Continual Auxiliary Task Learning

Matthew McLeod, Chunlok Lo, Matthew Schlegel, Andrew Jacobsen, Raksha Kumaraswamy

Department of Computing Science, University of Alberta
{mmcleod2, chunlok,mkschleg,ajjacobs,kumarasw}@ualberta.ca

Martha White, Adam White
Department of Computing Science, University of Alberta
CIFAR Canada Al Chair, Alberta Machine Intelligence Institute (Amii)
{whitem,amw8}@ualberta.ca

Abstract

Learning auxiliary tasks, such as multiple predictions about the world, can provide
many benefits to reinforcement learning systems. A variety of off-policy learning
algorithms have been developed to learn such predictions, but as yet there is little
work on how to adapt the behavior to gather useful data for those off-policy pre-
dictions. In this work, we investigate a reinforcement learning system designed to
learn a collection of auxiliary tasks, with a behavior policy learning to take actions
to improve those auxiliary predictions. We highlight the inherent non-stationarity
in this continual auxiliary task learning problem, for both prediction learners and
the behavior learner. We develop an algorithm based on successor features that
facilitates tracking under non-stationary rewards, and prove the separation into
learning successor features and rewards provides convergence rate improvements.
We conduct an in-depth study into the resulting multi-prediction learning system.

1 Introduction

In never-ending learning systems, the agent often faces long periods of time when the external reward
is uninformative. A smart agent should use this time to practice reaching subgoals, learning new
skills, and refining model predictions. Later, the agent should use this prior learning to efficiently
maximize external reward. The agent engages in this self-directed learning during times when the
primary drives of the agent (e.g., hunger) are satisfied. Other times, the agent might have to trade-off
directly acting towards internal auxiliary learning objectives and taking actions that maximize reward.

In this paper we investigate how an agent should select actions to balance the needs of several
auxiliary learning objectives in a no-reward setting where no external reward is present. In particular,
we assume the agent’s auxiliary objectives are to learn a diverse set of value functions corresponding
to a set of fixed policies. Our solution at a high-level is straightforward. Each auxiliary value function
is learned in parallel and off-policy, and the behavior selects actions to maximize learning progress.
Prior work investigated similar questions in a state-less bandit like setting, where both off-policy
learning and function approximation are not required [Linke et al., 2020].

Otherwise, the majority of prior work has focused on how the agent could make use of auxiliary
learning objectives, not how behavior could be used to improve auxiliary task learning. Some work
has looked at defining (predictive) features, such as successor features and a basis of policies [Barreto
etal., 2018, Borsa et al., 2019, Barreto et al., 2020, 2019]; universal value function approximators
[Schaul et al., 2015]; and features based on value predictions [Schaul and Ring, 2013, Schlegel et al.,
2021]. The other focus has been exploration, using auxiliary learning objectives to generate bonuses
to aid exploration on the main task [Pathak et al., 2017, Stadie et al., 2015, Badia et al., 2020, Burda
et al., 2019]; using a given set of policies in a call-return fashion for scheduled auxiliary control

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

[Riedmiller et al., 2018]; and discovering subgoals in environments where it is difficult for the agent
to reach particular parts of the state-action space [Machado et al., 2017, Colas et al., 2019, Zhang
et al., 2020, Andrychowicz et al., 2017, Pong et al., 2019]. In all of these works, the behavior was
either fixed or optimized for the main task.

The problem of adapting the behavior to optimize many auxiliary predictions in the absence of
external reward is sufficiently complex to merit study in isolation. It involves several inter-dependent
learning mechanisms, multiple sources of non-stationarity, and high-variance due to off-policy
updating. If we cannot design learning systems that efficiently learn their auxiliary objectives in
isolation, then the agent is unlikely to learn its auxiliary tasks while additionally balancing external
reward maximization.

Further, understanding how to efficiently learn a collection of auxiliary objectives is complementary
to the goals of using those auxiliary objectives. It could amplify the auxiliary task effect in UNREAL
[Jaderberg et al., 2017], improve the efficiency and accuracy of learning successor features and
universal value function approximators, and improve the quality of the sub-policies used in scheduled
auxiliary control. It can also benefit the numerous systems that discover options, skills, and subgoals
[Gregor et al., 2017, Eysenbach et al., 2019a, Veeriah et al., 2019, Pitis et al., 2020, Nair et al., 2020,
Pertsch et al., 2020, Colas et al., 2019, Eysenbach et al., 2019b], by providing improved algorithms
to learn the resulting auxiliary tasks. For example, for multiple discovered subgoals, the agent can
adapt its behavior to efficiently learn policies to reach each subgoal.

In this paper we introduce an architecture for parallel auxiliary task learning. As the first such work
to tackle this question in reinforcement learning with function approximation, numerous algorithmic
challenges arise. We first formalize the problem of learning multiple predictions as a reinforcement
learning problem, and highlight that the rewards for the behavior policy are inherently non-stationary
due to changes in learning progress over time. We develop a strategy to use successor features to
exploit the stationarity of the dynamics, whilst allowing for fast tracking of changes in the rewards, and
prove that this separation provides a faster convergence rate than standard value function algorithms
like temporal difference learning. We empirically show that this separation facilitates tracking both
for prediction learners with non-stationary targets as well as the behavior.

2 Problem Formulation

We consider the multi-prediction problem, in which an agent continually interacts with an environment
to obtain accurate predictions. This interaction is formalized as a Markov decision process (MDP),
defined by a set of states S, a set of actions .4, and a transition probability function P(s, a, s’). The
agent’s goal, when taking actions, is to gather data that is useful for learning IV predictions, where
each prediction corresponds to a general value function (GVF) [Sutton et al., 2011].

A GVF question is formalized as a three tuple (7, 7, ¢), where the target is the expected return of the
cumulant, defined by ¢ : § x A x § — R, when following policy 7 : S x A — [0, 1], discounted by
v:8 x A xS —[0,1]. More precisely, the target is the action-value

Q(S7CL) déf]Eﬂ— [Gt|St =S, At = a] for Gt déf Ct+1 + ’yt+1Gt+1

where Cy1 1 & c(St, Az, Sty1) and yiyq o ~v(St, A, St4+1). The extension of ~ to transitions allows
for a broader class of problems, including easily specifying termination, without complicating the
theory [White, 2017]. The expectation is under policy 7, with transitions according to P. The
prediction targets could also be state-value functions; we assume the targets are action-values in this
work to provide a unified discussion of successor features for both the GVF and behavior learners.

At each time step, the agent produces N predictions, a ng)(St, Ay) for prediction j with true

targets ng) (St, A¢). We assume the GVF question can change over time, and so) can change with
time. The goal is to have low error in the prediction, in terms of the root mean-squared value error
(RMSVE), under state-action weighting d : S x A — R:

RMSVE(Q.Q) = >3 d(s,a)(Q(s,a) — Q(s,a))2 (1)

s€S acA

The total error up to time step ¢, across all predictions, is TE e f_ N_ RMSVE 9y), (7) .
p p p =1 7j=1 7)

The agent’s goal is to gather data and update its predictions to make Environment }

TE small. This goal can itself be formalized as a reinforcement learning | Y
problem, by defining rewards for the behavior policy that depend on the Behavior
agent’s predictions. Such rewards are often called intrinsic rewards. For Yo

example, if we could directly measure the RMSVE, one potential intrin-
sic reward would be the decrease in the RMSVE after taking action A
from state S; and transitioning to St1. This reflects the agent’s learning
progress—how much it was able to learn—due to that new experience.
The reward is high if the action generated data that resulted in substan-
tial learning. While the RMSVE is the most direct measure of learning
progress, it cannot be calculated without the true values.

[Intrinsic Reward l

i Weight Change

Task 1| | Task 2 |*®® [Task N

[} } }

State/Observation (S:1

Many intrinsic rewards have been considered to es-
timate the learning progress of predictions. A recent
work provided a thorough survey of different options, Input: N GVF questions

as well as an empirical Study [Linke et al., 2020]. Initialize behavior po]icy parameters)
Their conclusion was that, for reasonable prediction (1) (N)
learners, simple learning progress measures—Ilike the gﬁ(tiag\ifritliz?rglfgrvﬁ?ioh. S o
change in weights—were effective for producing ef- fort — 0.1....do 0

fective data gathering. We rely on this conclusion .
here, and formalize the problem using the ¢; norm

on the change in weights. Other intrinsic rewards

Algorithm 1 Multi-Prediction Learning System

Choose action A, according to my, (-|.S¢)
Observe next state vector Syy1 and Y441
/I Update predictions with new data

could be s.wapped into the .fram.ewgrk; but, because for j = 1to N do
our focus is on the non-stationarity in Fhe system apd C C(])(Si, Ay, Sii1)
because empirically we found this weight-change in- G)

s . o v yVY(St, Ay, Siq1)
trinsic reward to be effective, we opt for this simple G) .
choice upfront. Update w,”” with (S;, Ay, ¢, Sty1,7)

. . . /I Compute intrinsic reward, update behavior

We provide the generic pseudocode for a multi- N))
prediction reinforcement learning system, in Algo- i1 < Zj.:l lwiyy = wy” |1y
rithm 1. Note that the behavior agent also has a sep- Update 6, with (S, Ag, Riy1, Set1,Ve+1)

arate transition-based ~, which enables us to encode
both continuing and episodic problems. For example, the pseudo-termination for a GVF could be a
particular state in the environment, such as a doorway. The discount for the GVF would be zero in
that state, even though it is not a true terminal state; the behavior discount ;1 would not be zero.

