
A Technical Results

In this section, it will be convenient to adopt the ESI notation [29]:
Definition 12 (Exponential Stochastic Inequality (ESI) notation). Let (Ω,F ,P) be a probability
space. Further, let X , Y be any two random variables and G be a sub-σ-algebra of F . For η > 0, we
define

X ⊴
G
η Y ⇐⇒ X − Y ⊴

G
η 0 ⇐⇒ E [eη(X−Y )

∣ G] ≤ 1.

For G = F , we simply write ⊴η instead of ⊴Gη . In what follows, given random variables Z1, Z2, . . .
and loss ` satisfying Assumption 1, we denote by

Xh
i ∶= `(h,Zi) − `(h∗, Zi), h ∈ H, i ∈ N,

the excess-loss random variable, where h∗ ∈ arg infh∈HL(h) (with L as in Assumption 1). Let

Φi,η ∶=
1

η
lnEi−1 [e

−ηXhi ] =
1

η
lnE [e−ηX

h
i ∣ Z1, . . . , Zi−1] (13)

be the (conditional) normalized cumulant generating function of Xh
i . We note that since the loss `

takes values in the interval [0,1], we have

Xh
i ∈ [−1,1], for all h ∈ H, a.s.

We now present some existing results pertaining to the excess-loss random variable Xh
i and its

normalized cumulant generating function, which will be useful in our proofs:
Lemma 13 ([29]). Let h ∈ H and i ∈ N. Further, let Xh

i , and Φi,η be as above. Then, for all η ≥ 0,

αη ⋅ (X
h
i )

2
−Xh

i (Z) ⊴
Gi−1
η Φi,2η + αη ⋅Φ

2
i,2η, where αη ∶=

η

1 +
√

1 + 4η2
,

and Gi−1 is the σ-algebra generated by Z1, . . . , Zi−1.
Lemma 14 ([29]). If the (β,B)-Bernstein condition (Definition 3) holds for (β,B) ∈ [0,1] ×R>0,
then for Φi,η as in (13), it holds that

Φi,η ≤ (Bη)
1

1−β , for all η ∈ (0,1], i ≥ 1.

Lemma 15 ([10]). For Φi,η as in (13), it holds that

Φi,η ≤
η

2
, for all η ∈ R, i ≥ 1.

Lemma 16 ([10]). For i ≥ 1 and h ∈ H, the excess-loss random variable Xh
i satisfies

Xh
i −Ei−1[X

h
i ] ⊴

Gi−1
η η ⋅Ei−1[(X

h
i )

2
], for all η ∈ [0,1],

where Gi−1 is the σ-algebra generated by Z1, . . . , Zi−1 and Ei−1[⋅] ∶= E[⋅ ∣ Gi−1].

The following useful proposition is imported from [38] with minor modifications:
Proposition 17. [ESI Transitivity] Let (Ω,F ,P) be a probability space and G be a sub-σ-algebra
of F . Further, let Z1, . . . , Zn be random variables such that for (γi)i∈[n] ∈ (0,+∞)n, Zi ⊴Gγi 0, for
all i ∈ [n]. Then

n

∑
i=1

Zi ⊴
G
νn 0, where νn ∶= (

n

∑
i=1

1

γi
)

−1

.

To prove our time-uniform concentration inequality in Section 3, we will require the following
generalization of Markov’s inequality (we state the version found in [27]):
Lemma 18 (Ville’s inequality). If (Mn)n≥0 is a non-negative supermartingale, then for any a > 0,

P[∃n ≥ 1 ∶Mn ≥ a] ≤
M0

a
.
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The upcoming lemmas will help us bound the sequence of gaps (ξk) in (9) under the Bernstein
condition.

Lemma 19. Let P0 ∈ △(H), β ∈ [0,1] and B > 0, and suppose that the (β,B)-Bernstein condition
holds. Then, under Assumption 1, for any η ∈ [0,1/2] and δ ∈ (0,1), with probability at least 1 − δ,

η

n

n

∑
i=1

EQ(h)[(`(h,Zi) − `(h⋆, Zi))
2
] ≤ 8(L(Q) −L(h⋆)) + 4Cβ ⋅ η

1
1−β

+
8(KL(Q∥P0) + ln δ−1)

nη
, (14)

for all n ≥ 1, where h⋆ ∈ arg infh∈HL(h) and Cβ ∶= ((1 − β)1−βββ)
β

1−β + 3/2(2B)
1

1−β .

Proof of Lemma 19. Let δ ∈ (0,1) and define Xh
i ∶= `(h,Zi) − `(h∗, Zi). We recall that Gi is

the σ-algebra generated by Z1, . . . , Zi, and Ei−1[⋅] ∶= E[⋅ ∣ Gi−1]. Note that under Assumption 1,
Ei−1[X

h
i ] = L(h) −L(h∗), for all i ≥ 1 and h ∈ H. For any η ∈ [0,1/2] and h ∈ H our strategy is to

show that, under the (β,B)-Bernstein condition,

Mh
n ∶= exp(η2

n

∑
i=1

(Xh
i )

2
/8 − nη ⋅ (L(h) −L(h⋆)) + nCβ ⋅ η

2−β
1−β /2) , (15)

is a non-negative supermartingale, for all h ∈ H. After that, invoking Ville’s inequality (Lemma 18)
and applying a change of measure argument (Lemma 21), we get the desired result.

