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A Problem setting and preliminaries

A.1 Graph terminology

We consider causal effects in causal graphical models over a set of variables V with a joint distribution
P = P(V) that is consistent with an acyclic directed mixed graph (ADMG) G = (V, E). Two nodes
can have possibly more than one edge which can be directed (←) or bi-directed (↔). We use “∗”
to denote either edge mark. There can be no loops or directed cycles. See Fig. 1A for an example.
The results also hold for Maximal Ancestral Graphs (MAG) [Richardson and Spirtes, 2002] without
selection variables. A path between two nodes X and Y is a sequence of edges such that every edge
occurs only once. A path between X and Y is called directed or causal from X to Y if all edges are
directed towards Y , else it is called non-causal. A node C on a path is called a collider if “∗→C←∗”.
Kinships are defined as usual: parents pa(X,G) for “•→X”, spouses sp(X,G) for “X↔•”, children
ch(X,G) for “X→•”, and correspondingly descendants des and ancestors an. We omit the G in
the following since all relations are relative to the graph G in this paper. Our approach does not
involve modified graph constructions as in van der Zander et al. [2019] and other works. A node
is an ancestor and descendant of itself, but not a parent/child/spouse of itself. The mediator nodes
on causal paths from X to Y are denoted M = M(X,Y ) and exclude X and Y (different from
definitions in other works). For sets of variables the kinship relations correspond to the union of the
individual variables. For parent/child/spouse-relationships these exclude the set of variables itself. A
path π between X and Y in G is blocked (or closed) by a node set Z if (i) π contains a non-collider in
Z or (ii) π contains a collider that is not in an(Z). Otherwise the path π is open (or active/connected)
given Z. Nodes X and Y are said to be m-separated given Z if every path between them is blocked
by Z, denoted as X ⊥⊥ Y |Z. In the following we will simplify set notation and denote unions of
variables as {W} ∪M ∪A =WMA.
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B Further theoretical results and proofs

B.1 Properties of adjustment information

JZ is not necessarily positive if the dependence between X and Z (given S) is larger than that
between Z and Y given XS. By the properties of CMI, it is bounded by

−min(HX|S, HZ|S) ≤ JXY |S.Z ≤ min(HY |XS, HZ|XS) . (S1)

B.2 Causally sufficient case
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Figure S1: DAG version of graph in Fig. 1A with O-set shown as blue boxes.

The optimal adjustment set for the causally sufficient case was derived in HPM19 and Rotnitzky and
Smucler [2019]. Here the derivation is discussed from an information-theoretic perspective.
Definition B.1 (O-set in the causally sufficient case). Given Assumptions 1 restricted to DAGs with
no hidden variables, define the set

O = P = pa(YM) \ forb .

In the causally sufficient case a valid adjustment set always exists and the O-set is always valid since
O contains no descendants of YM and all non-causal paths from X to Y are blocked since P blocks
all paths from X through parents of YM.

Figure S1 shows an example DAG with a mediator M and conditioned variable S. The O-set O =
Z2Z3 is depicted by blue boxes. Compare O with vancs = Z1Z2Z3S (Adjust-set in Perković et al.
[2018]) in the inequalities (7). Since Z1 ⊥⊥ Y |OXS, term (iii) is zero and since O \ vancs = ∅,
also term (iv) is zero. Further, terms (i) and (ii) are both strictly greater than zero (under Faithfulness).
Then JO > Jvancs and under Assumptions 2 by Lemma 2 the O-set has a smaller asymptotic
variance than vancs. Since the parents of YM block all paths from any other valid adjustment sets to
Y and because any valid adjustment set Z has to block paths fromX to pa(YM)\Z, JO ≥ JZ holds
in general for any valid set Z as proven from an information-theoretic perspective in Proposition B.1.
Proposition B.1 (Optimality of O-set in causally sufficient case). Given Assumptions 1 restricted to
DAGs with no hidden variables and with O = P defined in Def. B.1, graphical optimality holds for
any graph and O is optimal.

Similar to HPM19 and Witte et al. [2020], there also exist results regarding minimality and minimum
cardinality which are covered for the hidden variables case in Corollary B.1.

B.3 Hidden variables case

Here we provide some further theoretical results for the general hidden variables case in addition to
the lemmas and theorems in the main text.
Corollary B.1 (Minimality and minimum cardinality). Given Assumptions 1, assume that graphical
optimality holds, and, hence, O is optimal. Further it holds that:

1. If O is not minimal, then JO > JZ for all minimal valid Z 6= O,

2. If O is minimal valid, then O is the unique set that maximizes the adjustment information
JZ among all minimal valid Z 6= O,
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3. O is of minimum cardinality, that is, there is no subset of O that is still valid and optimal.