3 Non-stationarity Induced by Learning

On the surface, the multi-prediction problem outlined in the previous section is a relatively straightfor-
ward reinforcement learning problem. The behavior policy learns to maximize cumulative reward, and
simultaneously learns predictions about its environment. Many RL systems incorporate prediction
learning, either as auxiliary tasks or to learn a model. However, unlike standard RL problems, the
rewards for the behavior are non-stationary when using intrinsic rewards, even under stationary
dynamics. Further, the prediction problems themselves are non-stationary due to a changing behavior.

To understand this more deeply, consider first the behavior rewards. On each time step, the predictions
are updated. Progressively, they get more and more accurate. Imagine a scenario where they can
become perfectly accurate, such as in the tabular setting with stationary cumulants. The behavior
rewards are high in early learning, when predictions are inaccurate. As predictions become more
and more accurate, the change in weights gets smaller until eventually the behavior rewards are near
zero. This means that when the behavior revisits a state, the reward distribution has actually changed.
More generally, in the function approximation setting, the behavior rewards will continue to change
with time, not necessarily decay to zero.

The prediction problems are also non-stationary for two reasons. First, the cumulants themselves
might be non-stationary, even if the transition dynamics are stationary. For example, the cumulant
could correspond to the amount of food in a location in the environment, that slowly gets depleted.
Or, the cumulant could depend on a hidden variable, that makes the outcome appear non-stationary.
Even with a stationary cumulant, the prediction learning problem can be non-stationary due to a
changing behavior policy. As the behavior policy changes, the state distribution changes. Implicitly,

when learning off-policy, the predictions are minimizing an objective weighted by the state visitation
under the behavior policy. As the behavior changes, the underlying objective is actually changing,
resulting in a non-stationary prediction problem.

Though there has been some work on learning under non-stationarity in RL and bandits, none to
our knowledge has addressed the multi-prediction setting in MDPs. There has been some work
developing reinforcement learning algorithms for non-stationary MDPs, but largely for the tabular
setting [Sutton and Barto, 2018, Da Silva et al., 2006, Abdallah and Kaisers, 2016, Cheung et al.,
2020] or assuming periodic shifts [Chandak et al., 2020a,b, Padakandla et al., 2020]. There has
also been some work in the non-stationary multi-armed bandit setting [Garivier and Moulines, 2008,
Koulouriotis and Xanthopoulos, 2008, Besbes et al., 2014]. The non-stationary rewards for the
behavior, that decay over time, have been considered for the bandit setting, under rotting bandits
[Levine et al., 2017, Seznec et al., 2019]; these algorithms do not obviously extend to the RL setting.

4 Handling the Non-Stationarity in a Multi-prediction System

In this section, we describe a unified approach to handle non-stationarity in both the GVF and
behavior learners, using successor features. We first discuss how to use successor features to learn
under non-stationary cumulants, for prediction. Then we discuss using successor features for control,
allows us to leverage this approach for non-stationary rewards for the behavior. We then discuss
state-reweightings, and how to mitigate non-stationarity due to a changing behavior.

4.1 Successor Features for Non-stationary Rewards

Successor features provide an elegant way to learn value functions under non-stationarity. The
separation of learning stationary successor features and rewards enables more effective tracking of
non-stationary rewards, as we explain in this section and formally prove in Section 5.

Assume that there is a weight vector w* € R and features x(s, a) € R? for each state and action
(s,a) such that r(s,a) = (x(s,a), w*). Recursively define

P(s,a) = Ex[x(St, At) + 419 (St 41, Ae1)[Se = s, Ay = a]

P (s,a) is called the successor features, the discounted cumulative sum of feature vectors, if we
def

follow policy 7. For 9 & 4(S;, A;) and x; & x(S;, A;), we can see Q(s,a) = ((s,a), w*)
(P(s,a), W) = Ex[(x¢, W*)[St = s, Ar = a] + Ex[y41 (P41, W[t = 5, Ay = d
=7r(s,a) + Ex[yer1(Xer1, W)|Se = 5, Ap = a] + Ex[ye117e12(Pr12, W)|S: = 5, Ay = q]
=7r(s,a) + Ex[ye417e41|5 = 5, Ap = a] + Ex[yep 1742 (P2, W5)|Se = 5, Ay = a
= ... =Ex[r(s,a) + veg1rir + Y1 Ver2ria2 + - [Se =5, 4, =a] = Q(s,a).

If we have features x(s,a) € R? which allow us to represent the immediate reward, then successor
features provide a good representation to approximate the GVFE. We simply learn another set of
parameters w, € R? that predict the immediate cumulant (or reward): c(s,a) ~ (x(s,a),w,).
These parameters w,. are updated using a standard regression update, and Q(s, a) = (Y (s,a), we) .

The successor features (s, a) themselves, however, also need to be approximated. In most cases,
we cannot explicitly maintain a separate (s, a) for each (s, a), outside of the tabular setting.
Notice that each element in (s, a) corresponds to a true expected return: the cumulative dis-
counted sum of a reward feature into the future. Therefore, (s, a) can be approximated using
any value function approximation method, such as temporal difference (TD) learning. We learn

parameters w, for the approximation (s, a; wy,) = [th1 (s, a; Wy), ..., Pa(s, a; wy,)] T € RY where
1&,”(3, a; Wy) & P, (s,a). We can use any function approximator for tﬁ(s, a; wy), such as linear
function approximation with tile coding with w,, linearly weighting the tile coding features to
produce 1/3(3, a; W), or neural networks, where w, are the parameters of the neural network.

We summarize the algorithm using successor features for non-stationary rewards/cumulants, called
SF-NR, in Algorithm 2. We provide an update formula for the approximate SF using Expected Sarsa
for prediction [Sutton and Barto, 2018] for simplicity, but note that any value learning algorithm can
be used here. In our experiments, we use Tree-Backup [Precup, 2000] because it reduces variance

from off-policy learning; we provide the pseudocode in Appendix D. Algorithm 2 assumes that
the reward features x(s, a) are given, but of course these can be learned as well. Ideally, we would
learn a compact set of reward features that provide accurate estimates as a linear function of these
reward features. A compact (smaller) set of reward features is preferred because it makes the SF
more computationally efficient to learn.

Algorithm 2 Successor Features for
There are two key advantages from the separation into Non-stationary Rewards (SF-NR)

learning successor features and immediate cumulant
estimates. First, it easily allows different or chang-

Input:(S;,A¢,St11,Ce11,7e41), T, Wep, We

ing cumulants to be used, for the same policy, using X< XA(St’ At)

the same successor features. The transition dynamics P Y(St, Ar; wy) A

summarized in the stationary successor features can P > m(d|Se41) Y (Seqr1, a5 wy)
be learned slowly to high accuracy and re-used. This A«+0

re-use property is why these representations have been form=1toddo .

used for transfer [Barreto et al., 2017, 2018, 2020]. Om — X + Ye11¥h, — ¥m

This property is pertinent for us, because it allows us A — A+ 5mv1/}m

to more easily track changes in the cumulant. The re-
gression updates can quickly update the parameters w,,
and exploit the already learned successor features to
more quickly track value estimates. Small changes in the rewards can result in large changes in the
values; without the separation, therefore, it can be more difficult to directly track the value estimates.

Wy — Wy + A
We < We + a(Cipq — (X, We))x

Second, the separation allows us to take advantage of online regression algorithms with strong
convergence guarantees. Many optimizers and accelerations are designed for a supervised setting,
rather than for temporal difference algorithms. Once the successor features are learned, the prediction
problem reduces to a supervised learning problem. We can therefore even further improve tracking by
leveraging these algorithms to learn and track the immediate cumulant. We formalize the convergence
rate improvements, from this separation, in Section 5.

4.2 GPI with Successor Features for Control

In this section we outline a control algorithm under non-stationary rewards. SF-NR provides a method
for updating the value estimate due to changing rewards. The behavior for the multi-prediction
problem has changing rewards, and so could benefit from SF-NR. But SF-NR only provides a
mechanism to efficiently track action-values for a fixed policy, not for a changing policy. Instead,
we turn to the idea of constraining the behavior to act greedily with respect to the values for a set of
policies, introduced as Generalized Policy Improvement (GPI) Barreto et al. [2018, 2020].

For our system, this is particularly natural, as we are already learning successor features for a
collection of policies. Let us start there, where we assume our set of policies is II = {7y, ..., 7n}.
Assume also that we have learned the successor features for these policies, ¥ (s, a; wfj)), and that we
have weights 6, € R such that (x(s,a),0,.) ~ E[R;+1|S; = s, A; = a] for behavior reward R; ;.
Then on each step, the behavior policy takes the following greedy action

_ H() — P w9 g
§) = argmax Imax J/(s,a) = argmax max s,a;w,), 0,
pls) = argmax max Q7(s,a) = argmax max ((0):0r)
The resulting policy is guaranteed to be an improvement: in every state the new policy has a value
at least as good as any of the policies in the set [Barreto et al., 2017, Theorem 1]. Later work also
showed sampled efficiency of GPI when combining known reward weights to solve novel tasks
[Barreto et al., 2020].

