A Technical Results

In this section, it will be convenient to adopt the ESI notation [29]:

Definition 12 (Exponential Stochastic Inequality (ESI) notation). Let (Q2, F,P) be a probability
space. Further, let X, Y be any two random variables and G be a sub-o-algebra of F. Forn > 0, we
define

XY e X-Y4£0 — E[F|g]<L

For G = F, we simply write <, instead of slg. In what follows, given random variables 71, Zs, . ..
and loss ¢ satisfying Assumption[I} we denote by

th ::E(h,Zi)_f(hwai)a hEH,iEN,

the excess-loss random variable, where h, € arginfycy L(h) (with L as in Assumption EI) Let
1 v 1 3
O, = -InE; 4 [e*"Xt’ ] - ZIE [e*"Xf ‘ Zi,.. ., ZH] (13)
n n

be the (conditional) normalized cumulant generating function of X, lh We note that since the loss ¢
takes values in the interval [0, 1], we have

XPMe[-1,1], forallhe?, as.

We now present some existing results pertaining to the excess-loss random variable X" and its
normalized cumulant generating function, which will be useful in our proofs:

Lemma 13 ([29]])). Let h € H and i € N. Further, let Xih, and ®; ,, be as above. Then, for all n > 0,
U

1++/1+4n2

Qnp - (th)2 - X1h(Z) S]rg]i_l (I)z',Qn + oy - (1)2

iom where o, =

and G;_1 is the o-algebra generated by Z1,...,7Z;_1.

Lemma 14 ([29]). If the (3, B)-Bernstein condition (Definition[3) holds for (3, B) € [0,1] x Ry,
then for ®; ,, as in (13)), it holds that

®;, < (Bn)™7, forallne(0,1],i>1.
Lemma 15 ([10]). For ®;,, as in (13), it holds that

b, < g, forallneR, i>1.

Lemma 16 ([10]). Fori > 1 and h € H, the excess-loss random variable Xih’ satisfies
X! =B [X]] <9 0 B [(X])?], forallne[0,1],
where G;_1 is the o-algebra generated by 71, ..., Z;_1 and E;_1[-] =E[- | G;_1].

The following useful proposition is imported from [38] with minor modifications:

Proposition 17. [ESI Transitivity] Let (Q0, F,P) be a probability space and G be a sub-c-algebra
of F. Further, let Z1, . .., Z,, be random variables such that for (%‘)ie[n] € (0,+00)", Z; 5'%1- 0, for
all i € [n]. Then

n n -1
Z Z; gfn 0, wherev, = (Z 1) .
i=1

i=17i
To prove our time-uniform concentration inequality in Section [3| we will require the following
generalization of Markov’s inequality (we state the version found in [27]]):

Lemma 18 (Ville’s inequality). If (M, )ns0 is a non-negative supermartingale, then for any a > 0,
My

P(In>1:M, >a] < —.
a
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The upcoming lemmas will help us bound the sequence of gaps (&x) in (9) under the Bernstein
condition.

Lemma 19. Let Py € A(H), B €[0,1] and B > 0, and suppose that the (3, B)-Bernstein condition
holds. Then, under Assumption[l} for any 1 € [0,1/2] and & € (0,1), with probability at least 1 -,

25 Banl(1(h 22) = (1., )] £ 5(LAQ) = L(h.)) +4C -7

S(KL(Q||Py) + ln(S_l)
nn ’

(14)

B
forall n> 1, where h, € arg inf,, ., L(h) and Cg = ((1 - B)*?B%) ™7 + 3/2(2B)1%ﬁ.

Proof of Lemma[l9 Let § € (0,1) and define X! = £(h, Z;) — (h., Z;). We recall that G; is
the o-algebra generated by 71, ..., Z;, and E;_1[- ] E[- | Gi-1]- Note that under Assurnption
E; 1[X!] = L(h) - L(h.), for all i>1and h € H. Forany 1 € [0,1/2] and h € H our strategy is to
show that, under the (3, B)-Bernstein condition,

M —exp( ixh )2/8 = - (L(h) - L(h.)) +nCs -1 3/2), (15)

is a non-negative supermartingale, for all k € H. After that, invoking Ville’s inequality (Lemma|[T8)
and applying a change of measure argument (Lemma [21)), we get the desired result.

