the
off-diagonal elements,

ν̃∏
j=1

p∏
i=j+1

1√
2

=
(

1√
2

)ν(p−ν̃)+ν̃(ν̃−1)/2

.

Note that the ν̃(ν̃ − 1) term corresponds to the off-diagonal terms in the square block A:ν̃,:, and the
ν(p− ν̃) term corresponds to the terms from Aν̃:,:. Next we consider the on-diagonal terms,

ν̃∏
j=1

1

2(ν−j+1)/2
=
(

1√
2

)ν̃(ν+1) ν̃∏
j=1

(
1√
2

)−j
=
(

1√
2

)ν̃(ν+1)−ν̃(ν̃+1)/2

.

Combining the on and off-diagonal terms,
ν̃∏
j=1

1

2(ν−j+1)/2

P∏
i=j+1

1√
2

=
(

1√
2

)ν(P−ν̃)+ν̃(ν̃−1)/2+ν̃(ν+1)−ν̃(ν̃+1)/2

=
(

1√
2

)(νP−νν̃)+(ν̃2/2−ν̃/2)+(ν̃ν+ν̃)+(−ν̃2/2−ν̃/2)

=
(

1√
2

)νP
.

Finally, using the definition of the multivariate Gamma function,
ν̃∏
j=1

Γ
(
ν−j+1

2

) P∏
i=j+1

√
π = πν(P−ν̃)/2 πν̃(ν̃−1)/4

ν̃∏
j=1

Γ
(
ν−j+1

2

)
︸ ︷︷ ︸

=Γν̃(ν2)

= πν(P−ν̃)/2Γν̃
(
ν
2

)
.

19

We thereby re-obtain the probability density for the standard Wishart distribution,

P (Z) =
πν(ν̃−P)/2

2νP/2Γν̃
(
ν
2

) |Z:ν̃,:ν̃ |(ν−P−1)/2
e−Tr(Z)/2.

For ν̃ = ν, this matches Eq. 3.2 in Srivastava et al. (2003), and for ν̃ = P it matches the standard
full-rank Wishart probability density function.

E Choice of Fi

Here, we establish that the distribution over FtF
T
i and FtF

T
t does not depend on the choice of Fi.

Due to the definition of Ft (Eq. 17) we can write,

Ft = KT
ti K
−1
ii Fi + K

1/2
tt·i Ξ.

where Ξ is a matrix with IID standard Gaussian elements. Thus,

FtF
T
i = KT

ti K
−1
ii FiF

T
i + K

1/2
tt·i ΞFTi

FtF
T
i ∼MN

(
KT

ti K
−1
ii Gii,Ktt·i,Gii

)
.

We can do the same for FtF
T
t :

FtF
T
t =KT

ti K
−1
ii FiF

T
i K−1

ii Kti

+ KT
ti K
−1
ii FiΞK

1/2
tt·i + K

1/2
tt·i ΞFTi K−1

ii Kti

+ K
1/2
tt·i ΞΞK

1/2
tt·i .

The first term is independent of the choice of of Fi because Gii = FiF
T
i . The term on the last line

does not depend on Fi at all. Finally, the two terms in the middle are Gaussian with covariance that
depends on Gii but not the specific choice of Fi:

KT
ti K
−1
ii FiΞK

1/2
tt·i ∼MN

(
0,KT

ti K
−1
ii GiK

−1
ii Kti,Ktt·i

)
,

K
1/2
tt·i ΞFTi K−1

ii Kti ∼MN
(
0,Ktt·i,K

T
ti K
−1
ii GiK

−1
ii Kti

)
.

Thus, the additional components of G, Gti = FtFi and Gtt = FtFt depend on Gii but not on the
specific choice of Fi. Thus, any Fi can be used as long as Gii = FiF

T
i .

F Experimental details

Datasets All experiments were performed using the UCI splits from Gal & Ghahramani (2015),
available at https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_
Datasets. For each dataset there are twenty splits, with the exception of protein, which only has
five. We report mean plus or minus one standard error over the splits.