Under the (β,B)-Bernstein condition, Lemmas 13-15 imply, for all η ∈ [0,1/2] and i ≥ 1,

η ⋅ (Xh
i )

2
/4 ⊴Gi−1η Xh

i + 3/2 (2Bη)
1

1−β , (16)

where we used the fact that αη =
η

1+
√

1+4η2
≥ η/4, for all 0 ≤ η ≤ 1/2 (αη is involved in Lemma 13).

Now, due to the Bernstein inequality (Lemma 16), we have for all η ∈ [0,1/2] and i ≥ 1,

Xh
i ⊴
Gi−1
η L(h) −L(h⋆) + η ⋅Ei−1[(X

h
i )

2
],

⊴
Gi−1
η L(h) −L(h⋆) + η ⋅ (L(h) −L(h⋆))

β , (by the Bern. cond. & Assumption 1)

⊴
Gi−1
η 2(L(h) −L(h⋆)) + c

β
1−β

β ⋅ η
1

1−β , where cβ ∶= (1 − β)1−βββ . (17)

The last inequality follows by the fact that zβ = cβ ⋅ infν>0{z/ν + ν
β

1−β }, for z ≥ 0 (in our case, we
set ν = cβη to get to (17)). By chaining (16) with (17) using Proposition 17, we get:

η ⋅ (Xh
i )

2
/4 ⊴Gi−1

η/2
2(L(h) −L(h⋆)) + c

β
1−β

β ⋅ η
1

1−β + 3/2(2Bη)
1

1−β .

⊴
Gi−1
η/2

2(L(h) −L(h⋆)) +Cβ ⋅ η
1

1−β . (18)

This implies that Mh
n in (15) is a non-negative supermartingale. This in turn implies that for any

distribution P0, EP0(h)[M
h
n ] is also a supermartingale. Thus, by Ville’s inequality (Lemma 18), we

have, for any δ ∈ (0,1),

δ ≥ P [∃n ≥ 1,EP0(h)[M
h
n ] ≥ δ

−1] , (19)

On the other hand, by the KL-change of measure lemma (Lemma 21), we have for all Q ∈ △(H)

EQ(h)[lnM
h
n ] ≤ KL(Q∥P0) +EP0(h)[M

h
n ].

Combining this with (19), we get the desired result.

Lemma 20. For A,B > 0, we have

inf
η∈(0,1/2)

{Aη
1

1−β +B/η} ≤
A(3 − 2β)

1 − β
(
(1 − β)B

A
)

1
2−β

+ 2B. (20)
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Proof. The unconstrained minimizer of the LHS of (20) is given by η⋆ ∶= (
(1−β)B
A

)

1−β
2−β . If η⋆ ≤ 1/2,

then

inf
η∈(0,1/2]

{Aη
1

1−β +B/η} ≤ Aη
1

1−β
⋆ +B/η⋆ =

A(2 − β)

1 − β
(
(1 − β)B

A
)

1
2−β

. (21)

Now if η⋆ > 1/2, we have (1/2)
1

1−β < (
(1−β)B
A

)

1
2−β , and so, we have

inf
η∈(0,1/2]

{Aη
1

1−β +B/η} ≤ A(1/2)
1

1−β + 2B,

≤ A(
(1 − β)B

A
)

1
2−β

+ 2B. (22)

By combining (21) and (22) we get the desired result.

We need one more classical change of measure result (see e.g. [1]):

Lemma 21 (KL-change of measure). For all distributions P and Q such that Q≪ P , it holds that

EQ[X] ≤ inf
η>0

{ηKL(Q∥P ) + η−1 lnEP [eη⋅X]} .

B Proofs of the New Concentration Inequalities

To prove our first concentration inequality for MDS in Proposition 5, we start by constructing a
non-negative supermartingale with the help of the recent FREEGRAD algorithm [39]. As mentioned
in the introduction, our proof technique is similar to the one introduced in [28] with the difference
that we use the specific shape of FREEGRAD’s potential function to build our supermartingale. Using
the latter leads to a desirable empirical variance term in our final concentration bound.

To express the FREEGRAD supermartingale, we define

Φγ(S,Q) ∶=
γ

√
γ2 +Q

⋅ exp(
∣S∣2

2γ2 + 2Q + 2∣S∣
) , S,Q ≥ 0, γ > 0. (23)

Proposition 22. Let γ > 0 and (Ft)t∈N be a filtration. For any random variablesX1,X2, ⋅ ⋅ ⋅ ∈ [−1,1]
s.t. Xi is Fi-measurable and E[Xi ∣ Fi−1] = 0, for all i ∈ [n], the process (Φγ(Sn,Qn)), where
Sn ∶= ∑

n
i=1Xi and Qn ∶= ∑

n
i=1X

2
i is a non-negative supermartingale w.r.t. (Ft)t∈N; that is,

Φγ(Sn,Qn) ≥ 0, and E[Φγ(Sn+1,Qn+1) ∣ Fn] ≤ Φγ(Sn,Qn), for all n ≥ 1.