Under the (3, B)-Bernstein condition, Lemmas imply, for all n € [0,1/2] and 7 > 1,
n- (X1 /a9 XD+ 3/2(2B0) (16)

where we used the fact that o, = m >n/4, forall 0 <1 < 1/2 (a, is involved in Lemma .

Now, due to the Bernstein inequality (Lemma[16), we have for all ) € [0,1/2] and i > 1,
XIS L(h) = L(ha) + 1 Bia(X])°),
ﬂg“ L(h) = L(h.) +1- (L(h) - L(h,))?, (by the Bern. cond. & Assumption [T)

2
99 2(L(h) = L(h.)) + ¢y 7 -n™F,  where ¢z = (1-8)'7p°. (17)

The last inequality follows by the fact that z° = cg -inf,o{z/v + V% }, for z > 0 (in our case, we
set v = ca1) to get to (T7). By chaining (T6) with (T7) using Proposition[T7] we get:
8

0 (XI)2/4 995 2(L(h) - L(h.)) + ¢ 7 0™ +3/2(2Bn) 77
90t 2(L(h) - L(ht)) + C 05 as)

This implies that M in @]) is a non-negative supermartingale. This in turn implies that for any
distribution Py, Ep h)[ ] is also a supermartingale. Thus, by Ville’s inequality (Lemma , wWe
have, for any § € (0,1),

§>P[In>1,Ep ) [M)]>067"], (19)
On the other hand, by the KL-change of measure lemma (Lemma , we have for all Q € A(H)
Eq(n[In M;'] < KL(Q[Po) + Ep, 1y [M)].
Combining this with (T9), we get the desired result. O

Lemma 20. For A, B >0, we have

inf {AnT5 + By} <

+2B. (20)
ne(0,1/2)

A(f_—;ﬁ) ((1 - Aﬁ)B)*ﬂ
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1-8
Proof. The unconstrained minimizer of the LHS of is given by 7, = (%) I, <1/2,
then

1
| o . A@2-p) ((1-B)B\™
f JAnTF + Byt < An." + B/n, = . 21
77635?1/2]{ U /n}_ n" + Bl 15 I 1)
_1
Now if 7, > 1/2, we have (1/2)ﬁ < ((17§)B)2_5,and s0, we have
inf {An™7 + Bfn} < A(1/2)77 +2B,
1e(0,1/2]
1
1-8)B\*="
sA((ﬁ)) +2B. (22)
A
By combining (1) and (22)) we get the desired result. O

We need one more classical change of measure result (see e.g. [1]]):
Lemma 21 (KL-change of measure). For all distributions P and Q such that Q < P, it holds that

Eg[X]< i}rg(f) {nKL(Q|P) +n ' mEp[e"¥]}.

B Proofs of the New Concentration Inequalities

To prove our first concentration inequality for MDS in Proposition [5] we start by constructing a
non-negative supermartingale with the help of the recent FREEGRAD algorithm [39]. As mentioned
in the introduction, our proof technique is similar to the one introduced in [28] with the difference
that we use the specific shape of FREEGRAD’s potential function to build our supermartingale. Using
the latter leads to a desirable empirical variance term in our final concentration bound.

To express the FREEGRAD supermartingale, we define
|SP?

_r . N )
NCEET) eXp(w 120+ 2/8]

Proposition 22. Let v > 0 and (F; ) e e a filtration. For any random variables X1, Xo,-+- € [-1,1]
s.t. X; is Fi-measurable and B[ X; | F;_1] = 0, for all i € [n], the process (®~(Sn,Qn)), where
Sp =301 X, and Q,, = Y1, X? is a non-negative supermartingale w.r.t. (F;)en; that is,

D.,(Sn,Qn) >0, and E[Py(Spi1,Qn+1) | Fnl <P (Sn,Qrn), foralln>1.