The use of successor features has similar benefits as discussed above, because the estimates can adapt
more rapidly as the rewards change, due to learning progress changing over time. The separation
is even more critical here, as we know the rewards are constantly drifting, and tracking quickly
is even more critical. We could even more aggressively adapt to these non-stationary rewards, by
anticipating trends. For example, instead of a regression update, we can model the trend (up or down)
in the reward for a state and action. If the reward has been decreasing over time, then likely it will
continue to decrease. Stochastic gradient descent will put more weight on recent points, but would
likely predict a higher expected reward than is actually observed. For simplicity here, we still choose
to use stochastic gradient descent, as it is a reasonably effective tracking algorithm, but note that
performance improvements could likely be obtained by exploiting this structure in this problem.

We can consider a different set of policies for GVFs and behavior. However, the two are naturally
coupled. First, the GPI theory shows that greedifying over a larger collection of policies provides
better policies. It is sensible then to at least include the GVF policies into the set for the behavior.
Second, the behavior needs to learn the successor features for the additional policies. Arguably, it
should try to gather data to learn these well, so as to facilitate its own policy improvement. It should
therefore also incorporate the learning progress for these successor features, into the intrinsic reward.
For this work, therefore, we assume that the behavior uses the set of GVF policies. Note that the
weight change intrinsic reward uses the concatenation of w, and w.

4.3 Interest and prior corrections for the changing state distribution

The final source of non-stationarity is in the state distribution. As the behavior ;1 changes, the
state-action visitation distribution d,,, : S x A — [0, 1] changes. The state distribution implicitly
weights the relative importance of states in the GVF objective, called the projected Bellman error
(PBE). Correspondingly, the optimal SF solution could be changing, since the objective is changing.
The impact of a changing state-weighting depends on function approximation capacity, because the
weighting indicates how to trade-off function approximation error across states. When approximation
error is low or zero—such as in the tabular setting—the weighting has little impact on the solution.
Generally, however, we expect some approximation error and so a non-negligible impact.

We can completely remove this source of non-stationary by using prior corrections. These are
products of importance sampling ratios, that reweight the trajectory to match the probability of
seeing that trajectory under the target policy 7. Namely, it modifies the state weighting to d, the
state-action visitation distribution under 7. We explicitly show this in Appendix C. Unfortunately,
prior corrections can be highly problematic in a system where the behavior policy takes exploratory
actions and target policies are nearly deterministic. It is likely that these corrections will often either
be zero, or near zero, resulting in almost no learning.

To overcome this inherent difficulty, we restrict which states are important for each predictive question.
Likely, when creating a GVF, the agent is interested in predictions for that GVF only in certain parts
of the space. This is similar to the idea of initiation sets for options, where an option is only executed
from a small set of relevant states. We can ask: what is the GVF answer, from this smaller set of
states of interest? This can be encoded with a non-negative interest function, i(s, a), where some (or
even many) states have an interest of zero. This interest is incorporated into the state-weighting in the
objective, so the agent can focus function approximation resources on states of interest.

When using interest, it is sensible to use emphatic weights [Sutton et al., 2016]. Emphatic weightings
are a prior correction method, used under the excursions model [Patterson et al., 2021]. They reweight
to a discounted state-action visitation under 7 when starting from states proportionally to d,,. Further,
they ensure states inherit the interest of any states that bootstrap off of them. Even if a state has an
interest of zero, we want to accurately estimate its value if an important states bootstraps off of its
value. The combination of interest and emphatic weightings—which shift state-action weighting to
visitation under 7—means that we mitigate much of the non-stationarity in the state-action weighting.
We provide the pseudocode for this Emphatic TB (ETB) algorithm in Appendix D.

S Sample Efficiency of SF-NR

As suggested in Section 4.1, the use of successor features makes SF-NR particularly well-suited
to our multi-prediction problem setting. The reason for this is simple: given access to an accurate
SF matrix, value function estimation reduces to a fundamentally simpler linear prediction problem.
Indeed, access to an accurate SF enables one to sidestep known lower-bounds on PBE estimation.

For simplicity, we prove the result for value functions; the result easily extends to action-values.
Denote by v™ € RIS the vector with entries v™(s), ™ € RIS! the vector of expected immediate
rewards in each state, and P € RIS/*IS the matrix of transition probabilities. The following lemma,
proven in Appendix A.1, relates mean squared value error (VE) to one-step reward prediction error.

Lemma 1 Assume there exists a w* € R such that v™ = Xw*. Let # 2 Xw for some w € RY,
and let D = Diag({d(s) }ses) for distribution d fully supported on S, with || - ||p the weighted norm

. A d . A T _¢||2
under D. Then the value estimate v <2 Uw satisfies v =]} < H

Thus we can ensure that VE(v™, V') < ¢ by ensuring that ||r™ —#||3 < £(1—+)?2. This is promising, as
this latter expression is readily expressed as the objective of a linear regression problem. To illustrate
the utility of this, let’s look at a concrete example: suppose the agent has an accurate SF matrix ¥ and
that the reward function changes at some point in the agent’s deployment. Suppose access to a batch

of transitions D & {S:, Ay, Sy, re, pr }1—_, with which we can correct our estimate of v™, where each
(s,a,s’,p) € Dis such that s ~ d,, for some known behavior policy p1, A; ~ 7(-|s), s" ~ P(-|s,a)
and r = r(s,a,s’). Assume for simplicity that p; < pmax, [|0(St)|lcc < L, 7t < Rpmax for some
finite P ax , Rmax , L € R4. Then we can get the following result, proven in Appendix A.2, thatis a
straightforward application of Orabona [2019, Theorem 7.26].

.. def . .
Proposition 1 Define (,(w) < & (re — (x(Sy), w))?. Suppose we apply a basic recursive least-
squares estimator to minimize regret on this loss sequence, producing a sequence of iterates wy. Let

wr ¥ % thl wy denote the average iterate. For ©(s) = (1(s),wr), we have that

dpmaXRr%ﬂax 10g (1 + Pmax LQT)
(1 =7)°T '

V™ =vllp <O (2
In contrast, without the SF we are faced with minimizing a harder objective: the PBE. It can be shown
that minimizing the PBE is equivalent to a stochastic saddle-point problem, and the convergence to the

(147) pmax L2d
+ T

saddle-point of this problem has an unimprovable rate of O (% + %) where T is

the maximum eigenvalue of the covariance matrix and o bounds gradient stochasticity, and this conver-
. ~ 2
gence rate translates into the performance bound £||v™ — V|3, < O (\/ Ty I omax L2 %)

[Liu et al., 2018a, Proposition 5]. Comparing with Equation 2, we observe an additional dependence
of O(y/7/T) as well as the worse dependence of at least O(1/v/T) > (log (T) /T') on all other
quantities of interest, reinforcing the intuition that access to the SF enables us to more efficiently
re-evaluate the value function.

6 A First Experiment Testing the Multi-prediction System

In this section, we investigate the utility of using SF-

G1 Drifter g
[or , NVM NR under non-stationary cumulants and rewards, both
Conste o . .
(1 1| Cpmetant for prediction and control. We conduct the experiment
1 —law” in a TMaze environment, inspired by the environments

. . used to test animal cognition [Tolman and Honzik,
1930]. The environment, depicted in Figure 1, has
E o four GVFs where each policy takes the fastest route
Time-step 1 1
Figure 1: Tabular TMaze with 4 GVFs, to its corresponding goal. The cumulants are zero
. . everywhere except for at the goals. The cumulant can
with cumulants of zero except in the goals.
. . be of three types: a constant fixed value (constant), a
The right plot shows the cumulants in the . . .
fixed-mean and high variance value (distractor), or a
goals. G2 and G4 have constant cumu- . .
. non-stationary zero-mean random walk process with
lants, G1 has a distractor cumulant and G4 a . .
. a low variance (drifter). Exact formulas for these
drifter. . X
cumulants are in Appendix E.1.

Utility of SF-NR for a Fixed Behavior Policy

We start by testing the utility of SF-NR for GVF learning, under a fixed policy that provides good
data coverage for every GVFE. The Fixed-Behavior Policy is started from random states in the TMaze,
and moves towards the closest goal, with a 50/50 chance of going either direction if there is a tie.
This policy is like a round robin policy, in that one of the GVF policies is executed each episode and,
in expectation, all four policies are executed the same number of times.

We compare an agent that uses SF-NR and one that learns the approximate GVFs using Tree Back-Up
(TB). TB is an off-policy temporal difference (TD) algorithm, that reduces variance in the eligibility
trace. We also use TB to learn the successor features in SF-NR. Both use A = 0.9 and a stepsize
method called Auto [Mahmood et al., 2012] designed for online learning. We sweep the initial stepsize
and meta stepsizes for Auto. For further details about the agents and optimizer, see Appendix D. We
additionally compare to least squares TD (LSTD), with A = 0.9, particularly as it computes a matrix
similar to the SF, but does not separate out cumulant learning (see Appendix B for this connection).