As mentioned above, the proof of the proposition is based on the guarantee of the parameter-free
online learning algorithm FREEGRAD. The algorithm operates in rounds, where at each round t,
FREEGRAD outputs ŵt (that is a deterministic function of the past) in some convex set W , say
Rd, then observes a vector gt ∈ Rd, typically the sub-gradient of a loss function at round t. The
algorithm guarantees a regret bound of the form ∑

T
t=1 g

⊺
t (ŵt −w) ≤ Õ(∥w∥

√
QT ), for all w ∈ W ,

where QT ∶= ∑Tt=1 ∥gt∥
2. What is more, FREEGRAD’s outputs (ŵt) ensure the following (see [39,

Theorem 5]):

ŵ⊺
t gt +Φγ(St,Qt) ≤ Φγ(St−1,Qt−1), (24)

where St ∶= ∥∑
t
i=1 gi∥ and Qt ∶= ∑ti=1 ∥gi∥

2. In the proof of Proposition 22, we will reason about the
outputs of FREEGRAD in one dimension (i.e. d = 1) in response to the inputs (gt) ≡ (Xt).

One way to prove Proposition 22 is to show that FREEGRAD is a betting algorithm that bets fractions
smaller than one of its current wealth at each round. In this case, Proposition 22 would follow from
existing results due to, for example, [28]. However, for the sake of simplicity, we decided to present
a proof that does not explicitly refer to bets.
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Proof of Proposition 22. By [39, Theorem 5 and proof of Theorem 20], FREEGRAD’s outputs (ŵi)
in response to (Xi) and parameter γ > 0 (playing the role of 1/ε in their Theorem 20) guarantee8,

ŵn+1 ⋅Xn+1 +Φγ(Sn+1,Qn+1) ≤ Φγ(Sn,Qn), for all n ∈ N,
Re-arranging this inequality and taking the expectation E[⋅ ∣ Fn] yields
E[Φγ(Sn+1,Qn+1) −Φγ(Sn,Qn) ∣ Fn] ≤ −E[ŵn+1 ⋅Xn+1 ∣ Fn] = −ŵn+1 ⋅E[Xn+1 ∣ Fn] = 0,

where the penultimate equality follows by the fact that ŵn+1 is a deterministic function of the history
up to round n, and so it is Fn-measurable. Finally, the last equality follows by the assumption that
E[Xn+1 ∣ Fn] = 0.

Next, using standard tools from PAC-Bayesian analyses, we extend the result of Proposition 22 by
allowing the random variables (Xt) to depend on h ∈ H. We will also “mix” over the free parameter
γ to obtain the optimal (doubly-logarithmic) dependence in n in our final concentration bounds.
Proposition 23. Let (Ft)t∈N be a filtration and {Xh

t } be a family of random variables in [−1,1]
s.t. Xh

t is Ft-measurable and E[Xh
t ∣ Ft−1] = 0, for all t ≥ 1 and h ∈ H. Further, let π and P0 be

prior distributions on R>0 andH, respectively. Then, for any δ ∈ (0,1), we have

P [∀n ≥ 1,∀P ∈ △(H), EP (h) [lnEπ(γ) [Φγ(S
h
n,Q

h
n)]] ≤ KL(P ∥P0) + ln(1/δ)] ≥ 1 − δ,

where Shn ∶= ∑
n
i=1X

h
i and Qhn ∶= ∑

n
i=1(X

h
i )

2.

Proof of Proposition 23. By the KL-change of measure lemma (Lemma 21), we have
EP (h) [lnEπ(γ) [Φγ(S

h
n,Q

h
n)]] ≤ KL(P ∥P0) + lnEP0(h)Eπ(γ) [Φγ(S

h
n,Q

h
n)] , (25)

for all n ≥ 1 and P ∈ △(H). On the other hand, by Proposition 22, we know that
the process (Φγ(S

h
n,Q

h
n)) is a supermartingale for any γ > 0. This in turn implies that

(EP0(h)Eπ(γ) [Φγ(S
h
n,Q

h
n)])n is also a non-negative supermartingale, since a mixture of super-

martingales is also a supermartingale. Now, by Ville’s inequality (Lemma 18), we have, for all
δ ∈ (0,1),

P [∀n ≥ 1, EP0(h)Eπ(γ) [Φγ(S
h
n,Q

h
n)] ≤ 1/δ] ≥ 1 − δ.

By combining this inequality with (25), we obtain the desired result.

We now use Proposition 23 to prove Proposition 5 (some of the steps in the next proof are similar to
ones found in [28]):

Proof of Proposition 5. Let ρ > 1 and Qhn ∶= ∑
n
i=1(X

h
i )

2. We will apply Proposition 23 with a
specific choice of prior π. In particular, we let π be a prior on {ρk/2 ∶ k ≥ 1}, such that for k ≥ 1,

π(ρk/2) ∶= πk ∶=
1

ck ln2
(k + 1)

,

where c is as in (4). For n ≥ 1 and h ∈ H, let kn ≥ 1 be such that
ρkn−1 ≤ 1 ∨Qhn ≤ ρ

kn . (26)

Note that kn is guaranteed to exist and (26) implies that kn ≤ lnρ(1 ∨Q
h
n) + 1 ≤ lnρ(n) + 1. Let

γn ∶= ρ
kn/2. With our choice of π, we have, for all h ∈ H,

lnEπ(γ) [Φγ(S
h
n,Q

h
n)] ≥ ln Φγn(S

h
n,Q

h
n) + lnπ(γn),

≥
∣Shn ∣

2

2γn + 2Qhn + 2∣Shn ∣
+ ln

⎛

⎝

γn
√
γ2n +Q

h
n

⎞

⎠
+ lnπ(γn),

≥
∣Shn ∣

2

2(ρ + 1)(1 ∨Qhn) + 2∣Shn ∣
− ln

√
ρ + 1 + lnπ(γn), (27)