$.,(5,Q) = ) S,Q>0,7v>0. (23)

As mentioned above, the proof of the proposition is based on the guarantee of the parameter-free
online learning algorithm FREEGRAD. The algorithm operates in rounds, where at each round ¢,
FREEGRAD outputs @; (that is a deterministic function of the past) in some convex set W, say
R<, then observes a vector g, € RY, typically the sub-gradient of a loss function at round ¢. The
algorithm guarantees a regret bound of the form Y7, g7 (@, - w) < O(|w|/Qy), for all w € W,
where Q= Y1, |g,|?>. What is more, FREEGRAD’s outputs (@, ) ensure the following (see [39
Theorem 5]):

W, g, + Py (S, Q1) < Dy (Se-1,Qe-1), 24)

where S; = | Xf_, ;] and Q; := ¥_, |g;]?. In the proof of Proposition|[22| we will reason about the
outputs of FREEGRAD in one dimension (i.e. d = 1) in response to the inputs (g,) = (X3).

One way to prove Proposition[22]is to show that FREEGRAD is a betting algorithm that bets fractions
smaller than one of its current wealth at each round. In this case, Proposition [22| would follow from
existing results due to, for example, [28]]. However, for the sake of simplicity, we decided to present
a proof that does not explicitly refer to bets.
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Proof of Proposition By [39, Theorem 5 and proof of Theorem 20], FREEGRAD’s outputs (@;)
in response to (X;) and parameter v > 0 (playing the role of 1/e in their Theorem 20) guarante
W1 Xne1 + q)y(Sn+17 Qn+1) < cI)’y(Svu Qn), foralln e N,
Re-arranging this inequality and taking the expectation E[- | F,,] yields
E[®,(Sn+1,Qni1) = P (Sn, Qn) | Frl € ~E[Wnys1 - Xpsr | Fn] = ~Wns1 - B[ Xpy1 | Fn] =0,
where the penultimate equality follows by the fact that @, is a deterministic function of the history

up to round n, and so it is F,-measurable. Finally, the last equality follows by the assumption that
E[X,+1 | Fn] =0. O

Next, using standard tools from PAC-Bayesian analyses, we extend the result of Proposition 22] by
allowing the random variables (X;) to depend on h € H. We will also “mix” over the free parameter
~ to obtain the optimal (doubly-logarithmic) dependence in n in our final concentration bounds.

Proposition 23. Let (F;)ey be a filtration and { X['} be a family of random variables in [-1,1]

s.t. X[ is Fy-measurable and B[ X} | Fi_1] =0, for all t > 1 and h € H. Further, let = and Py be
prior distributions on R, and H, respectively. Then, for any ¢ € (0,1), we have

P[Vn>1,YPeA(H), Eppy[InEq) [@,(SE,Q1)]] < KL(P|Py) +In(1/6)] > 1 -4,
where S" = ¥ XM and Q" = ¥ (X2

Proof of Proposition 23] By the KL-change of measure lemma (Lemma [2T)), we have

Ephy [ Er(y) [®1(Sh, Q1) ]] <KL(P|PRy) + mEp (1) Er(yy [24(S), Q1) (25)
for all n > 1 and P € A(H). On the other hand, by Proposition we know that
the process (QV(SZ,QZ)) is a supermartingale for any v > 0. This in turn implies that
(Ep,(n)Ex(y) [@7(53, QZ)]),L is also a non-negative supermartingale, since a mixture of super-
martingales is also a supermartingale. Now, by Ville’s inequality (Lemma [18), we have, for all
§€(0,1),

P[Vn>1, EpmEry) [®,(SE Q1)) <1/6]>1-4.
By combining this inequality with (23, we obtain the desired result. O

We now use Proposition 23] to prove Proposition [5| (some of the steps in the next proof are similar to
ones found in [28]]):

Proof of Proposition[5} Let p > 1 and Q" == ¥, (X[)2. We will apply Proposition 23 with a
specific choice of prior 7. In particular, we let 7 be a prior on { pF? s k> 1}, such that for k > 1,

kj2Y . . 1

7(p?) = 7, = m,

where c is as in (HI) Forn >1and h € H, let k,, > 1 be such that

Pl <1vQl < phn. (26)
Note that k,, is guaranteed to exist and (26) implies that k,, < In,(1v Q") +1 <In,(n) + 1. Let
Yn = pk"/z. With our choice of 7, we have, for all h € H,