Another relevant Proposition states that OCmin is a subset of vancs, similar to corresponding
Lemmas in van der Zander et al. [2019].
Proposition B.2 (Collider-minimized O-set is a subset of Adjust.). Given Assumptions 1 with O =
PCPC defined in Def. 4 and the OCmin-set constructed with Alg. C.2 it holds that OCmin ⊆ vancs.

B.4 Proof of Lemma 1

Lemma (Necessary and sufficient comparison criterion for existence of an optimal set). Given
Assumptions 1, if and only if there is a Z ∈ Z such that either there is no other Z′ 6= Z ∈ Z or for
all other Z′ 6= Z ∈ Z and all distributions P consistent with G it holds that

IZ\Z′;Y |Z′XS︸ ︷︷ ︸
(i)

≥ IZ′\Z;Y |ZXS︸ ︷︷ ︸
(iii)

, and

IX;Z′\Z|ZS︸ ︷︷ ︸
(ii)

≥ IX;Z\Z′|Z′S︸ ︷︷ ︸
(iv)

, (S2)

then graphical optimality holds and Z is optimal implying JZ ≥ JZ′ .

Proof. If there is no other Z′, the statement trivially holds. Assuming there is another Z′, we prove
the two implications as follows by an information-theoretic decomposition.

Define disjunct (possibly empty) sets R,B,A with Z = AB and Z′ = BR with B = Z ∩ Z′. Note
that if both R = ∅ and A = ∅, then Z = Z′. Consider two different ways of applying the chain rule
of CMI,

IABR;Y |XS − IX;ABR|S

= IAB;Y |XS + IR;Y |ABXS − IX;AB|S − IX;R|ABS (S3)

= IBR;Y |XS + IA;Y |BRXS − IX;BR|S − IX;A|BRS , (S4)

from which with JZ = IAB;Y |XS − IX;AB|S and JZ′ = IRB;Y |XS − IX;RB|S it follows that

JZ = JZ′

+ IA;Y |BRXS︸ ︷︷ ︸
(i)

+ IX;R|ABS︸ ︷︷ ︸
(ii)

− IR;Y |ABXS︸ ︷︷ ︸
(iii)

− IX;A|BRS︸ ︷︷ ︸
(iv)

. (S5)

The inequalities (S2) then read

IA;Y |BRXS︸ ︷︷ ︸
(i)

≥ IR;Y |ABXS︸ ︷︷ ︸
(iii)

, and

IX;R|ABS︸ ︷︷ ︸
(ii)

≥ IX;A|BRS︸ ︷︷ ︸
(iv)

. (S6)

“if”: If term (i) is greater or equal to term (iii) and term (ii) greater or equal to term (iv), then trivially
JZ ≥ JZ′ for all distributions P .

“only if”: We prove the contraposition that if for all valid Z there exists a valid Z′ 6= Z and a
distributions

::::::::::
distribution P consistent with G such that

IA;Y |BRXS︸ ︷︷ ︸
(i)

< IR;Y |ABXS︸ ︷︷ ︸
(iii)

, or IX;R|ABS︸ ︷︷ ︸
(ii)

< IX;A|BRS︸ ︷︷ ︸
(iv)

, (S7)

then there always exists a modification P ′ of the distribution P such that JZ < JZ′ . This is because,
in both cases, we can always construct a distribution for which terms (ii) and (i), respectively, become
arbitrary close to zero. Consider the two cases as follows:

1) there exists a distribution P with IA;Y |BRXS < IR;Y |ABXS: Since CMIs are always non-negative,
it holds that R 6= ∅ and there must exist at least one open path between R and Y where every collider
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is in ABXS and no non-collider is in ABXS. No such open path can pass through X because if
X is a non-collider (as for paths continuing on causal paths from X to Y ), then the path is blocked,
and if X is a collider, then there would be a non-causal path from X to Y given ZS which would
make Z invalid while Z is assumed valid. Correspondingly, no open path from A (if A 6= ∅) to
Y given BRXS, if a path exists at all, can pass through X if Z′ is assumed valid. Now we can
construct a distribution P ′ with associated structural causal model (SCM) consistent with G where
IA;Y |BRXS < IR;Y |ABXS holds as in P and still all links “U∗−∗X” for X ∈ X and U /∈ XMY
almost vanish. Consider the three possible links and associated assignment functions in the SCM:
(1) “X→U” with U := fU (. . . , X, . . .), (2) “X←U” with X := fX(. . . , U, . . .), and (3) “X↔U”
with X := fX(. . . , LU , . . .) where LU denotes one or more latent variables. In each case, to go from
P to P ′, we can modify f· → f ′· where in f ′· the dependence on the respective argument is replaced
by X → cX , U → cU , or LU → cLU for c ∈ R, and where we consider the limit c → 0. This
modification does not affect IA;Y |BRXS < IR;Y |ABXS because the paths contributing to the two
CMIs cannot pass through X . On the other hand, then term (ii) IX;R|ABS → 0 because all paths
passing through X contain almost zero links and there cannot be a path from R to X through MY
for a valid Z. Hence, since in Eq. (S5) term (i) is smaller than term (iii) by assumption, and term (ii)
is almost zero, it holds that JZ < JZ′ .

2) there exists a distribution P with IX;R|ABS < IX;A|BRS: As before, since CMIs are always
non-negative, it holds that A 6= ∅ and there must exist at least one open path between A and X where
every collider is in BRS and no non-collider is in BRS. No such open path can pass through YM
because if any node in YM is a collider, then the path is blocked, and no path can contain any node in
YM as a non-collider since then either the graph is cyclic or Z′ contains descendants of YM leading
to Z′ ∩ forb 6= ∅ while Z′ is assumed valid. Correspondingly, no open path from R (if R 6= ∅) to X
given ABS, if a path exists at all, can pass through YM if Z is assumed valid. Then, analogous to
before, we can construct a P ′ with associated SCM consistent with G where IX;R|ABS < IX;A|BRS

holds and where all links “U∗−∗W ” for W ∈ YM and U /∈ XMY almost vanish. Then term (i)
IA;Y |BRXS → 0 because all paths contain almost zero links and there cannot be a path from A to Y
where X contains a collider for a valid Z′ since this would constitute a non-causal path. Hence, since
in Eq. (S5) term (ii) is smaller than term (iv) by assumption, and term (i) is almost zero, it holds that
JZ < JZ′ . �

B.5 Proof of Proposition B.1

Proposition (Optimality of O-set in causally sufficient case). Given Assumptions 1 restricted to
DAGs with no hidden variables and with O = P defined in Def. B.1, graphical optimality holds for
any graph and O is optimal.

Proof. The proof is based on Lemma 1 and relation (S5). We will prove that for any DAG G
term (i)≥(iii) and term (ii)≥(iv) from which optimality follows by Lemma 1.

We have to show that IA;Y |BRXS ≥ IR;Y |ABXS and IX;R|ABS ≥ IX;A|BRS where O = AB and
Z′ = RB with B = O ∩ Z′.

Any path from X or V \ YMOSX to YM given OS (denoted by · ), excluding the causal
path from X to Y , features at least one of the following motifs: “X,V ∗−∗ P →W ” (excluding
“X→ P →W ”), or “V←W ” where, hence, V ∈ forb.

Now all paths from a valid adjustment set Z′ with Z′ ∈ Z to Y are blocked given OS: Motif
“X,V ∗−∗ P →W ” contains a non-collider in OS and is, hence, blocked. In motif “V←W ” V ∈
forb. Since X /∈ des(Y ) (acyclicity) and Z′ ∩ des(Y ) = ∅ (validity of Z′), the paths from Z′ to
V either end with a head at V or there must be a collider K that is a descendant of V and hence,
K ∈ forb. Then K /∈ an(OS) and K /∈ Z′ and the path is therefore blocked. Hence, with R ⊆ Z′,
term (iii) is zero by Markovity.

Term (iv) IX;A|Z′S = 0 for any valid Z′ because A ⊆ pa(YM) and then otherwise there would be a
non-causal path from X through A to YM. �
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B.6 Further Lemmas

Lemma B.1 (Relevant path motifs wrt. the O-set). Given Assumptions 1 but without a priori
assuming that a valid adjustment set exists (apart from the requirement S ∩ forb = ∅). With
O = PCPC defined in Def. 4 any path from X or V \ YMOSX to YM given OS (denoted by
· ), excluding the causal path from X to Y , features at least one of the following motifs with certain

constraints as indicated. We denote V ∈ V \ YMOSX and further differentiate nodes in YM as
W ∈ YM and in O = PCPC as C ∈ C or P ∈ P or PC ∈ PC. Last, we denote those collider
path nodes not included in the O-set in Alg. C.1 due to not sufficing Def. 3(1) as F with F ∈ forb
and those not sufficing Def. 3(2a,b) as N with N /∈ forb, N /∈ vancs, and N��⊥⊥ X | vancs:

(1a) “∗−∗X→ C ↔”

(1b) “∗−∗X→ PC → C ↔”

(2a) “X,V ∗−∗ P →W” excluding “X→ P →W”

(2b) “X,V ∗−∗ PC → C ↔” excluding (1b)

(3a) “V←W” where, hence, V ∈ forb

(3b) “X,V← C ↔”

(4a) “∗−∗F↔W” with the constraint F /∈ vancs

(4b) “∗−∗F↔ C ↔” with the constraints F /∈ pa(C) and F /∈ vancs

(5a) “∗−∗N↔W” with the constraints N /∈ pa(W ) and W /∈ pa(N)

(5b) “∗−∗N↔ C ↔” with the constraint N /∈ pa(C)
Further it holds that F,N,X /∈ S.

Proof. Any path from X or V \ YMOSX to YM has to contain a link “A∗−∗B” where A = X or
A ∈ V \ YMOSX and B ∈ YMO where ∗−∗ ∈ {→,←,↔}. If we differentiate the left node by
X or V ∈ V \ YMOSX and the right node by W ∈ YM or C ∈ C or P ∈ P or PC ∈ PC, we
can in principle have 2 · 4 · 3 = 24 link types which are motifs if we consider the adjacent links to A
and B. These are listed in the Lemma except for “∗−∗X→W ” which is part of the causal path from
X to Y , “X→ P →W ” which cannot occur since then P ∈M, “V→W ” which cannot occur since
P would contain V or V ∈ des(YM) leading to a cyclic graph, “V→C” which cannot occur since
PC would contain V , and “X←W ” which cannot occur since this implies a cyclic graph.

Regarding the constraints listed in motifs (4a,b) for F ∈ forb it holds that F /∈ vancs because
vancs = an(XY S) \ forb by definition. Further, in (4b) F /∈ pa(C) holds because otherwise
C ∈ forb. In motif (5a) N /∈ pa(W ) holds because N /∈ vancs and W /∈ pa(N) holds because
N /∈ forb. In motif (5b) N /∈ pa(C) holds because C ∈ vancs contradicts N /∈ vancs and
N��⊥⊥ X | vancs with N→C contradicts C ⊥⊥ X | vancs. Last, it holds that F,N,X /∈ S because
S ∩ forb = ∅, S ∩X = ∅ by Assumptions 1 and N /∈ vancs while S ⊆ vancs. �

Lemma B.2 (Sufficient condition for non-identifiability). Given Assumptions 1 but without a priori
assuming that a valid adjustment set exists (apart from the requirement S ∩ forb = ∅). With
O = PCPC defined in Def. 4, if on any non-causal path from X to Y given OS any of the motifs
(1a) or (4a) or (4b) for F = X occurs as listed in Lemma B.1, then the causal effect of X on Y
(potentially through M) is not identifiable by backdoor adjustment.

Proof. If motif (4a) “X↔W ” for W ∈ YM occurs, the case is trivial [Pearl, 2009, Thm. 4.3.1].
In motifs (1a) “X→ C ↔” and (4b) “X↔ C ↔” we have that since Def. 3(2b) C ⊥⊥ X | vancs
is not fulfilled, Def. 3(2a) C ∈ vancs must be the case. Then every Ck on collider paths to W
also fulfills Ck ∈ vancs because for all of them Ck ⊥⊥ X | vancs does not hold since each
collider is opened. Hence, there exists a collider path X∗→C↔· · ·↔W where every collider
C ∈ vancs = an(XY S) \ forb. This path cannot be blocked by any adjustment set (given S):
colliders with C ∈ an(S) are always open. For colliders with C ∈ an(X) or C ∈ an(Y ) there is a
directed path to X or Y and either this path is open leading to a non-causal path, or an adjustment set
contains a non-collider on that directed path which opens the collider C. �
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In Theorem 1 we will prove that the condition in Lemma B.2 is also necessary for non-identifiability
by backdoor adjustment. To this end, consider the following Lemmas.

Lemma B.3 (Collider parents fulfill Def. 3). Given Assumptions 1. With O = PCPC defined in
Def. 4, for every P ∈ PC conditions (1), and (2a) or (2b) in Def. 3 hold.