≥
∣Shn ∣

2

2(ρ + 1)V hn + 2∣Shn ∣
− ln (c

√
ρ + 1(lnρ(n) + 1) ln2

(lnρ(n) + 2)) , (28)

= 4 sup
η≥0

{η∣Shn ∣ − 2η2(ρ + 1)V hn − 2η2∣Shn ∣} − lnφρ(n), (29)

8Technically, FREEGRAD also requires a sequence of hints (ht) that provides upper bounds on (∣Xt∣). Since
Xi ∈ [−1,1], these hints can all be set to 1.
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where in (27) we used (26) and in (28) we used the fact that kn ≤ 1 + lnρ(n). Now, by an application
of Jensen’s inequality, we get from (29) that

EP (h) [lnEπ(γ) [Φγ(S
h
n,Q

h
n)]] ≥ 4 sup

η≥0
{ηEP (h)∣S

h
n ∣ − 2η2(ρ + 1)EP (h)[V

h
n ] − 2η2EP (h)∣S

h
n ∣}

− lnφρ(n),

=
(EP (h)∣S

h
n ∣)

2

2(ρ + 1)EP (h)[V hn ] + 2EP (h)∣Shn ∣
− lnφρ(n).

Thus, we have EP (h) [lnEπ(γ) [Φγ(S
h
n,Q

h
n)]] ≤ KL(P ∥P0) + ln(1/δ) only if

(EP (h)[∣S
h
n ∣])

2

2(ρ + 1)EP (h)[V hn ] + 2EP (h)[∣Shn ∣]
≤ Cn(P ) ∶= KL(P ∥P0) + ln

φρ(n)

δ
.

Combining this fact with Proposition 23 implies the desired result.

Proof of Theorem 6. We will apply Proposition 5 withXh
t ∶= `(h,Zt)−Et−1[`(h,Zt)] = `(h,Zt)−

L(h), where the last equality follows by Assumption 1. As before, we let Shn ∶= ∑
n
i=1X

h
i and

V hn ∶= 1 +∑
n
i=1(X

h
i )

2. By the classical bias-variance decomposition, we have

EP (h)[V
h
n ] = nV̂n(P ) +E[Shi ]

2
/n, (30)

where V̂n(P ) is as in the theorem’s statement. Thus,

(EP (h)∣S
h
n ∣)

2

2(ρ + 1)EP (h)[V hn ] + 2EP (h)∣Shn ∣
≤ Cn(P ) ∶= KL(P ∥P0) + ln

φρ(n)

δ
, (31)

holds only if,
EP (h)[S

h
n]

2

2(ρ + 1)nV̂n(P ) + 2(ρ + 1)EP (h)[Shn]
2/n + 2∣EP (h)[Shn]∣

≤ Cn(P ), (32)

where we used the bias-variance decomposition in (30) together with the facts that ∣EP (h)[S
h
n]∣ ≤

EP (h)[∣S
h
n ∣] (Jensen’s inequality) and that the function x↦ x2/(x + v) is increasing on R≥0 for all

v > 0. On the other hand, (32) is true for P ∈ Pn, only if,

∣EP (h)[S
h
i ]∣ ≤

2Cn(P )/n +
√

2(ρ + 1)V̂n(P ) ⋅Cn(P )/n

1 − 2(ρ + 1)Cn(P )/n
. (33)

Thus, (31) holds only if (33) is true, and so we obtain the desired result by Proposition 5.

C Proofs of Monotonicity and Excess Risk Rates

To simplify notation in this section, we define

L̂n(h) ∶=
1

n

n

∑
i=1

`(h,Zi), L̂(Q) ∶= EQ(h)[L̂n(h)], for all Q ∈ △(H).

We start by presenting a sequence of intermediate results needed in the proofs of Theorems 8 and 9.

C.1 Intermediate Results

We now present a bound on the risk difference L(Q) −L(Q′), for any Q,Q′ ∈ △(H), using our new
time-uniform empirical Bernstein inequality in Theorem 6. For δ ∈ (0,1), ρ > 1 and k ≥ 1, we recall
the definitions

εk ∶=
2 (KL(B(Z1∶k) × Pk−1∥P0 × P0) + ln

φρ(k)

δ
)

k ⋅ (ρ + 1)−1
; nδ ∶= sup{n ∶ 8(ρ + 1) ln

φρ(n)

δ
> n} , (34)

where (Pk) are the outputs of Algorithm 1 and φρ is as in Proposition 5.
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Lemma 24. Let ρ > 0, P0 ∈ △(H), and Qn be as in (8). Further, let δ ∈ (0,1) and nδ as in (34).
Then, under Assumption 1, we have, with probability at least 1 − δ, for all n ≥ nδ and Q,Q′ ∈ Qn,

L(Q) −L(Q′
) ≤ L̂n(Q) − L̂n(Q

′
) +

√
V̂n(Q,Q′)⋅εn(Q,Q′)

n
+

2εn(Q,Q
′
)

ρ+1

1 − εn(Q,Q′)
,

where εk(Q,Q
′
) ∶=

2(ρ + 1)(KL(Q ×Q′∥P0 × P0) + ln
φρ(k)

δ
)

k
and (35)

V̂k(Q,Q
′
) ∶=

1

k

k

∑
t=1

EQk(h,h′) [(`(h,Zt) − `(h
′, Zt))

2
] − (

1

k

k

∑
t=1

EQk(h,h′) [`(h,Zt) − `(h
′, Zt)])

2

.