, . o H(GPI),T(TB) o, HIGPDLSR)
+ Distractor [y 7 Drifter
6 6 . P) o \ | ﬁ' [
1(GPI), (TB) p(Sarsa), 7(TB) o8 'f |
5 5 Il
31 4 "ImJ 4 06 ‘W
= p(Fixed), 7(LSTD))
: ’ ol
R u(Fixed), 7(TB) 2 1 Distractor
u(GPI), 7(SR) ofl A
) p(Fixed), 7(SR) 1 u(Sarsa), 7(SR) le "
Constants,. W Wy constants
B 1 2 3 4 5 0 T 20 30 0 50 60 0 e 005 sar 700 o0 w00
Steps (per 1000) Steps (per 1000) Episode Count Episode Count
(a) Fixed-Behavior Policy (b) Learned Behavior Policy (c) Visitation Plot Comparison

Figure 2: Performance in Tabular TMaze, with averages over 30 runs. (a) and (b) show average off-
policy prediction RMSE, with standard errors, where the error is weighted by (a) the state distribution
d,, for the Fixed-Behavior policy and (b) a uniform state weighting when learning the behavior. (c)
Goal visitation plots for GPI with SF and TB.

In Figure 2a, we can see SF-NR allows for much more effective learning, particularly later in learning
when it more effectively tracks the non-stationary signals. LSTD performs much more poorly, likely
because it corresponds to a closed-form batch solution, which uses old cumulants that are no longer
reflective of the current cumulant distribution.

Investigating GPI for Learning the Behavior

Next we investigate if SF-NR improves learning of the whole system, both for the GVFs and for the
behavior policy. We use SF-NR and TB for the GVF learners, and Expected Sarsa (Sarsa) and GPI
for the behavior. The GPI agent uses the GVF policies for its set of policies. The reward features for
the behavior are likely different than those for the GVF learners, because the cumulants are zero in
most states whereas intrinsic rewards are likely non-zero in most states. The GPI agent, therefore,
learns its own SFs for each policy, also using TB. The reward weights that estimate the (changing)
intrinsic rewards are learned using Auto, as are the SFs. Note that the behavior and GVF learners all
share the same meta-step size—namely only one shared parameter is swept.

The results highlight that SF for the GVFs is critical for effective learning, though GPI and Sarsa
perform similarly, as shown in Figure 3b. The utility of SF is even greater here, with TB GVF learners
inducing much worse performance than SF GVF learners. GPI and Sarsa are similar, which is likely
due to the fact that Sarsa uses traces with tabular features, which allow states along the trajectory to
the drifter goal to update quickly. In following sections, we find a bigger distinction between the two.

We visualize the goal visitation of GPI in Figure 2¢c. Once the GVF learners have a good estimate for
the constant cumulant signals and the distractor cumulant signal, the agent behavior should switch
to visiting only the drifter cumulant as that is the only goal where visiting would improve the GVF
prediction. When using SF GVF learners, this behavior emerges, but under TB GVF learners the agent
incorrectly focuses on the distractor. This is even more pronounced for Sarsa (see Appendix F.2).

7 Experiments under Function Approximation

We evaluate our system in a similar fashion to the last section, but now under function approximation.
We use a benchmark problem at the end of this section, but start with experiments in the TMaze mod-
ified to be a continuous environment, with full details described in Appendix E.1. The environment
observation o; € R? corresponds to the xy coordinates of the agent. We use tile coded features of 2
tilings of 8 tiles for the state representation, both for TB and to learn the SF.

The reward features for the GVF learners can be much simpler than the state-action features because
they only need to estimate the cumulants, which are zero in every state except the goals. The reward
features are a one-hot encoding indicating if s’ in the tuple of (s, a, s’) is in the pseudo-termination
goals of the GVFs. For the Continuous TMaze, this gives a 4 dimensional vector. The reward features
for GPI is state aggregation applied along the one dimensional line components. Appendix E.1
contains more details on the reward features for the GVF and behavior learners.

Results for a Fixed Behavior and Learned Behaviors

Under function approximation, SF-NR continues to enable more effective tracking of the cumulants
than the other methods. For control, GPI is notably better than Sarsa, potentially because under

11(Sarsa), (TB)

7(LSTD) pu(Fixed), 7(LSTD)

u(Fixed)

Ji(Fixed), 7(TB) &

(Fixed), n(sR) i ixed). m(T5)

S—
p(Fixed), 7(SR) 8

50 60 0

p(Fixed), m(SR) S— 2

30 0 10

30

10 20 20 30 40 10 20
Steps (per 1000) Steps (per 1000) Steps (per 1000)

(a) Fixed-Behavior Policy (b) Learned Behavior Policy (c) Replay with Fixed-Behavior

Figure 3: Performance in Continuous TMaze, with averages over 30 runs. (a) and (b) show average
off-policy prediction RMSE, with standard errors, where the error is weighted by (a) the state
distribution d,, for the Fixed-Behavior policy and (b) a uniform state weighting when learning the
behavior. (¢) RMSE in Continuous TMaze with a Fixed Behavior when incorporating replay.

function approximation eligibility traces are not as effective at sweeping back changes in behavior
rewards and so the separation is more important. We include visitations plots in Appendix F.1, which
are similar to the tabular setting.

Note that the efficacy of SF-NR and GPI relied on having reward features that did not overly generalize.
The SF learns the expected feature vector when following the target policy. For the GVF learners, if
states on the trajectory share features with states near the goal, then the value estimates will likely be
higher for those states. The rewards are learned using squared error, which unlike other losses, is
likely only to bring cumulant estimates to near zero. These small non-zero cumulant estimates are
accumulated by the SF for the entire trajectory, resulting in higher error than TB. We demonstrate this
in Appendix F.3. We designed reward features to avoid this problem for our experiments, knowing
that effective reward features can and have been learned for SF [Barreto et al., 2020].

Results using Replay

The above results uses completely online learning, with eligibility traces. A natural question is if the
more modern approach of using replay could significantly change the results. In fact, early versions
of the system included replay but had surprisingly negative results, which we later realized was
due to the inherent non-stationarity in the system. Replaying old cumulants and rewards, that have
become outdated, actually harms performance of the system. Once we have the separation with the
SF, however, we can actually benefit from replay for this stationary component.

We demonstrate this result in Figure 3c. We use A = 0 for this result, because we use replay. The
settings are otherwise the same as above, and we resweep hyperparameters for this experiment.
SF-NR benefits from replay, because it only uses it for its stationary component: the SF. TB, on the
other hand, actually performs more poorly with replay. As before, LSTD which similarly uses old
cumulants, also performs poorly.

Incorporating Interest
n(Sarsa),

To study the effects of interest, a more open world environment
is needed. The Open 2D World is used to analyze this problem
as described in Appendix E.2. At the start of each episode, the
agent begins in the center of the environment. The interest for
each GVF in the states is one if the state is in the same quadrant
as the GVF’s respective goal, and zero otherwise. This enables
the GVFs to focus their learning on a subset of the entire space
and thus use the function approximation resources more wisely
and give a better weight change profile as an intrinsic reward to
the behavior learner. Each GVF prediction 7 is evaluated under

Interest)
(Sarsa),

(SR w
125
7(SR w/ ETB
10.0

1(GPI), 7(SR)

0 10 30 40

20
Steps (per 1000)

Figure 4: Using interest: shading
is standard error over 30 runs.

state-action weighting induced by running 7;, with results in Figure 4.

Both TB with interest and ETB reweight states to focus more on state visitation under the policy.
Both significantly improve performance over not using interest, both allowing faster learning and
reaching a lower error. The reweighting under ETB more closely matches state visitation under the
policy, and accounts for the impacts of bootstrapping. We find that ETB does provide some initial
learning benefits. The original ETD algorithm is known to suffer from variance issues; we may find
with variance reduction that the utility of ETB is even more pronounced.

17500

15000 %

12500

)
3
3

5
S
3

10000
pi(Sarsa), T(SR)

N
S
s

7500

-
S
3

1(GPI), 7(SR) 5000

Left Hill Pseudotermination

Right Hill Pseudotermination
8
8

0 50 100 150 200 250 %‘ —
Steps (per 1000) W(GPI), M(SR) W(Sarsa), n(SR) p(Random), n(SR) W(GPI), n(SR) u(Sarsa), n(SR) u(Random), n(SR)

(a) RMSE for each GVF (b) GVF#2 goal visits: left hill top (c) GVF#1 goal visits: right hill top

o

Figure 5: Performance in Mountain Car averaged over 30 runs, with standard errors. (a) Learning
curves for RMSE, with a uniform weighting over states and actions. (b), (¢) show the number of
times that the agent reached the termination for each GVF.

Validation of the Multi-Prediction System in a Standard Benchmark Problem

Finally, we investigate multi-prediction learning in an environment not obviously designed for this
setting: Mountain Car. The goal here is to show that multi-prediction learning is natural in many
problem settings, and to show results in a standard benchmark not designed for our setting that has
more complex transition dynamics. In the usual formulation the agent must learn to rock back and
forth building up momentum to reach the top of the hill on the right—a classic cost to goal problem.
This is a hard exploration task where a random agent requires thousands of steps to reach the top of
the hill from the bottom of the valley. Here we use Mountain Car to see if our approach can learn
about more than just getting out of the valley quickly. We specified a GVF whose termination and
policy focuses on reaching top of the left hill, and a second GVF about reaching the top of the other
side. The full details of the GVFs and setup of this task can be found in the Appendix E.3.

Figure 5a shows how GPI and Sarsa compare against a baseline random policy. GPI provides much
better data for GVF learning than the random policy and Sarsa, significantly reducing the RMSE of
the learned GVFs. The goal visitation plots show GPI explores the domain and visits both GVFs goal
far more often than random, and more effectively than Sarsa.