InE() [@W(Sﬁ, Qﬁ)] >1In @VH(SZ, QZ) +In7(y,),

> 150" +1n In +In7(yn)
T 27, +2Q0 +2|Sh| VAZ+Qh e

B _
> 2 (v Qi) + 257 Inv/p+1+In7(vy,), 27

B 2
2 STV TS ~In(ey/p+ 1(Imy(n) + 1) In*(In, (n) +2)), 28)

=4sup {n|S’Z| - 27]2(/) + 1)Vnh - 2772|SZ|} - In¢,(n), (29)
n=0

8Technically, FREEGRAD also requires a sequence of hints (h;) that provides upper bounds on (| X¢|). Since
X; € [-1,1], these hints can all be set to 1.
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where in we used (26) and in (28) we used the fact that k,, <1 +1n,(n). Now, by an application
of Jensen’s inequality, we get from (29) that

Epn) [InEr () [@,(SE,QM]] > 48218 {nEp)SE - 207 (p + DEpy [V, - 20°Ep(y [SE}
n

—-In ¢p(n)a
) (Epn|Sh))?
2(p+ D)Epm)[Vi] + 2Ep(p)|Sh

—Ing,(n).

Thus, we have Ep ;) [InE, () [®,(S2,Q")]] < KL(P|Py) +In(1/5) only if

Epm[1SH])?
EralSiD® oy r Py v in 220
2(p+ 1)]EJP(h)[V;L] +2EP(h)[|Sn :| 4
Combining this fact with Proposition [23|implies the desired result. [

Proof of Theorem|[6l We will apply Propositionwith XM= t(h, Z)~Es 1 [L(h, Z;)] = £(h, Z;) -
L(h), where the last equality follows by Assumption [1} As before, we let S* = ¥, X! and
Vhi=1+ %", (XM)?2. By the classical bias-variance decomposition, we have

Ep(y[Vit] = nV,(P) + E[S]']*/n, (30)

where ¥, (P) is as in the theorem’s statement. Thus,

(EP(h)|SZ|)2 ¢,(n)
<C,(P)=KL(P|Py) +1n , 31
2o+ DBy [V + Bpgish] = ) = KL(PIFo) 5
holds only if,
Bl <0u(P) 62

2(p+ 1)V, (P) +2(p + D Epn) [SE]2/n + 2|Ep(y [SE]|

where we used the bias-variance decomposition in (30) together with the facts that [Ep)[Sk]] <

Epn)[|S}[] (Jensen’s inequality) and that the function 2 ~ 22 /(x + v) is increasing on Ry for all
v > 0. On the other hand, (32) is true for P € P, only if,

2C,.(P)/n+1\/2(p + 1)V, (P) - C(P)/n

Epny[SI] < 33
e S =20+ 0(P)/n o
Thus, holds only if is true, and so we obtain the desired result by Proposition 3] O

C Proofs of Monotonicity and Excess Risk Rates

To simplify notation in this section, we define
—~ 1 & —~ —~
Ly(h) = - YU Zi), L(Q)=EqulLn(h)], forallQea(H).
i=1
We start by presenting a sequence of intermediate results needed in the proofs of Theorems [§|and [9]

C.1 Intermediate Results

We now present a bound on the risk difference L(Q) — L(Q"), for any Q, Q' € A(H), using our new
time-uniform empirical Bernstein inequality in Theorem|6] For § € (0,1), p > 1 and k > 1, we recall
the definitions

2(KL(B(Z1;k-) x Py_1| Py x Py) +1n ¢pT(k)) é,(n)
o HELCOR AR,y 00

where (P ) are the outputs of Algorithm and ¢, is as in Proposition
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Lemma 24. Let p >0, Py € A(H), and Q,, be as in @). Further, let 6 € (0,1) and ns as in (34).
Then, under Assumption we have, with probability at least 1 - §, for alln > ns and Q, Q" € Q,,

[Vn(Q.Q)en(Q.Q) | 26n(Q,Q)
n p+1

L(Q)_L(QI) Szn(Q)_Zn(Q,)+ 1—5n(Q7Q’) )