Proof of Lemma 24. The proof follows by our new time-uniform concentration inequality in Theo-
rem 6 with the function f ∶ H2 ×Z → [0,1] defined by

f((h,h′), z) = (`(h, z) − `(h′, z) + 1) /2.

Theorem 6 implies that, for any δ ∈ (0,1), with probability at least 1 − δ,

EQ(h),Q′(h′)[L(h) −L(h
′
) + 1]/2 ≤

1

n

n

∑
i=1

EQ(h),Q′(h′)[f((h,h
′
), Zi)] +

√
V̂nεn +

εn
ρ+1

1 − εn
, (36)

for all n ≥ nδ and Q,Q′ ∈ Qn, where εn = εn(Q,Q′) and V̂n is given by:

V̂n =
1

n

n

∑
t=1

EQ(h),Q′(h′)

⎡
⎢
⎢
⎢
⎢
⎣

(f((h,h′), Zt) −
1

n

n

∑
i=1

EQ(h̃),Q′(h̃′)[f((h̃, h̃
′
), Zi)])

2⎤
⎥
⎥
⎥
⎥
⎦

,

=
1

4n

n

∑
t=1

EQ(h),Q′(h′)

⎡
⎢
⎢
⎢
⎢
⎣

(`(h,Zt) − `(h
′, Zt) −

1

n

n

∑
i=1

EQ(h̃),Q′(h̃′)[`(h̃, Zi) − `(h̃
′, Zi)])

2⎤
⎥
⎥
⎥
⎥
⎦

,

=
1

4n

n

∑
t=1

EQ(h),Q′(h′) [(`(h,Zt) − `(h
′, Zt))

2
] − (

1

2n

n

∑
t=1

EQ(h),Q′(h′) [`(h,Zt) − `(h
′, Zt)])

2

.

Plugging this into (36) and multiplying the resulting inequality by 2, leads to the desired inequality.

Lemma 24 leads to the following corollary that will be useful for our excess risk rates:

Corollary 25. Let ρ > 0, P0 ∈ △(H), and Qn be as in (8). Under Assumption 1, we have for
δ ∈ (0,1) and nδ as in (34), with probability at least 1 − δ,

L(Q) −L(Q′
) ≤ L̂n(Q) − L̂n(Q

′
) + 2

√
∑
n
i=1EQ(h),Q′(h′)[(`(h,Zi) − `(h′, Zi))2] ⋅ εn

n
+

4εn
ρ + 1

,

for all n ≥ nδ and Q,Q′ ∈ Qn, where εk ∶=
2(ρ+1)
k

(KL(Q ×Q′∥P0 × P0) + ln
φρ(k)

δ
).

Proof of Corollary 25. Let εn(Q,Q′) and V̂n(Q,Q′) be as in Lemma 24. The corollary follows by
Lemma 24 and the facts that 1 − εn(Q,Q

′) ≥ 1/2, for all n ≥ nδ and Q,Q′ ∈ Qn; and

V̂n(Q,Q
′
) ≤

1

k

k

∑
t=1

EQk(h,h′) [(`(h,Zt) − `(h
′, Zt))

2
] .

The next lemma provides a way of bounding the square-root term in the previous corollary under the
Bernstein condition (Definition 3):
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Lemma 26. LetB > 1 and β ∈ [0,1], and suppose that the (β,B)-Bernstein condition holds. Further,
let ρ > 1, δ ∈ (0,1), and εk(Q,Q′) be as in (35), for Q,Q′ ∈ △(H). Then, under Assumptions 1 and
2, there exists a universal constant C > 0 s.t. with probability at least 1 − δ,

√
∑
n
i=1EQ(h)[(`(h,Zi) − `(h⋆, Zi))2] ⋅ εn(Q,Q′)

2−5n
≤
L(Q) −L(h⋆)

2

+C max
β′∈{β,1}

εn(Q,Q
′
)

1
2−β′ , (37)

for all n ≥ 1 and Q,Q′ ∈ △(H), where h⋆ ∈ arg infh∈HL(h).

Proof of Lemma 26. Applying the fact that
√
xy ≤ (νx + y/ν)/2, for all ν > 0, to the LHS of (37)

with

ν =
η

8
, x =

1

n

n

∑
i=1

EQ(h)[(`(h,Zi) − `(h⋆, Zi))
2
], and y = 25εn(Q,Q

′
),

which leads to, for all η > 0, and k = 25,

rn(Q) ∶=

√
k∑

n
i=1EQ(h)[(`(h,Zi) − `(h⋆, Zi))2] ⋅ εn(Q,Q′)

n
,

≤
η

16n

n

∑
i=1

EQ(h)[(`(h,Zi) − `(h⋆, Zi))
2
] +

4kεn(Q,Q
′)

η
. (38)

Now, let Cβ ∶= ((1 − β)1−βββ)
β

1−β + 3/2(2B)
1

1−β . By combining (38) and Lemma 19, we get, for
any δ ∈ (0,1) and η ∈ [0,1/2], with probability at least 1 − δ,