8 Conclusion

In this work, we take the first few steps towards building an effective multi-prediction learning system.
We highlight the inherent non-stationarity in the problem and design algorithms based on successor
features (SF) to better adapt to this non-stationarity. We show that (1) temporally consistent behavior
emerges from optimizing the amount of learning across diverse GVF questions; (2) successor features
are useful for tracking nonstationary rewards and cumulants, both in theory and empirically; (3)
replay is well suited for learning the stationary components successor features while meta-learning
works well for the non-stationary components; and (4) interest functions can improve the performance
of the entire system, by focusing learning to a subset of states for each prediction.

Our work also highlights several critical open questions. (1) The utility of SFs is tied to the quality
of the reward features; better understanding of how to learn these reward features is essential. (2)
Continual Auxiliary Task Learning is an RL problem, and requires effective exploration approaches
to find and maximize intrinsic rewards—the intrinsic rewards do not provide a solution to exploration.
Never-ending exploration is needed. (3) The interaction between discovering predictive questions
and learning them effectively remains largely unexplored. In this work, we focused on learning,
for a given set of GVFs. Other work has focused on discovering useful GVFs [Veeriah et al., 2019,
2021, Nair et al., 2020, Zahavy et al., 2021]. The interaction between the two is likely to introduce
additional complexity in learning behavior, including producing automatic curricula observed in
previous work [Oudeyer et al., 2007, Chentanez et al., 2005].

This work demonstrates the utility of several new ideas in RL that are conceptually compelling,
but not widely used in RL systems, namely SF and GVFs, GPI with SF for control, meta-descent
step-size adaption, and interest functions. The trials and tribulations that lead to this work involved
many failures using classic algorithms in RL, like replay; and, in the end, providing evidence
for utility in these newer ideas. Our journey highlights the importance of building and analyzing
complete RL systems, where the interacting parts—with different timescales of learning and complex
interdependencies—necessitate incorporating these conceptually important ideas. Solving these
integration problems represents the next big step for RL research.

10

Acknowledgments and Disclosure of Funding

This work was supported by NSERC Discovery, IVADO, CIFAR through CCAI Chair funding and
by the Alberta Machine Intelligence Institute (Amii).

References

Sherief Abdallah and Michael Kaisers. Addressing environment non-stationarity by repeating
g-learning updates. The Journal of Machine Learning Research, 17(1):1582—-1612, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Advances in Neural Information Processing Systems, 2017.

Adria Puigdomenech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning
Representations, 2020.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
and generalised policy improvement. In International Conference on Machine Learning, 2018.

Andre Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygiin, Philippe Hamel, Daniel
Toyama, Jonathan hunt, Shibl Mourad, David Silver, and Doina Precup. The option keyboard:
Combining skills in reinforcement learning. In Advances in Neural Information Processing Systems,
2019.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117
(48):30079-30087, 2020.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. In Advances in Neural Information Processing Systems, 2014.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt, David
Silver, and Tom Schaul. Universal successor features approximators. In International Conference
on Learning Representations, 2019.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Yash Chandak, Scott M Jordan, Georgios Theocharous, Martha White, and Philip S Thomas. Towards
safe policy improvement for non-stationary mdps. Advances in Neural Information Processing
Systems, 2020a.

Yash Chandak, Georgios Theocharous, Shiv Shanka, Martha White, Sridhar Mahadevan, and Philip S
Thomas. Optimizing for the future in non-stationary mdps. International Conference on Machine
Learning, 2020b.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing Systems, 2005.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism. International Conference on
Machine Learning, 2020.

Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud, and Pierre-Yves Oudeyer.
Curious: intrinsically motivated modular multi-goal reinforcement learning. In International
conference on machine learning, 2019.

11

Bruno C Da Silva, Eduardo W Basso, Filipo S Perotto, Ana L C. Bazzan, and Paulo M Engel.
Improving reinforcement learning with context detection. In Autonomous agents and multiagent
systems, pages 810-812, 2006.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019a.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. In Advances in Neural Information Processing
Systems, 2019b.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415, 2008.

Sina Ghiassian, Andrew Patterson, Martha White, Richard S Sutton, and Adam White. Online
off-policy prediction. arXiv preprint arXiv:1811.02597, 2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. Interational
Conference on Learning Representations Workshop, 2017.

Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. In International Conference
on Machine Learning, 2017.

Andrew Jacobsen, Matthew Schlegel, Cameron Linke, Thomas Degris, Adam White, and Martha
White. Meta-descent for online, continual prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Dimitris E Koulouriotis and A Xanthopoulos. Reinforcement learning and evolutionary algorithms
for non-stationary multi-armed bandit problems. Applied Mathematics and Computation, 196(2):
913-922, 2008.

Nir Levine, Koby Crammer, and Shie Mannor. Rotting bandits. In Advances in Neural Information
Processing Systems, 2017.

Cam Linke, Nadia M Ady, Martha White, Thomas Degris, and Adam White. Adapting behavior via
intrinsic reward: A survey and empirical study. Journal of Artificial Intelligence Research, 69:
1287-1332, 2020.

Bo Liu, Ian Gemp, Mohammad Ghavamzadeh, Ji Liu, Sridhar Mahadevan, and Marek Petrik.
Proximal gradient temporal difference learning: Stable reinforcement learning with polynomial
sample complexity. Journal of Artificial Intelligence Research, 2018a.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the Curse of Horizon: Infinite-
Horizon Off-Policy Estimation. Advances in Neural Information Processing Systems, 2018b.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-Policy Policy Gradient with
Stationary Distribution Correction. Uncertainty in Artificial Intelligence, pages 1180—-1190, 2020.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. In International Conference on Machine Learning, 2017.

Ashique Mahmood, Huizhen Yu, and Richard Sutton. Multi-step off-policy learning without impor-
tance sampling ratios. 02 2017.

Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M Pilarski. Tuning-
free step-size adaptation. In IEEE International Conference on Acoustics, Speech and Signal
Processing, 2012.

12

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth, and Sergey Levine.
Contextual imagined goals for self-supervised robotic learning. In Conference on Robot Learning,
2020.

Francesco Orabona. A modern introduction to online learning, 2019.

Pierre-Yves Oudeyer, Frédéric Kaplan, and Verena V. Hafner. Intrinsic motivation systems for
autonomous mental development. In IEEE Transactions on Evolutionary Computation, 2007.

Sindhu Padakandla, KJ Prabuchandran, and Shalabh Bhatnagar. Reinforcement learning algorithm
for non-stationary environments. Applied Intelligence, 50(11):3590-3606, 2020.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, 2017.

Andrew Patterson, Adam White, Sina Ghiassian, and Martha White. A generalized projected bellman
error for off-policy value estimation in reinforcement learning. arXiv preprint arXiv:2104.13844,
2021.

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, and
Sergey Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. In
Advances in Neural Information Processing Systems, 2020.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on
Machine Learning, 2020.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80, 2000.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International Conference on Machine Learning, 2018.

Tom Schaul and Mark B Ring. Better generalization with forecasts. In International Joint Conferences
on Artificial Intelligence, 2013.

Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International Conference on Machine Learning, 2015.

Bruno Scherrer. Improved and generalized upper bounds on the complexity of policy iteration.
Mathematics of Operations Research, 2016.

Matthew Schlegel, Andrew Jacobsen, Zaheer Abbas, Andrew Patterson, Adam White, and Martha
White. General value function networks. Journal of Artificial Intelligence Research, 70:497-543,
2021.

Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, and Michal Valko. Rot-
ting bandits are no harder than stochastic ones. International Conference on Artificial Intelligence
and Statistics, 2019.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam White,
and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In International Conference on Autonomous Agents and Multiagent
Systems, 2011.

13

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. The Journal of Machine Learning Research, 17(1):
2603-2631, 2016.

Edward Chace Tolman and Charles H Honzik. Introduction and removal of reward, and maze
performance in rats. University of California publications in psychology, 1930.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk
Oh, Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. In Neural Information Processing Systems, 2019.

Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Turii Kemaev, Hado van
Hasselt, David Silver, and Satinder Singh. Discovery of options via meta-learned subgoals. In
Advances in Neural Information Processing Systems, 2021.

Martha White. Unifying task specification in reinforcement learning. In International Conference on
Machine Learning, 2017.

Tom Zahavy, Brendan O’Donoghue, Andre Barreto, Volodymyr Mnih, Sebastian Flennerhag, and
Satinder Singh. Discovering diverse nearly optimal policies with successor features. arXiv preprint
arXiv:2106.00669, 2021.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. In Advances in Neural Information
Processing Systems, 2020.

14

A Sample Efficiency of SF-NR

A.1 Proof of Lemma 1

In this section we provide a proof of Lemma 1. The result is included for completeness, and similar
results of a similar form can be found throughout the literature (for example, similar steps are used in
the proof of Lemma 3 of Scherrer [2016]). The lemma is repeated for convenience below.

Lemma 1 Assume there exists a w* € R? such that v™ = Xw*. Let ¥ 2 Xw for some w € R,
and let D = Diag({d(s)}ses) for distribution d fully supported on S, with || - ||p the weighted norm

. A d . A 1|2
under D. Then the value estimate ¥ 2 Uw satisfies vm =]} < ”2‘“(1_;@13.