<O % bp(k)
where €,(Q,Q') = 2(p+ DKL(Q Q}!PO Po) +In o ) and (35)

2

k k
T(Q.Q) = 1 2 By [ (40,20 - 10, 20)"] - (;;EQMM [£(h. Z:) —é(h’,zt)]) -

Proof of Lemma 24l The proof follows by our new time-uniform concentration inequality in Theo-
rem|[6] with the function f : %2 x Z — [0, 1] defined by

F((h, 1), 2) = (€(h, z) = (R, 2) +1) /2.
Theorem [6implies that, for any & € (0, 1), with probability at least 1 — 4,
V Vpen + %

36
o 66

! 1 n !/
Eqm),0 [ L(h) - L(h") +1]/2 < " Y Eqm),ounf((hA), Z;)]+
-1

for all n > ny and Q, Q" € Q,, where &, = £,(Q, Q") and V, is given by:

ZEQ(h)Q(h’ [(f((h h'), Z) - ZEQ(h)Q(h’ LF((h, 1), Z)])

TLt_

2
1 & , ,
- ﬂ;EQ(h),Q’(h' l(g(h Zy) = U, Zy) - ZEQ(h) o in[b(h, Z) = L(I', Z; )]) ]

2
1 & ’ 2 1 & ’

= Y Eqm).o ) [(ﬁ(h,Zt) —U(', Zt)) ] - (2 > Eqny.qny [E(h, Zy) — €(h ’Zt)]) :
N ¢=1 T ¢=1

Plugging this into (36) and multiplying the resulting inequality by 2, leads to the desired inequality.
O

Lemma [24]leads to the following corollary that will be useful for our excess risk rates:

Corollary 25. Let p > 0, Py € &A(H), and Q,, be as in §). Under Assumption |l| we have for
§ € (0,1) and n; as in (34), with probability at least 1 -6,

[((h 2) (W Z)P] e | 4e,
n p+1

)

L(Q) - L(Q) < Tn(Q) - Ln(Q") + 2\/21 1 Eomny, o w)

foralln>n;s and Q,Q' € Qy, where g = 221 (KL(Q Q'|Po x Py) +1n ¢P(’“))
Proof of Corollary 25} Let ¢, (Q,Q’) and V,,(Q, Q") be as in Lemma The corollary follows by
Lemma 24]and the facts that 1 - €,,(Q, Q") > 1/2, forall n > ns and Q, Q" € Q,,; and

k
T.(Q.Q) <5 > Bauou [ (0 Z0) - (0. 20))°].

?r'

O

The next lemma provides a way of bounding the square-root term in the previous corollary under the
Bernstein condition (Definition 3):
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Lemma 26. Let B > 1 and (3 € [0, 1], and suppose that the (3, B)-Bernstein condition holds. Further,

letp>1,56¢€(0,1), and £1.(Q, Q") be as in BI), for Q,Q" € A(H). Then, underAssumptionsand
there exists a universal constant C' > 0 s.t. with probability at least 1 — 6,
\/ Sits Bqu [(U(h, Zi) = £(h., Z:))*] -2n (@, Q) L(Q) ~ L(h.)

2-5n - 2
1
+C max e,(Q,Q)>#, 37
s <n(Q.Q)T, (D)

foralln>1and Q,Q" € A(H), where h, € arg inf) 4, L(h).
Proof of Lemmal26l Applying the fact that /7y < (vx + y/v)/2, for all v > 0, to the LHS of
with

1 n
v= ga T = ﬁ ZEQ(h)[(E(ha Zz) _E(h*aZi))2]a and y= 255n(Qa Q,)a
i=1

which leads to, for all > 0, and k = 2°,
(@) \/k i1 Boum [(U(h, Zi) - ((he, Z:))?] - £n(Q, Q")

n

4k5n(Qa Q,)
777 .