∀Q ∈ △(H),∀n ≥ 1, rn(Q) ≤ (L(Q) −L(h⋆))/2 +Cβ ⋅ η
1

1−β /4

+
KL(Q∥P0) + ln δ−1

2nη
+

4kεn(Q,Q
′)

η
,

≤ (L(h) −L(h⋆))/2 +Cβ ⋅ η
1

1−β /4 +
(4k + 1/4)εn(Q,Q

′)

η
. (39)

Now, minimizing the RHS of (39) over η ∈ (0,1/2) and invoking Lemma 20, we get, for any
δ ∈ (0,1), with probability at least 1 − δ,

∀Q ∈ △(Q),∀n ≥ 1, rn(Q) ≤
L(Q) −L(h⋆)

2
+ +2(16k + 1/2)εn(Q,Q

′
)

+
Cβ ⋅ (3 − 2β)

4(1 − β)
(

4(1 − β)(4k + 1/4)εn(Q,Q
′)

Cβ
)

1
2−β

,

≤
L(Q) −L(h⋆)

2
+ 2(4k + 1/4)εn(Q,Q

′
)

+
C

1−β
2−β

β ⋅ (3 − 2β)

4(1 − β)
(4(1 − β)(4k + 1/4)εn(Q,Q

′
))

1
2−β . (40)

Combining (40) with the fact that β ↦ C
1−β
2−β

β is bounded in [0,1), we get the desired result.

We now move on to the proofs of the main results of Section 4.

C.2 Proofs of Theorems 8 and 9

Let (ξk) and nδ be as in (9) and (34), respectively. Further, it will be useful to define the event

E ∶= {∀n ≥ nδ, L(P̃n) −L(Pn−1) ≤ L̂n(P̃n) − L̂n(Pn−1) + ξn} , (41)

where P̃k ∶= B(Z1∶k) and (Pk) are as in Algorithm 1 with the choice of (ξk) in (9). Observe that
by Lemma 24, we have P[E] ≥ 1 − δ, under Assumptions 1 and 2. We begin by the proof of
risk-monotonicity:
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Proof of Theorem 8. Let ∆n ∶= L(Pn) −L(Pn−1). Using the definitions of E and (ξk) as in (41)
and (9), respectively, we have

∆n = (L(P̃n) −L(Pn−1)) ⋅ I{Pn /≡ Pn−1} + (L(Pn) −L(Pn−1)) ⋅ I{Pn ≡ Pn−1},
= (L(P̃n) −L(Pn−1)) ⋅ I{Pn /≡ Pn−1}. (42)

Now, when Pn /≡ Pn−1, Line 2 of Algorithm 1 implies that

L̂n(P̃n) ≤ L̂n(Pn−1) − ξn. (43)
Using this and (42), we have that under the event E ,

∀n ≥ nδ, L(P̃n) −L(Pn−1) ≤ L̂n(P̃n) − L̂n(Pn−1) + ξn ≤ 0.

This, combined with the fact that P[E] ≥ 1 − δ (Lemma 24) completes the proof.

Proof of Theorem 9. Let P̃k ∶= B(Z1∶k) and (Pk) be as in Algorithm 1 with the choice of (ξk) in
(9). Further, we let εn be as in (9) and

ξ′k ∶= 2

¿
Á
ÁÀ∑

n
i=1EP̃k(h),Pk−1(h′)[(`(h,Zi) − `(h

′, Zi))
2] ⋅ εk

k
+

4εk
ρ + 1

. (44)

It will be convenient to also consider the events:
E ∶= {∀n ≥ nδ, L(P̃n) −L(Pn−1) ≤ L̂n(P̃n) − L̂n(Pn−1) + ξ

′
n} ,

E
′ ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∀n ≥ 1, Q,Q′
∈ △(H),

√
∑
n
i=1EQ(h)[(`(h,Zi) − `(h⋆, Zi))

2] ⋅ εn(Q,Q
′)

2−5n
≤

L(Q) −L(h⋆)

2
+C ⋅ (εn(Q,Q

′)
1

2−β + εn(Q,Q
′))

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

,

where C and εn(Q,Q′) are as in Lemma 26. We note that by Corollary 25 and Lemma 26, we have
P[E] ∧P[E

′
] ≥ 1 − δ. (45)

For the rest of this proof, we will assume the event E ∩ E ′ holds, and let n ≥ nδ throughout. We
consider two cases pertaining to the condition in Line 2 of Algorithm 1.

Case 1. Suppose that the condition in Line 2 of Algorithm 1 is satisfied for k = n. In this case, we
have

L(Pn) −L(h⋆) = L(P̃n) −L(h⋆) (46)

Case 2. Now suppose the condition in Line 2 does not hold for k = n. This means that Pn ≡ Pn−1,
and so

L̂n(Pn) − L̂n(P̃n) ≤ ξn ≤ ξ
′
n, (47)

where the last inequality follows by the fact that 1 − εn ≥ 1/2, for all n ≥ nδ under Assumption 2.
Thus, by the assumption that E ′ is true, we have,

L(Pn) = L(P̃n) + (L(Pn) −L(P̃n)),

≤ L(P̃n) + L̂n(Pn) − L̂n(P̃n) + ξ
′
n, (E is true)

≤ L(P̃n) + 2ξ′n, (by (47))