Proof: Given access to an estimate * of r™ can then bound the MSVE as
1 (a) 1

LIV =9 Y P 7 -8 I

®) 1 e

< ST =P pllr™ — 5

©1 (& i

<3 (thllerl|D> ™ —£]13

t=0

@ [r7 — 2]

T 21 -n)?
where (a) decomposed v = (I—yP,) 'r™, (b) uses sub-multiplicativity of the matrix norm induced
by || - || b, (¢) uses the von-neumann expansion (I — yP)~' = 37 7P and triangle inequality,

and (d) uses that ||PL|p = Amax ((P%)"DPL) < 1 since both D and P’ have eigenvalues of

at-most 1, followed by }_,° 7" = ﬁ

A.2 Proof of Proposition 1

Proposition 1 Define ¢, (w) 4 B (re — (2(Sy), w))?. Suppose we apply a basic recursive least-

squares estimator to minimize regret on this loss sequence, producing a sequence of iterates wy. Let

_ def) . _

wr < * ;[:1 wy denote the average iterate. For 0(s) = (Y(s), Wr), we have that
dpmaXRr%ﬂax 10g (1 + Pmax LQT) >

T <112
HV - VHD <0 < (1 _ 'V)QT (2)

Proof:
L@r) = Ea, | L (re - <x<st>,wT>>2]

L™ =1
[w*||? + dpmax Raax 108 (1 + pmax L*T)

2T ’
where in the last line we applied the regret guarantee of the RLS estimator with regularization parame-
ter A = 1 (See Orabona [2019, Theorem 7.26]) and used that max, ||¢(s)||2 < vdmax, ||¢(s)] =

V/dL. Following Lemma 1, by taking ¢(s) = (¢(s), Wr), we have that

T N dpmaxR?nax log 1 + Pmax L2T
VT —vlH <O _(2) :
(1—=9)*T

<

3)

15

B Relationship between SF-NR and TD solutions

Let w™ be the fixed-point solution for the projected Bellman operator with respect to the A-return that
is be estimated by LSTD(\) for policy 7[White, 2017]. It is well known that TD()) converges to this
solution under the right conditions. The components of the solution w™ = A~ b, are as follows
A, =X"DI-\P,IL,) ' (I-P,II,)X
b, =X'DI - AP, II,) 'r
where X € RISIIAIX? is the feature matrix with x(s,a)’ along its rows, r € RISl is the ex-
pected immediate reward (r((s,a)) = Y., .5 P(s,a,8')R(s,a,s')), P, € RISIAIXIS i a sub-
stochastic matrix that represents the transition process (PA,((S, a),s’) = P(s,a,s)y(s,a, s’)),
II, € RISXISIMI s a stochastic matrix that represents m (IL(s, (s,a)) 7(s,a)), and

D e RISIXISIAI js a diagonal matrix with the stationary distribution induced by 7 on its diag-
onal that controls the approximation error.

Let us consider A\ = 1 case for simplicity. Under this case
A, =X"DX
b, =X"DI-P,II,) 'r
The predicted values correspond to Q = Xw". This is the projection of the true values Q* = (I —
P.II,) 'r onto the space spanned by X where the projection operator is IT = X(X "DX) 'X D
— the TD(1) solution. Now, depending on if the form of the reward r we have the three following
cases.
Case 1: r = Xw The LSTD estimate can be written as
fusto = (X'DX) "X 'D(I - P,II,) "' Xw
where the component ¥ = (I — P, II;)~'X corresponds to the successor features. Therefore, if the
space X is used for learning both the successor features and the reward, the solution corresponding
to SF-NR would be equivalent to the solution obtained by TD.
Case 2: r = &w The LSTD estimate can be written as
Osto = (X' DX)'X'D(I - P,IL,) '®w
where the component ¥ = (I — P,IL;)~'® corresponds to the successor features. Therefore, if the
space X is used for learning the successor features which correspond to weighted sums of ®, and

® is used for learning the reward, the solution corresponding to SF-NR would be equivalent to the
solution obtained by TD.

Case 3: r = XwW + 1y orr = ®w + 1, where 7, is the model misspecification error for predicting
the immediate reward, the LSTD estimate would correspond to

frsto = (X'DX)'X'D(I - P,IL,) 'r

whereas the SF-NR estimate would capture the same component as in case (1), or in case (2).
Therefore, if there is a misspecification error for learning r, the two solutions would differ.

Hence, decomposition of SF-NR does not reduce representability of the TD(1) solution if the reward
is linearizable in some features. More generally, we could introduce A < 1 to provide.a bias-variance
trade-off for learning the SR as well.

C Prior Corrections and the Projected Bellman Error

Let us first consider the SR objective under a fixed behavior, i, with stationary distribution d,, over
states and actions. When using TD for action-values, with covariance C = E[x(S, A)x(S, A)T] =
> s du(s,a)x(S, A)x(S, A)T, the underlying objective is the mean-squared projected Bellman
error (MSPBE):

MSPBE(w) = || Y du(s, a)Ex[6(w)x(s,a)[S = 5, A = a] |1/

=B, [0(w)x(S, A)] T C E,[6(w)x(S, A)]

16

The TD fixed point corresponds to w such that E [6(w)x(S, A)] = 0, which is defined based on
state-action weighting d,,. Different weightings result in different solutions.

The weighting is implicit in the TD update, when updating from state and actions visited under the
behavior policy. The predictions are updated more frequently in the more frequently visited state-
action pairs, giving them higher weighting in the objective. However, we can change the weighting
using important sampling. For example, if we pre-multiply the TD update with d(s, a)/d, (s, a) for
some weighting d, then this changes the state-action weighting in the objective to d(s, a) instead of
du(s,a).

The issue, though, is not that the objective is weighted by d,,, but rather that d,, is changing as
is changing. Correspondingly, the optimal SR solution could be changing since the objective is
changing. The impact of this changing state distribution depends on the function approximation
capacity. The weighting indicates how to trade-off function approximation error across states; when
approximation error is low or zero, the weighting has no impact on the TD fixed point. For example,
in a tabular setting, the agent can achieve E,[d(w)x(s,a)|S = s,A = a] = 0 for every (s,a).
Regardless of the weighting—as long as it is non-zero—the TD fixed point is the same.

Generally, however, there will be some approximation error and so some level of non-stationarity.
This pre-multiplication provides us with a mechanism to keep the objective stationary. If we could
track the changing d,,, with time, and identify a desired weighting d, then we could pre-multiply each
update with d(sy, a;)/d,,(s¢, a) to ensure we correct the state-action distribution to be d. There
have been some promising strategies developed to estimate a stationary d,, [Hallak and Mannor, 2017,
Liu et al., 2018b, 2020], though here they would have to be adapted to constantly track d,,,.

Another option is to use prior corrections to reweight the entire trajectory up to a state. Prior

corrections were introduced to ensure convergence of off-policy TD [Precup, 2000]. For a fixed

behavior, the algorithm pre-multiplies with a product of important sampling ratios, with p(a|s) o

7(als)
w(als)

w=w+ a [i_yp(ai|s;)] 6x(s¢, ar)
This shifts the weight from state-actions visited under x to state-actions visited under 7, because
E, [Hﬁzop(AASi)(Sx(St,At)|St =s,A4; = a]
=E, [ITi_op(A;]S:)|S: = s, Ay = a] E[6x(S, Ap)|S; = s, Ay = d
and when considering expectation across time steps ¢t when s, a are observed

dr(s,a)

By [T _op(AilSDISc = 5, 4y =] = TE 200

These prior corrections also corrects the state-action distribution even with d,, changing on each step,

because the numerator reflects the probability of reach s, a under policy 7 and the denominator reflects

the probability of reach s, a using the sequence of behavior distributions. For p;(a|s) = :t((‘fllfs))

m(Ap|So)m(A1]S1) ... w(A¢]St)
to(Ao|So) 1 (A1]S1) - - . pe(Ae] S)
_ 7(Ao|So)P(S1|S0, Ap) ... P(St|Si—1, Ar_1)m(As|Sy)
- Mo(A0|So)P(Sl‘So, A()) e P(St|St,1, At,l),ut(At|St)

ITi_ope(AilSi) =

D Algorithms

The algorithm for Tree-Backup() is from Precup [2000].

Algorithm 3 TB()) Update

2 = % (Ae|Se) Az + X(StyAt) .
0 = ¢t +Ye1 2 (@ |[Se41)4(St41,a") — G(S, Ay)
Wit = Wy + 110124

17

Algorithm 4 is the online TB with interest update. The derivation for the online update rule from the
forward view is in the next section.

Algorithm 4 TB()) with Interest Update

2 = 1 (A¢|Se) Az + ItX(SAta Ay) R
O = ¢t + Vi1 Doy (@' |Se41)d(Ses1,a") — q(St, Ar)
Wit = Wi + 110+ 2

The ETB() algorithm is from Sutton et al. [2016] ETD(\) but modified to use TB(\) update instead
of TD(A) update. This modification relies on the correspondence between TB and TD, where TB is a
version of TD with the variable trace parameter, Ay = b(a¢|s¢)A. This correspondence is demonstrated
in [Mahmood et al., 2017, Ghiassian et al., 2018]. Here, we use the same replacement of A; in ETD()\)
to get ETB(\).