Model details As standard, we set ν (the ‘width’ of each layer) to be equal to the dimensionality
of the input space. We use the squared exponential kernel, with automatic relevance determination
(ARD) in the first layer, but without for the intermediate layers as ARD relies on explicit features
existing. However, we found in practice that using ARD for intermediate layers in a DGP did not
hugely affect the results, as each output GP in a layer shares the same prior and hence output prior
variance. For the final, GP, layer of the DWP model we use a global inducing approximate posterior
(Ober & Aitchison, 2021), as done in the DGP. We leave the particular implementation details for the
code provided with the paper, but we note that we use the ‘sticking the landing’ gradient estimator
(Roeder et al., 2017) for the {α`,β`,µ`,σ`}L`=1 approximate posterior parameters of the DWP
(using it for the other parameters, as well as for the DGP parameters, is difficult as the parameters of
one layer will affect the KL estimate of the following layers for global inducing posteriors).

Training details We train all models using the same training scheme. We use 20,000 gradient steps
to train each model, using the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of
1e-2. We anneal the KL using a factor increasing linearly from 0 to 1 over the first 1,000 gradient
steps, and step the learning rate down to 1e-3 after 10,000 gradient steps. We use 10 samples from
the approximate posterior for training, and 100 for testing. Experiments were performed using an
internal cluster of machines with NVIDIA GeForce 2080 Ti GPUs, although we used CPU (Intel
Core i9-10900X) for the smaller datasets (boston, concrete, energy, wine, yacht).

20

f 1 y

x

f 2

x

y

Figure 2: Features from a 2-layer DGP posterior with intermediate width 2: feature samples f1 (first
layer, first output; top left), f2 (first layer, second output; bottom left), posterior samples (top right),
posterior predictive (bottom right)

f 1 y

x

f 2

x

y

Figure 3: Features from a 2-layer DWP posterior with intermediate width 2: feature samples f1 (first
layer, first output; top left), f2 (first layer, second output; bottom left), posterior samples (top right),
posterior predictive (bottom right)

G Toy comparison of DGP and DWP posteriors

In this section, we compare intermediate-layer features for trained 2-layer, width-2 DWP and DGP
models on a 1-dimensional toy example (following the toy example from Ober & Aitchison (2021)).
We plot the intermediate samples for the DGP in Figure 2 and those for the DWP in Figure 3. We
observe that the features learned by the DWP are both more interesting, and more varied. This
allows for a greater predictive uncertainty in the posterior away from the data. These improved
characteristics are due to the increased ability of the DWP to capture true-posterior symmetries.

21

H Tables

In Table 3, we include a comparison to the reported results for the 3-layer DIWP with squared
exponential kernel from Aitchison et al. (2021); they did not provide ELBOs. However, it should
be noted that the specific implementation and architectural details differ significantly from those
presented in this paper, and so these results are not directly comparable. Additionally, Aitchison et al.
(2021) bases its error bars on paired comparisons to the other methods instead of the standard error
bars we use here; we therefore omit the error bars completely.

Table 2: ELBOs per datapoint. We report mean plus or minus one standard error over the splits.
{dataset} - {depth} DWP DGP

boston - 2 -0.33 ± 0.00 -0.38 ± 0.01
3 -0.34 ± 0.01 -0.40 ± 0.01
4 -0.36 ± 0.01 -0.43 ± 0.00
5 -0.38 ± 0.01 -0.45 ± 0.01

concrete - 2 -0.42 ± 0.00 -0.44 ± 0.00
3 -0.43 ± 0.00 -0.47 ± 0.00
4 -0.46 ± 0.00 -0.50 ± 0.00
5 -0.49 ± 0.00 -0.50 ± 0.00

energy - 2 1.46 ± 0.00 1.44 ± 0.00
3 1.44 ± 0.00 1.42 ± 0.00
4 1.42 ± 0.00 1.40 ± 0.00
5 1.41 ± 0.00 1.39 ± 0.00

kin8nm - 2 -0.16 ± 0.00 -0.15 ± 0.00
3 -0.15 ± 0.00 -0.14 ± 0.00
4 -0.14 ± 0.00 -0.14 ± 0.00
5 -0.14 ± 0.00 -0.13 ± 0.00

naval - 2 3.75 ± 0.07 3.91 ± 0.08
3 3.76 ± 0.11 3.82 ± 0.10
4 3.68 ± 0.07 3.91 ± 0.06
5 3.65 ± 0.07 3.91 ± 0.10