= L(h̃n) + 4

¿
Á
ÁÀ∑

n
i=1EP̃n(h),Pn−1(h)[(`(h,Zi) − `(h,Zi))

2] ⋅ εn

n
+

8εn
ρ + 1

,

= L(P̃n) + 4

¿
Á
ÁÀ∑

n
i=1EP̃n(h),Pn(h′)[(`(h,Zi) − `(h

′, Zi))2] ⋅ εn

n
+

8εn
ρ + 1

, (Pn ≡ Pn−1)

≤ L(P̃n) + 4

¿
Á
ÁÀ2∑

n
i=1EP̃n(h)[(`(h,Zi) − `(h⋆, Zi))

2] ⋅ εn

n
+

8εn
ρ + 1

+ 4

√
2∑

n
i=1EPn(h)[(`(h,Zi) − `(h⋆, Zi))

2] ⋅ εn

n
, (48)
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where to obtain the last inequality, we used the fact that (a − c)2 ≤ 2(a − b)2 + 2(b − c)2 and
√
a + b ≤

√
a+

√
b for all a, b, c ∈ R≥0. Now, by (48), the fact that E ′ holds, and Assumption 2 (which

implies that ε
1

2−β
n ≤ O(εn) for n ≥ nδ), we have

L(Pn) −L(h⋆) ≤ L(P̃n) −L(h⋆) +
L(P̃n) −L(h⋆)

2
+
L(Pn) −L(h⋆)

2
+O (εn)

1
2−β ,

which, after re-arranging, becomes

L(Pn) −L(h⋆)

2
≤

3(L(P̃n) −L(h⋆))

2
+O (εn)

1
2−β . (49)

Multiplying on both sides by 2 and using (45) with a union bound leads to the desired result.

C.3 Additional Results and Proofs

Using the lemmas in Section C.1, we derive the excess-risk rate of ERM under the Bernstein condition:
Lemma 27. Let B > 1, β ∈ [0,1] and suppose that the (β,B)-Bernstein condition holds andH is
finite. Further, let ρ > 1, δ ∈ (0,1), and nδ be as in (34). Then, under Assumptions 1 and 2, the ERM
ĥn ∈ arg minh∈H

1
n ∑

n
t=1 `(h,Zt) satisfies, with probability at least 1 − δ,

L(ĥn) −L(h⋆) ≤ O (
ln(ln(n∣H∣)/δ)

n
)

1
2−β

+
ln(ln(n∣H∣)/δ)

n
, (50)

for all n ≥ nδ ∨ (16(ρ + 1) ln ∣H∣).

Proof of Lemma 27. Let nδ be as in (34) and define

εk ∶=
2(ρ + 1) (2 ln ∣H∣ + ln

φρ(k)

δ
)

k
, and ξ′n ∶= 2

√

∑
n
i=1(`(ĥn, Zi) − `(h⋆, Zi))

2 ⋅ εn
n

+
4εn
ρ + 1

.

Further, consider the events

E ∶= {∀n ≥ nδ, L(ĥn) −L(h⋆) ≤ L̂n(ĥn) − L̂n(h⋆) + ξ
′
n} ,

E
′ ∶= {∀n ≥ 1,

√

∑
n
i=1(`(ĥn, Zi) − `(h⋆, Zi))

2 ⋅ εn
2−5n

≤
L(ĥn) −L(h⋆)

2
+C ⋅ (ε

1
2−β
n + εn)} ,

where C is as in Lemma 26. By Corollary 25 and Lemma 26, instantiated with P0 equal to the
uniform prior overH and Q [resp. Q′] equal to the Dirac at ĥn [resp. h⋆], we have

min(P[E],P[E
′
]) ≥ 1 − δ. (51)

For the rest of this proof, we will assume that the event E∩E ′ holds, and let n ≥ nδ . By the assumption
that E holds, we have

L(ĥn) = L(h⋆) + (L(ĥn) −L(h⋆)),

≤ L(h⋆) + L̂n(ĥn) − L̂n(h⋆) + ξ
′
n, (E is true)

≤ L(h⋆) + ξ
′
n, (ĥn is the ERM)

= L(h⋆) + 2

√

∑
n
i=1(`(h̃n, Zi) − `(h⋆, Zi))

2 ⋅ εn
n

+ 4εn. (52)

Now by the assumption that E ′ holds, we can bound the middle term on the RHS of (52), leading to

L(ĥn) = L(h⋆) +
L(ĥn) −L(h⋆)

2
+O

⎛

⎝
max

β′∈{1,β}
(

ln(n∣H∣/δ)

n
)

1
2−β′ ⎞

⎠
+ 4εn,

= L(h⋆) +
L(ĥn) −L(h⋆)

2
+O (

ln(n∣H∣/δ)

n
)

1
2−β

, (53)

for all n ≥ nδ∨(16(ρ+1) ln ∣H∣), where in the last inequality we used the definition of εn. Combining
(53) with (51), and applying a union bound, we obtain the desired result.
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Proof of Theorem 11. First, note that by linearity of the expectation it suffices to show that
E [L(Pn) −L(Pn−1)] ≤ 0,

where the expectation is over the randomness of the samples Z1∶n. Moving forward, we let ∆n ∶=

L(Pn) −L(Pn−1), and for n ≥ N , define the event

En ∶= {L(P̃n) −L(Pn−1) ≤ L̂n(P̃n) − L̂n(Pn−1) + ξ
′
n} , (54)

where P̃k ∶= B(Z1∶k) and (Pk) as in Algorithm 1 with the choice of (ξ′k) in the theorem’s statement.
Observe that by Lemma 24, we have P[En] ≥ 1 − 1/nb for all n ≥ N , under Assumptions 1 and 2.