Algorithm 5 Emphatic TB(\) Update
Fy=piamFi1+ 1
My = po[No(AT+ (1= Ab(Al) Fo)|
zy = (A Se)Aze—1 + Myx(Sy, Ar)

Ot = ¢t + Vo1 Dy (@' |Se41)d(Se41,a") — G(St, Ar)
Wil = Wy + 10,2

D.1 Online Interest TB Derivation
The forward view update that uses interest at each time-step is of the form

W1 = Wy + oy (G — §(S, Ar, wy))VQ(Se, Ay, wy).

According to Sutton and Barto [2018] (page 313), ignoring the changes in the approximate value
function, the TB return can be written as,

fe'e) k
Gy~ (St Aywi) + Y 6 [wdim(AilS)). @)
k=t 1=t+1

We substitute Equation 4 for G; in the forward view update, we get,

0o k
Wit = Wy + O[It Zék H ")/Z>\Z7T(AZ|SZ)VQ(St,At,Wt)
k=t i=t+1

The sum of forward view update over time is

oo co o0 k
(Wip1 — wy) = Zzaft5kvﬁ(5t,At,Wt) H Yihim(A;]S5)
t=1 t=1 k=1 i=t+1
co k k
=3l VS, A w)dk [vidim(4ilS)
k=1t=1 i=t+1
[e'S) k k
= adk Y LV§(S, A, wi) [virim(4ilSi).
k=1 t=1 i=t+1

18

This can be a backward-view TD update if the entire expression from the second sum can be estimated
incrementally as an eligibility trace. Therefore

k k
zZp = ZItVQ(SmAt,Wt) H Yidim(Ai|Si)
t=1 i=t+1
k=1 k
=Y LVG§(S, A, wie)] videm(AilSi) + IeVa(Sk, A, wi)
t=1 i=t+1
k—1 k-1
= Y Mm(AklSk) Y 1VG(Se, A, wi) [vidim(AilSi) + V(S Ax, wi)
t=1 i=t+1

= Ve AT (Ag|Sk) 2k -1 + 1V G(Sk, Ak, Wi).
Changing the index from £ to ¢, the accumulating trace update can be written as,
7y = Y T (Ae|St)Ze—1 + LV (St A, wi),

leading to the incremental update for estimating w; ;.

D.2 Auto Optimizer

We use a variant of the Autostep optimizer throughout our experiments. Adam and RMSProp are
global update scaling methods and do note adapt step-sizes on a per feature basis [Kingma and Ba,
2015], unlike meta descent methods like IDBD, Autostep [Mahmood et al., 2012], and AdaGain
[Jacobsen et al., 2019]—this is critical for achieving introspective learners. Meta-descent methods
like Autostep have been shown to be very effective with linear function approximation [Jacobsen
et al., 2019]. Jacobsen’s AdaGain algorithm is rather complex, requiring finite differencing, whereas
Auto is a simple method that works nearly as well in practice. In our own preliminary experiments,
we found Adam to much less effective at tracing non-stationary learning targets, even when we
adapted all three hyperparameters of the method. Finally, Auto can be seen as optimizing a meta
objective for the step-size and thus is a specialization of Meta-RL to online step-size adaption in RL.

There have been attempts to apply the Autostep algorithm to TD and Sarsa [Dabney and Barto, 2012].
Auto represents another attempt to use Autostep in the reinforcement learning setting. Modifications
to the Autostep algorithm are from personal communications with an author of the original work
[Mahmood et al., 2012] on how to make it more effective in practice in the reinforcement learning
setting.

Algorithm 6 Auto Update

n=n+calgl (h-dg| —n)
for all i such that ¢; # 0 do

hid:
AB; =clip (—MA, —¢)
1
o = clip(k, et |¢|)
end Z
ifaTz>1 1
Vi such that z; # 0: a; = min(a;, W)
1
end
0=0+a-6¢

h=h(l-a-|¢|) +add

19

where:

* 1 is the meta-step size parameter.

* « is the step sizes.

* § is the scalar error.

¢ ¢ is the feature vector.

* z is the step-size truncation vector.

* 0 is the weight vector.

* his the decaying trace.

* n maintains the estimate of |h - §¢|.

* 7 is the step size normalization parameter.
* M is the maximum update parameter of o;.
* x is the minimum step size.

In all experiments, Ma = 1,7 = 10%, k = 1075, In the reinforcement setting, ¢ is the eligibility
trace, ¢ is the td error and z is the overshoot vector. z is calculated as |¢| -max(|¢|, |x — vx'|), where
X is the state representation at timestep ¢ and X’ is the state representation at timestep ¢ + 1.

E Experiment Details

This section provides additional details about the experiments in the main body, and the additional
experiments in this appendix. All the experiments in this work used a combined compute usage of
approximately five CPU months.

E.1 TMaze Details

Tabular TMaze is a deterministic gridworld with four actions {up, down, left, right}. There are
four GVFs being learned and each correspond to a goal as depicted in Figure 1. For GVF i and the
corresponding goal state G, pi;, y; and ¢; are defined as:

* m;(als): deterministic policy that directs the agent towards G;
* 7i(Gi) =0, 7i(s) =09Vs #G, € S

0 s #G;
o ¢t " = ¢
s,) {c; s' =G

where C! can be one of the following four different and possibly non-statioanry cumulant schedules:

¢ Constant: C! = C;
* Distractor: C} = N (u;,0;)
* Drifter: C! = C’f_l + N(pi,04),CY =1

As discussed in Section 3, the cumulants of the GVFs can be stationary or non-stationary signals.
The cumulant of each GVF has a non-zero value at their respective goal. In the Tabular TMaze, the
top left goal is a distractor camulant which is an unlearnable noisy signal. The distractor has p = 1
and 02 = 25. The cumulants corresponding to the lower left goal and upper right goal are constant
goals uniformly selected at the start of each run between [—10, 10]. The cumulant corresponding to
the lower left goal is a drifter signal of 02 = 0.01 and represents a learnable non-stationary signal.

The Continuous TMaze follows the same design as the Tabular TMaze except it is embedded in a
continuous 2D plane between 0 and 1 on both axes. Each hallway is a line with no width, allowing the
agent to go along the hallway, but not perpendicular to it. The main vertical hallway spans between [0,
0.8] on the y-axis and is located at x of 0.5. The main horizontal hallway spans [0, 1] on the x axis and
is located at y of 0.8. Finally, the two vertical side hallways span between [0.6, 1.0]. Junctions and
goal locations occupy a 2¢ x 2¢ space at the end of each hallway. For example, the middle junction
spans x of 0.5 + ¢ and y of 0.8 £ €. The agent can take one of four actions four actions {up, down,
left, right}. The agent moves in the corresponding direction of the action with a step size of 0.08 and
noise altering movement by Uniform(—0.01,0.01). Figure 6 summarizes the environment set-up.

20

Reward features G1 G3 l

As discussed in the main paper, SF-NR requires a reward
feature, ¢(s,a,s’). In the Tabular TMaze, the reward
lGZ

features for both the GVFs and the behavior learner are
the tabular representation of ¢(s, a, s’). For the Contin-
uous TMaze, the reward features using SF-NR for the
GVF learners is an indicator function for if in the tuple
(s,a,s’)is in the GVF’s goal state. Since the Continuous
TMaze has four goals, ¢ for the GVF learners is a four
dimensional vector. This is a reasonable feature vector
as the reward feature vector should be related to reward-
ing transitions. For GPI, it is unclear what is a rewarding
transition apriori. Therefore, the reward feature is the SO

action-feature vector of state-aggregation applied to the

Continuous TMaze. This is a general yet compact fea- Figure 6: Continuous TMaze with the 4
ture representation. Each line segment for the Continuous GVFs. S, the grey shaded region, is the
TMaze is broken up into thirds and state aggregation is uniformly weighted starting state distri-
applied to each part. bution after a goal visit.

G4

Algorithm parameters

For the fixed behavior experiment in Tabular TMaze, the

GVFs using TB()) learners and SF-NR learners had their meta-step size swept from [574, ..., 5°] and
initial step size tested for [0.1, 1.0]. For both TB()\) and SF-NR, the optimal meta-step size was 5~
and initial step size of 1.0.

For the learned behavior experiment, the behavior learner and GVF learner share the same meta-step
size parameter and initial alpha. The meta-step size was swept from [57%, ..., 5°] and initial step
sizes were [0.1,1.0]. All four agents (GPI behavior learner with TB(\) or SF-NR GVF learners, and
SARSA behavior learner with TB(\) or SF-NR GVF learners) had an optimal meta-step size of 572,
For agents using SF-NR GVF learners, the optimal initial step size was 1.0. For agents using TB(\)
GVF learners, the initial step size was 0.1. The behavior learner is optimistically initialized to ensure
that the agent will visit each of the four goals at least once. To the best of our knowledge, no one
has tried optimistic initialization with successor features before. To perform optimistic initialization
for GPI, we initialized all successor features, 1), estimate to be 1. We initialized the immediate
reward estimates, w, to the desired optimistic initialization threshold normalized by the number of
reward features. We believe this to be an approximate version of optimistic initialization to allow
comparisons to the SARSA agent. All behaviors used a fixed e of 0.1 for the runs. The agent’s
performance was evaluated on the TE for the last 10% of the runs.

For the fixed behavior experiment in Continuous TMaze, the meta-step size parameter was swept
from [573, ..., 5°] and the initial step size was swept over [0.01,0.1,0.2]. The initial step size was
then divided by the number of tilings of the tile coder to ensure proper scaling. For the fixed behavior
experiment, the optimal meta-step size for SF-NR and TB(\) GVF learners was 52 with an initial
step size of 0.2.