power - 2 0.03 ± 0.00 0.03 ± 0.00
3 0.03 ± 0.00 0.03 ± 0.00
4 0.03 ± 0.00 0.03 ± 0.00
5 0.03 ± 0.00 0.02 ± 0.00

protein - 2 -1.07 ± 0.00 -1.07 ± 0.00
3 -1.04 ± 0.00 -1.04 ± 0.00
4 -1.02 ± 0.00 -1.02 ± 0.00
5 -1.01 ± 0.00 -1.00 ± 0.00

wine - 2 -1.18 ± 0.00 -1.18 ± 0.00
3 -1.18 ± 0.00 -1.19 ± 0.00
4 -1.18 ± 0.00 -1.19 ± 0.00
5 -1.19 ± 0.00 -1.19 ± 0.00

yacht - 2 2.02 ± 0.01 1.80 ± 0.03
3 1.89 ± 0.02 1.59 ± 0.01
4 1.74 ± 0.02 1.48 ± 0.02
5 1.65 ± 0.01 1.37 ± 0.03

22

Table 3: Average test log likelihoods. We report mean plus or minus one standard error over the splits,
along with quoted results for the DIWP model from Aitchison et al. (2021). We only directly compare
between DWP and DGP models and do not quote error bars for the DIWP due to the differences
noted above.

{dataset} - {depth} DWP DGP

boston - 2 -2.39 ± 0.05 -2.42 ± 0.05 -
3 -2.38 ± 0.04 -2.41 ± 0.05 -
4 -2.38 ± 0.04 -2.41 ± 0.04 -2.40
5 -2.39 ± 0.04 -2.44 ± 0.04 -

concrete - 2 -3.13 ± 0.02 -3.10 ± 0.02 -
3 -3.11 ± 0.02 -3.08 ± 0.02 -
4 -3.12 ± 0.02 -3.11 ± 0.02 -3.08
5 -3.13 ± 0.01 -3.14 ± 0.02 -

energy - 2 -0.70 ± 0.03 -0.70 ± 0.03 -
3 -0.71 ± 0.03 -0.70 ± 0.03 -
4 -0.70 ± 0.03 -0.70 ± 0.03 - 0.70
5 -0.70 ± 0.03 -0.70 ± 0.03 -

kin8nm - 2 1.35 ± 0.00 1.35 ± 0.00 -
3 1.37 ± 0.00 1.38 ± 0.01 -
4 1.40 ± 0.00 1.38 ± 0.01 1.01
5 1.40 ± 0.01 1.39 ± 0.01 -

naval - 2 8.11 ± 0.10 8.24 ± 0.08 -
3 8.22 ± 0.07 8.13 ± 0.14 -
4 8.18 ± 0.05 8.27 ± 0.05 5.92
5 8.21 ± 0.05 8.31 ± 0.07 -

power - 2 -2.77 ± 0.01 -2.78 ± 0.01 -
3 -2.77 ± 0.01 -2.77 ± 0.01 -
4 -2.77 ± 0.01 -2.78 ± 0.01 -2.78
5 -2.77 ± 0.01 -2.78 ± 0.01 -

protein - 2 -2.81 ± 0.00 -2.82 ± 0.00 -
3 -2.78 ± 0.00 -2.77 ± 0.00 -
4 -2.73 ± 0.01 -2.75 ± 0.01 -2.74
5 -2.73 ± 0.00 -2.73 ± 0.00 -

wine - 2 -0.96 ± 0.01 -0.96 ± 0.01 -
3 -0.96 ± 0.01 -0.96 ± 0.01 -
4 -0.96 ± 0.01 -0.96 ± 0.01 -1.00
5 -0.96 ± 0.01 -0.96 ± 0.01 -

yacht - 2 -0.04 ± 0.09 -0.43 ± 0.10 -
3 -0.16 ± 0.07 -0.65 ± 0.04 -
4 -0.43 ± 0.10 -0.70 ± 0.04 -0.39
5 -0.43 ± 0.10 -0.88 ± 0.08 -

Table 4: Average runtime (seconds) for an epoch of boston and protein. Error bars are negligible.
{dataset} - {depth} DWP DGP

boston - 2 0.214 0.318
5 0.351 0.668

protein - 2 0.942 0.987
5 1.815 2.017

23