Proof. Denote a pair PC→C for C ∈ C fulfilling conditions (1), and (2a) or (2b) in Def. 3. Firstly,
(1) PC /∈ forb since if PC ∈ des(YM) also C ∈ des(YM) and if PC = X , then by Lemma B.2 no
valid adjustment set exists, contrary to Assumptions 1. Secondly, it cannot be that (2a) PC /∈ vancs
and (2b) PC��⊥⊥X | vancs because then the path from X to PC would extend to C and would not be
blocked because PC /∈ vancs. But then also C /∈ vancs and C would not fulfill the conditions in
Def. 3. �

Lemma B.4 (Blockedness of parent-child-motifs). Given Assumptions 1 with O = PCPC defined
in Def. 4. Any path from X or a valid adjustment set Z with Z ∈ Z to Y containing the motifs (1b),
(2a), (2b), (3a), (3b) is blocked given OS.

Proof. Motifs (1b), (2a), (2b), and (3b) contain a non-collider in OS and are, hence, all blocked. In
motif (3a) V ∈ forb. Since X /∈ des(Y ) (acyclicity) and Z ∩ des(Y ) = ∅ (validity of Z), the paths
from Z to V either end with a head at V or there must be a collider K that is a descendant of V and
hence, K ∈ forb. Then K /∈ an(OS) and K /∈ Z and the path is therefore blocked. �

Lemma B.5 (Blockedness of F-motifs). Given Assumptions 1 with O = PCPC defined in Def. 4.
Firstly, any path from X to Y containing the motifs (4a) or (4b) for F ∈ des(YM) is blocked given
OS. Secondly, any path from a valid adjustment set Z with Z ∈ Z to Y containing the motifs (4a) or
(4b) for F ∈ des(YM) is blocked given XOS.

Proof. First statement: F /∈ vancs by Lemma B.1 and, hence, in particular F /∈ an(X). Then, if a
path exists, either the paths from X to F end with a head at F or there must be at least one collider
K with F ∈ an(K) on a path to X . Now F,K /∈ an(OS) because OS ∩ forb = ∅ and the path is
blocked. Secondly, F /∈ an(Z) since Z is valid. Then similarly, if a path exists, either the paths from
Z to F end with a head at F or there must be at least one collider K on a path to Z with F ∈ an(K).
Now F,K /∈ an(XOS) because OS ∩ forb = ∅ and F /∈ vancs by Lemma B.1 and the path is
blocked. �

Lemma B.6 (Blockedness of N-motifs). Given Assumptions 1 with O = PCPC defined in Def. 4.
Firstly, any path from X to Y containing the motifs (5a) or (5b) is blocked given OS. Secondly, any
path from a valid adjustment set Z to Y containing the motifs (5a) or (5b) is blocked given XOS if
Z does not contain any descendants of N (Z ∩ des(N) = ∅).

Proof. First statement: N /∈ vancs by definition of N and, hence, in particular N /∈ an(X). Then,
if a path exists, either the paths from X to N end with a head at N or there must be at least one
collider K with N ∈ an(K) and K /∈ vancs on a path to X . Now N,K /∈ an(OS) can be seen
by considering the different parts of O: N,K /∈ an(PS) since N,K /∈ vancs and N,K /∈ an(C)
for C ∈ vancs ∩CPC. Finally, N,K /∈ an(C) for for C ∈ CPC with C ⊥⊥ X | vancs because
N,K ��⊥⊥ X | vancs. Hence, the path is blocked. Second statement: If Z does not contain any
descendants of N , then N /∈ an(Z). Then any path from a Z is blocked by the same reasoning as in
the first part with the addition that N /∈ an(X) and hence the motif is blocked given XOS. �

The following Lemma is not needed in this paper, but may be of interest for further research.

Lemma B.7 (Existence of X-N-path and its openness given O-set). Given Assumptions 1 with
O = PCPC defined in Def. 4. There must be at least one path from X to N (defined in the motifs
(5a) or (5b)) that ends with a head at N and where every collider is in vancs and every non-collider
is not in vancs,

:::::
hence

:::::::::::::
X��⊥⊥N |vancs.

:::::::
Further,

:::
for

::::::::::::
N ′ ∈ des(N)

::::
there

::
is
:::
an

::::
open

::::
path

::::
from

:::
N ′

::
to

::
X

:::::
given

::::
OS,

:::::
hence

::::::::::
X��⊥⊥N ′|OS.