< 1o 2 Bow[(Uh. Z) = (1., 2))°] + (38)
=1

B
Now, let Cg = ((1 - B)I_Bﬁﬁ) RS 3/2(23)ﬁ. By combining and Lemma we get, for
any § € (0,1) and n € [0, 1/2], with probability at least 1 — 6,
VQeA(H),Yn21, 7(Q) < (L(Q) - L(h.))/2+Cp 1T [4
L KLQIP) +Ind™" | 4k2,(Q.Q)
2nn n ’

< (L(h) = L(h.))[2+ Cp 75 [4+

(4k +1/4)en(Q, Q")

; .
Now, minimizing the RHS of (39) over € (0,1/2) and invoking Lemma we get, for any
4 € (0,1), with probability at least 1 — 4,

L(Q) - L(hy)
2

(39)

++2(16k + 1/2)e,(Q, Q")
, Cs-(3-28) (4(1 - B)(4k +1/4)en(Q, Q") )/’

VQea(Q),Vn21, m(Q)<

4(1-p) Cs
L _L * !
< HOZLO) oak s 1/en(@.Q)
1-8
G G2 - gyak e N (@40
-5 (4(1-B)(4k +1/4)en(Q,Q))>7 . (40)
1-8
Combining with the fact that 5~ C';™ is bounded in [0, 1), we get the desired result. O

We now move on to the proofs of the main results of Section 4]

C.2 Proofs of Theorems|[§ and
Let (£x) and ns be as in (9) and (34), respectively. Further, it will be useful to define the event
E={¥n>ns, L(P,)~L(Pn-1) <Ln(P) -~ Ln(Pao1) + &0}, 41)

where P, = B(Zy.;) and (P) are as in Algorithm with the choice of (&) in (9). Observe that
by Lemma 24} we have P[€] > 1 - §, under Assumptions [I]and 2] We begin by the proof of
risk-monotonicity:
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Proof of Theorem[8 Let A, := L(P,) — L(P,-1). Using the definitions of £ and (&) as in @T)
and (), respectively, we have

An = (L(ﬁn) - L(Pn—l)) 'H{Pn fi— Pn—l} + (L(Pn) _L(Pn—l)) 'H{Pn = Pn—l}a

= (L(P,) - L(Py_1)) -I{P, # P,_1}. (42)
Now, when P, # P,,_1, Lineof Algorithmimplies that
Lo(Po) <Tn(Py_y) - &p. (43)

Using this and (@2)), we have that under the event &,
Vn>ns, L(P,)-L(Py1)<Ln(P,)-Ly(Pay1)+&n<O.
This, combined with the fact that P[£] > 1 - § (Lemma[24) completes the proof. O

Proof of Theorem[@ Let P, == B(Z,.) and (P;) be as in Algorithm [1{ with the choice of (£;) in
(). Further, we let €, be as in (9) and

, \J S B e oy [ Z0) — €W Z))] e ae,
gk =2 + .
k p+1

(44)

It will be convenient to also consider the events:
&= {Vn 2 ns, L(ﬁn) - L(Pn—l) < ,L\n(’P'n) - En(Pn—l) +§7’7,}7

Yis1 Bquy [(U(h, Z;) - £(N., Z:))?] - €0(Q, Q") <
E={vn>1, Q,Q" e r(H), 2-5n -

HOZE) 6 (cu@ @) +en@ @)

where C and £,,(Q, Q") are as in Lemma We note that by Corollary [25|and Lemma we have
PE]AP[E]21-06. (45)

For the rest of this proof, we will assume the event £ n £’ holds, and let n > ng throughout. We
consider two cases pertaining to the condition in Line [2]of Algorithm T}

Case 1. Suppose that the condition in Line 2] of Algorithm[I]is satisfied for k£ = n. In this case, we
have

L(P,) - L(h.) = L(P,) - L(h.) (46)

Case 2. Now suppose the condition in Line[2]does not hold for & = n. This means that P,, = P,,_1,
and so

Lo(Py) - Lo(By) <& <&, (47)

where the last inequality follows by the fact that 1 — €, > 1/2, for all n > ns under Assumption
Thus, by the assumption that £’ is true, we have,