Now, by the law of the total expectation, we have
E[∆n] = P[En] ⋅E[∆n ∣ En] +P[E

c
n] ⋅E[∆n ∣ E

c
n],

≤ P[En] ⋅E[∆n ∣ En] + 1/nb.

where the last inequality follows by the fact that the loss ` takes values in [0,1] and that P[Ecn] ≤ 1/nb.
By applying the law of the total expectation again, we obtain

E[∆n] = P[{Pn ≡ Pn−1} ∩ En] ⋅E[∆n ∣ {Pn ≡ Pn−1} ∩ En]

+P[{Pn /≡ Pn−1} ∩ En] ⋅E[∆n ∣ {Pn /≡ Pn−1} ∩ En] + 1/nb,

≤ P[{Pn /≡ Pn−1} ∩ En] ⋅E[∆n ∣ {Pn /≡ Pn−1} ∩ En] + 1/nb, (55)
where the last inequality follows by the fact that if Pn ≡ Pn−1, then ∆n = 0. Now, if Pn /≡ Pn−1, then
by Line 2 of Algorithm 1, we have

L̂n(Pn) = L̂n(P̃n) ≤ L̂n(Pn−1) − ξ
′
n, (56)

Under the event En, we have
L(P̃n) −L(Pn−1) ≤ L̂n(P̃n) − L̂n(Pn−1) + ξ

′
n.

This, in combination with (56), implies that under the event En ∩ {Pn /≡ Pn−1},

∆n = L(P̃n) −L(Pn−1) ≤ −ξ
′
n + ξ

′
n = 0.

As a result, we have
E[∆n ∣ {Pn /≡ Pn−1} ∩ En] ≤ 0. (57)

Combining (55) and (57) yields the desired result.

Proof of Proposition 10. The risk monotonicity claim follows from Theorem 8, and the excess risk
rate follows from Theorem 9 and Lemma 27.

D Risk Monotonicity without PAC-Bayes

In this section, we show how risk monotonicity can be achieved in the i.i.d. setting without Assumption
2. For this, we will use a concentration inequality due to [35] that has an empirical variance term
under the square root just like ours in Theorem 6. To present this inequality, we first present some
new notation. For any Z1∶n ∈ Zn, we let ` ○ H(Z1∶n) ∶= (`(h,Z1), . . . , `(h,Zn)). Further, for any
subset A ⊂ Rn and ε > 0, we let N(ε,A, ∥ ⋅ ∥∞) be the cardinality of smallest subset A0 ⊆ A such
thatA is contained in the union of ∥ ⋅ ∥∞-balls of radii ε centered at points inA0. Finally, we consider
the following complexity measure:

N∞(ε, ` ○H, n) ∶= sup
Z1∶n∈Zn

N(ε, ` ○H(Z1∶n), ∥ ⋅ ∥∞). (58)

With this, we state the concentration inequality due to [35] that we will need:
Theorem 28. Let Z be a random variable with values in a set Z with distribution π, and letH be a
set of hypotheses. Further, let δ ∈ (0,1), n ≥ 16, and set

M(n) ∶= 10N∞(1/n, ` ○H,2n).

Then, with probability at least 1 − 2δ in the random vector Z1∶n ∼ π
n, we have

∀h ∈ H, ∣E [`(h,Z)] −
1

n

n

∑
i=1

`(h,Zi)∣ ≤

√
18Vn ln(M(n)/δ)

n
+

15 ln(M(n)/δ)

n − 1
,

where Vn ∶= Vn(` ○H, Z1∶n) ∶=
1

n(n−1) ∑1≤i<j≤n (`(h,Zi) − `(h,Zj))
2.
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Algorithm 2 A Deterministic Risk Monotonic Algorithm Wrapper

Require: A base learning algorithm ĥ ∶ ⋃∞i=1Z
i →H.

Initial hypothesis ĥ0 ∈ H.
Samples Z1, . . . , Zn.

1: for k = 1, . . . , n do
2: Set V̂k ∶=

1

k(k − 1)
∑

1≤i<j≤k

(`(h(Z1∶k), Zi) − `(ĥk−1, Zi) − `(h(Z1∶k), Zj) + `(ĥk−1, Zj))
2
.

3: Set ξk =

√

18V̂k ln(M(k)/k)

k
+

30 ln(M(k)/k)

k − 1
.

4: if
1

k

k

∑
i=1

`(ĥ(Z1∶k), Zi)] −
1

k

k

∑
i=1

`(ĥk−1, Zi) ≤ −ξk then

5: Set ĥk = ĥ(Z1∶k).
6: else
7: Set ĥk = ĥk−1.
8: Return ĥn.

Using Theorem 28 and following the same steps in the proof of Theorem 11, it follows that Algorithm
2 is risk monotonic in expectation (up to an additive 2/k term) for all sample sizes. Furthermore,
since the concentration inequality in Theorem 28 has an empirical variance term under the square-root
(just like ours in Theorem 6), the risk decomposition in our Theorem 9 also holds for Algorithm 2,
albeit with probability at least 1 −O(1/n) for sample size n.
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