For the learned behavior experiment in Continuous TMaze, the behavior learners and GVF learners
shared the same meta-step size parameter and initial step size. The meta-step size parameter was
swept from [574, ..., 5°] and the initial step size was swept over [0.01,0.1,0.2]. For GPI, the optimal
initial step size for both types of GVF learners was 0.2. For SF-NR learners, the optimal meta-step
size was 53 while being 52 for the TB(\) GVF learners. For the Sarsa behavior learner, the optimal
meta-step size was 52 and the initial step size when the SF-NR GVF learners were used was 0.2
while being 0.1 for the TB()) learners. The behavior learner was optimistically initialized and used
an e of 0.1. The agent’s performance was evaluated on the TE for the last 10% of the runs.

Since the intrinsic reward (weight change) is > 0, the intrinsic reward is augmented with a modest
—0.01 reward per step to encourage the agent to seek out new experiences.

21

E.2 Open 2D World Details

The Open 2D World is an open continuous grid world with boundaries defined by a square of
dimensions 10 x 10, with goals in each of the four corners. The goals follow the same schedules
as defined for the TMaze experiments with constants sampled from [—10, 10], drifter parameters of
02 = 0.005 and the initial value of 1, and distractor parameters of N (u = 1,02 = 1). On each step,
the agent can select between the four compass actions. This moves the agent 0.5 units in the chosen
direction with uniform noise [—0.1, 0.1]. A uniform [—0.001,0.001] orthogonal drift is also applied.
The goals are squares in the corners with a size of 1 x 1. The start state distributions is the center
of the environment (,y) € [0.45,0.55)%. The summary of the environment is shown in Figure 7.
Similar to the TMaze variants, the GVF policies are defined as the shortest path to their respective
goal. When there are multiple actions at a state that are part of a shortest path, these actions are
equally weighted. The discount for the GVFs is v = 0.95 for all states other than the goal states.

Reward features

The GVF reward features for SF-NR are defined similarly

to the reward features in TMaze as described in Appendix

E.1. Since there are four goals, ¢ € R*, where the value

at ¢; is the indicator function for if s’ € G;. This is
a reasonable feature as it is focused on rewarding events.
For the reward features of GPI, state aggregation is applied
with tiles of size (2,2) and is augmented to be a state-action
feature.

SO

Algorithm parameters

The meta-step size for the behavior learners and the GVF

learners were swept independently. The behavior learner’s
meta-step size was swept over [5°, ..., 5°] while the GVF
learner’s meta-step size was swept over [5-%,...5%]. An

initial step size of 0.1 scaled down by the number of tilings
was used for all learners. The optimal meta-step size for Figure 7: Open 2D World with the 4
the GVF learners that used ETB()\) was 53 and the meta- GVFs situated at each corner. Sy, the
step size for the corresponding GPI learner was 5~ 1. Vari- grey shaded region, is the uniformly
ance was an issue for learning successor features through weighted starting state distribution after
ETB()\) so the emphasis was clipped at 1. For the agents a goal visit.

using TB with Interest, the optimal meta-step size for

the behavior learner was 5~ and for the GVF learners

was 5 2. For the method using no prior corrections, the

behavior learner used a meta-step size of 5% and the GVF learner used a meta-step size of 572

Since the intrinsic reward (weight change) is > 0, the intrinsic reward is augmented with a modest
—0.05 reward per step to encourage the agent to seek out new experiences.

E.3 Mountain Car Details

We use the standard mountain car environment [Sutton and Barto, 2018] defined through a system of
equations

A; € [Reverse = —1, Neutral = 0, Throttle = 1]
L.Ct+1 = Zi't + 0001At — 0.0025 COS(S{Et)

Tiy1 = Ty + Tiy1.

We define two GVFs as auxiliary tasks. The first GVF receives a non-zero cumulant of value 1
when the agent reaches the left wall. It has a discount v = 0.99 that terminates when the left wall is
touched, and a policy that is learned offline to maximize the cumulant. The second GVF is similar,
but receives a non-zero cumulant of 1 when reaching the top of the hill (the typical goal state). Each
policy is learned offline for 500k steps on a transformed problem of the cumulant being -1 per step
with ESARSA()) and an € = 0.1. This allows a denser reward signal for learning a high quality
policy. Note that the final policy for maximizing this cumulant signal and the sparse reward signal
are the same. The state representation used for these policies is an independent tile coder of 16 tilings

22

with 2 tiles per dimension. The fixed policy after offline learning for each of the GVFs is greedy with
respect to the learned offline action values.

Reward features

The reward features for the SF-NR learners are defined similarly to the reward features in the
Continuous TMaze. ¢(s,a, s’); is 1 if and only if s’ is in the termination zone of GVF;. The reward
feature for GPI is a tile coder of 8 tilings with 2 tiles per dimension.

Algorithm parameters

The SF-NR and behavior learner are optimized with stochastic gradient descent in an online learning
setting. The behavior step size and GVF step size were swept independently at [372,...3%]. The
values were then divided by the number of tilings to ensure proper scaling of step size. The behavior
was epsilon-greedy with e swept over the range [0.1,0.3,0.5]. For both GPI and Sarsa, e = 0.1
performed the best. For agents using GPI as the behavior learner, the optimal behavior step size was
39 with the optimal GVF learner step size of 3~2. For the agents using a Sarsa behavior learner, the
optimal parameters were a step size of 3° for the behavior learner and a step size of 3~ for the GVF
learner.1 For the baseline agent where the behavior was random actions, the optimal GVF step size
was 37 .

Since the intrinsic reward (weight change) is > 0, the intrinsic reward is augmented with a modest
—0.01 reward per step to encourage the agent to seek out new experiences.

F Additional Experiments

F.1 Goal Visitation in Continuous TMaze

Figure 8 shows the goal visitation plots for in the Continuous TMaze for GPI and Sarsa. Using either
GPI or SF-NR results in significantly faster identification of the drifter signal and together results
in the fastest identification. Prioritizing visiting the drifter is the preferred behavior as it is the only
learnable signal. It is important that the agent does not get confused by the distractor as it is not a
learnable signal.

F.2 Goal Visitation in Tabular TMaze

Figure 9 shows the goal visitation plots for the Tabular TMaze.

F.3 The Effect of Generalization in the Reward Features

GPI is sensitive to the reward feature representation that is used. Figure 10 shows what happens
when the reward features of 8 tilings with 2x2 tiles are used in the Continuous TMaze for GPI. The
agents are swept over the same interval of hyperparameters as described in Appendix E.1 for the
Continuous TMaze. When this reward feature was used, the optimal meta-step size was 5~3. The
initial step size was 0.2 which was then scaled down by the number of tilings. GPI, with this reward
features, was unable to learn an effective policy to reduce the TE in the Continuous TMaze. The tile
coded reward feature representation has approximately three times the number of features than the
handcrafted feature representation, yet it results in much worse performance. This highlights the
need for the reward features to be learnable by an algorithm rather than being predefined.

23

1.0

0.8

0.6

0.4

Fraction of Goal Visits

0.2

0.0

1.0

0.8

0.6

0.4

Fraction of Goal Visits

0.2

0.0

u(GPI), n(TB)

Drifter 2
o

s

©

o

)

G

e

°

Distractor ‘g
Constant C nstantu'

U(GPI), n(SR)

Drifter

0

100 200 300 400 500 600

Episode Count
u(Sarsa), n(TB)

Distractor

Drifter

Fraction of Goal Visits

Py

1.0

0.8

0.6

0.4

0.2

0

500 1000 1500
Episode Count

u(Sarsa), n(SR)

Drifter

Distractor

50 100
Episode Count

150

/ v
300 600 900 1200
Episode Count

Figure 8: Goal visitation for GPI and Sarsa for the GVF learners using SF-NR and TB in Continuous
TMaze. Episodes count are shown for the first N episodes up to the minimum number of episodes per

run for each algorithm.

Fraction of Goal Visits

Fraction of Goal Visits

1.0

o
@

o
o

o
S

o
9

0.0

0.8

0.6

H(GPI), n(TB)

Fraction of Goal Visits

o
N

nstant Cpnst{lnt\
0 500 * 1000\ 1500
Episode Count
u(Sarsa), n(TB)

Distractor

Drifter

Fraction of Goal Visits

Constant Constant

0 500 1000
Episode Count

1500

1.0

o
®

o
)

o
IS

U(GPI), n(SR)

\f‘ Drifter

Distractor

Constant
Constant

0.8

0.6

0.0

o

1000 2000 3000 : 4000
Episode Count
u(Sarsa), n(SFQ

Drifter

Distractor

Constant

1000
Episode Count

2000 3000

Figure 9: Goal visitation for Sarsa with the GVF learners using SF-NR and TB in Tabular TMaze.

24

12.5 _H(Gpl), m(SR)
K(GPI), m(SR) Tile Coding
10.0
L
v 75
=
o
5.0
25 \»\W
0.0
0 10 20 30 40 50 60

Steps (per 1000)

Figure 10: GPI with the same input features, but different reward features in the Continuous TMaze
environment. ;(GPI), w(SR) uses the reward features detailed in Appendix E.1. u(GPI), m(SR)
Tile Coding uses the reward features of a tilecoder with 8 tilings of 2 tiles.

25