L(Py) = L(P,) + (L(P,) - L(Py)),

SL(p’n)‘kzn(Pn)_zn(jjn)"'g;y (5 is true)
< L(B,) +2¢;,, (by @7))
~ Z?: Ep W L 14 hvzz 4 haZz 2 “€n
:L(hn)+4\ 1 Pn(l),Pn_l(})[( ( ) —4( ))?] . 8¢y, 7
n p+1
~ Z:; E"' N € h,Z1 —£ h,,ZZ' 2 €n
:L(Pn)+4\ 1P, (h),P, (h )[( ( ) = ))?] . 8en  (Pa=Pyy)
n p+1
~ 2" Es Uh,Z;) = l(hy,Z;))?] €,
SL(Pn)+4\ 1 Pn(h)[( ( ) —{( ))?] . 8en
n p+1
25" E U h,Z;) = L(he, Z;))?] - €n
+4\/ Ti Br, oy [0 2) ~ 0 2P e s
n
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where to obtain the last inequality, we used the fact that (a — ¢)? < 2(a - b)? + 2(b - ¢)? and
Va+b<Ja+ \/_ b for all a, b, c € Ryo. Now, by (@8)), the fact that £’ holds, and Assumption(which

implies that €, =7 < O(ey) for n > ns), we have

L(P,) - L(h.) < L(P,) - L(h.) + L(P”);L(h*) + L(P”);L(h*) +0(6,)77
which, after re-arranging, becomes
L(P,)-L(h.) < 3(L(P,)~ L(hy)) + 0 (en)flﬁ . (49)

2 2
Multiplying on both sides by 2 and using @3]) with a union bound leads to the desired result. O

C.3 Additional Results and Proofs

Using the lemmas in Section[C.1] we derive the excess-risk rate of ERM under the Bernstein condition:

Lemma 27. Ler B> 1, 3 € [0,1] and suppose that the (B, B)-Bernstein condition holds and H is
ﬁmte Further, let p >1,0¢€(0,1), and ns be as in . Then, under Assumpttonslandl 2| the ERM

hn € arg ming, ., + " L s 0(h, Z;) satisfies, with probabzlzz‘y at least 1 -6,
~ ﬁ
L) - 1) < 0 MURCHDID )T P, 50
n n

Soralln >ns v (16(p+ 1) In|H]).
Proof of Lemma27l Let ns be as in and define

®p (k) -
2(p+1) (21n[H] +In 222 4o oy ] (U, Z0) ~ (h Z)) e e
k , an gn = + .
n p+1
Further, consider the events

€={¥nz2ns L(hn)-L(h) <To(hn) - To(h)+€L},
{vn> 1, X 1(5(’%2) U(hes Z:))% - € L(i’") ~ L(h.) +C- (6ﬁ +e )}’
n 2 n n

where C'is as in Lemma [26] By Corollary [25] and Lemma [26] instantiated with P, equal to the
uniform prior over H and @ [resp. Q'] equal to the Dirac at h,, [resp. h.], we have

min(P[£],P[E']) 2 1-4. (51)

For the rest of this proof, we will assume that the event £nE’ holds, and let n > ng. By the assumption
that £ holds, we have

L(Bn) = L(h*) + (L(iln) - L(h*)),

€ =

SL(h*)+Zn(ﬁn)_Zn(h*)+§7’m ((‘: istrue)
< L(h.) + &, (h,, is the ERM)
= L(h. )+2\/Z 1 (0o, Z) - g(h*’Z ) 2+ de,,. (52)

Now by the assumption that £’ holds, we can bound the middle term on the RHS of (52)), leading to
. ho) — N 1 =
L(hn):L(h*)+M+O max (n(n|7-t|/6)) +de,,
2 pre{1,8}

n

= L(h.)+ L(ﬁ");L(h*) +0(ln(”m|/5))w, (53)

n

foralln > nsv(16(p+1)In|H|), where in the last inequality we used the definition of €,,. Combining
with (51)), and applying a union bound, we obtain the desired result. O
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Proof of Theorem[I1l First, note that by linearity of the expectation it suffices to show that
E[L(P,) - L(P,-1)] <0,

where the expectation is over the randomness of the samples Z;.,,. Moving forward, we let A,, =
L(P,) - L(P,-1), and for n > N, define the event

En = {L(ﬁn) - L(Pp) < En(ﬁn) - z:n(Pn—l) + f’;L} ) (54)
where Py, = B(Z1.1,) and (Py) as in Algorithmwith the choice of (&},) in the theorem’s statement.
Observe that by Lemma[24} we have P[&,] > 1 - 1/n® for all n > N, under Assumptions|1]and[2]
Now, by the law of the total expectation, we have

E[A,] =P[&.] E[A, [E:.]+ P[] E[A, | £7],
<P[E]-E[A, | ]+ 1/n".
where the last inequality follows by the fact that the loss £ takes values in [0, 1] and that P[] < 1/nb.
By applying the law of the total expectation again, we obtain
E[A,]=P[{P, =Py 1} n&, ] -E[A, |[{P.=P1}n&]
+P[{Py# Poo1} nE] E[A, [{Pn # Pooi} nE] + 10,
<P{P,#Py1}nE]-E[A, | {Py # Pooa}n€n] + 10, (55)

where the last inequality follows by the fact that if P, = P,,_1, then A,, = 0. Now, if P, # P,_1, then
by Line 2] of Algorithm[I] we have

zn(Pn):Zn(ﬁn)gfn(Pnfl)_gylm (56)

Under the event &,,, we have
L(ﬁn) - L(P,-) < ,L\n(?n) - En(Pn—l) +§7lm
This, in combination with (56), implies that under the event &, N {P,, # P,_1},
An = L(P,) = L(Py1) < =€, + &, = 0.
As a result, we have
E[A, |[{P.# P,1}n&]<0. (57)

Combining (53) and (57) yields the desired result. O

Proof of Proposition[I0} The risk monotonicity claim follows from Theorem[8] and the excess risk
rate follows from Theorem[9]and Lemma [27]

D Risk Monotonicity without PAC-Bayes

In this section, we show how risk monotonicity can be achieved in the i.i.d. setting without Assumption
[2l For this, we will use a concentration inequality due to [35] that has an empirical variance term
under the square root just like ours in Theorem[6] To present this inequality, we first present some
new notation. For any Zy.,, € Z", we let £ o H(Z1.,) = (L(h, Z41),...,¢(h,Z,)). Further, for any
subset A c R™ and € > 0, we let M (¢, A, | - || ) be the cardinality of smallest subset Ay € A such
that A is contained in the union of || - | - -balls of radii ¢ centered at points in .Ag. Finally, we consider
the following complexity measure:

No(e,loH,n) = sup N(e,LoH(Z1n),| " |e)- (58)

Zl:nez"L

With this, we state the concentration inequality due to [35]] that we will need:
Theorem 28. Let Z be a random variable with values in a set Z with distribution 7, and let H be a
set of hypotheses. Further, let 6 € (0,1), n > 16, and set

M(n) =10No(1/n, o H,2n).
Then, with probability at least 1 — 20 in the random vector Zy., ~ 1", we have

. \/ 18V, In(M(n)/6) _ 15In(M(n)/s)

n n-1

VheH, |E[L(h,Z)]- U(h, Z;)

)

n
i=1

where V,, = Vi (Lo M, Zin) = iy Lacicjen (L(hs Zi) = €(h, Z;))".

S|
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Algorithm 2 A Deterministic Risk Monotonic Algorithm Wrapper

Require: A base learning algorithm £ : U, 2 - H.
Initial hypothesis hg € H.
Samples 71, ..., Z,.

1: fork=1,...,ndo

—~ 1 A ) )

2 StV s 0 (U(Zu) Z0) ~ Uhier, 20) ~ U Z1). 2) + Uhir, Z5))
k(k-1) 1<i<j<k
3 Setg = \/ 18V In(M(K)/k) 30 In(M(K)/k)
k k-1
i LS LI

4 A3 U Z0x). Z)) = 1 Y (ks Z0) < ~6 then

i=1 i-1
>: Set }Alk = il(ZLk).
6: else
7 §Ct hk = hk—l-
8: Return h,,.

Using Theorem 28| and following the same steps in the proof of Theorem|TT] it follows that Algorithm
is risk monotonic in expectation (up to an additive 2/k term) for all sample sizes. Furthermore,
since the concentration inequality in Theorem[28]has an empirical variance term under the square-root
(just like ours in Theorem [6)), the risk decomposition in our Theorem [9]also holds for Algorithm
albeit with probability at least 1 — O(1/n) for sample size n.
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