Proof.
::::
First

:::::::::
statement: By definition of the N-node, N��⊥⊥ X | vancs. Now all paths that end with a

tail at N are blocked given vancs because N /∈ an(X) and the first collider K coming from N must
be blocked because K /∈ vancs. Hence, there must be an open path that ends with a head at N and
where every collider is in vancs and every non-collider is not in vancs as stated.

::::::
Second

:::::::::
statement:

:::
We

::::
have

::
to

:::::
show

:::
that

:::
for

::::::::::::
N ′ ∈ des(N)

::::
there

::
is

:
a
::::
path

:::
to

::
X

:::::
where

:::::
every

:::::::
collider

::
is

::::
open

:::::
given

:::
OS

:::
and

::
no

:::::::::::
non-collider

::
is

::
in

::::
OS.

:::::::
Consider

:::
the

::::
path

::
in
:::
the

::::
first

::::
part

::::
from

::
X

::
to
:::
N ,

:::::::
possibly

::::::::
extended

:::
by
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:
a
:::::::
directed

::::
path

::
to

:::
N ′.

::::
For

::
all

::::::::
colliders

::
K

:::
we

::::
have

::::
that

:
if
:::::::::::
K ∈ an(S),

:::
the

::::::
collider

::
is
::::::
always

::::::
opened

:::
and

::
if

:::::::::::
K ∈ an(X),

::::
then

:::::
either

::::
there

:::::
exists

:::
an

::::
open

::::
path

::
to
:::
X

::
or,

::
if
::
a

::::::::::
non-collider

::
in

::::
this

:::
path

::
is
::
in

::
O,

::::
then

:::
the

:::::::
collider

:
is
:::::
open.

:::::::
Finally,

::
if

::::::::::
K ∈ an(Y ),

:::
the

:::::::
collider

::
is

::::
open

:::::::
because

:::::
every

:::::::
directed

:::
path

::::
from

::
K

:::
to

::
Y

:::::
either

::::
goes

:::::::
through

:::::::
P ⊆ O

::
or

::::::::::::
K ∈ P ⊆ O.

::
It

::::::
cannot

::
be

::::
that

:::::::::
K ∈ YM

::::
since

::::
then

::::::::::
K /∈ vancs

:::
and

:::
the

::::
path

:::::
would

:::
be

::::::
blocked

:::::
while

:::
we

:::::::
consider

:::
the

::::
path

:::::
from

:::
the

:::
first

::::
part

::
to

::
be

::::
open

::::
given

:::::::
vancs.

:::::::
Further,

:::
no

::::::::::
non-collider

::
D

:::
on

:::
this

::::
path

::::
can

::
be

::
in

::::
OS:

:::::::
D /∈ P

::::
since

:::::::::::
D /∈ vancs

:::
for

::
the

::::
path

:::::
from

::
X

::
to

::
N

::::
and

:
a
::::::::::
non-collider

:::
on

:::
the

:::::::
directed

::::
path

:::::::::::
N→· · ·→N ′

::::::
cannot

:::
be

::
in

::
P

::::::
because

::::::::::
N /∈ vancs.

:::::::
Finally,

:::::::::
D /∈ CPC:::::::

because
:::
D

::::
then

:::
has

::
to

:::::
fulfill

:::::
either

:::::::::::
D ∈ vancs,

:::::
which

::::::
cannot

::
be

::
as

::::::::::
D /∈ vancs,

::
or

::::::::::::::
D ⊥⊥ X|vancs

::::
(Def.

::
3
::::
part

::::::
(2a,b)).

::::
The

::::
latter

::::::
cannot

:::
be

:::
for

::
D

::::::::
occurring

:::
on

::
the

:::
path

:::::
from

::
X

::
to

::
N

:::::
since

:::
this

::::
was

:::::
shown

::
to

:::
be

::::
open

:::::
given

::::::
vancs,

:::
and

:::
for

::
D

::::::::
occurring

:::
on

:::
the

::::::
directed

:::
path

::::::::::::
N→· · ·→N ′

::::
this

::::::
cannot

::
be

:::::::
because

::::::::::::
N��⊥⊥X|vancs::::

and
::
no

:::::
node

::
on

::::
this

:::::::
directed

::::
path

:::
can

::
be

::
in

:::::
vancs

:::::
since

:::::::::::
N /∈ vancs.

::::::
Hence,

:::::::::::
X��⊥⊥N ′|OS. �

B.7 Proof of Theorem 1

Theorem (Validity of O-set). Given Assumptions 1 but without a priori assuming that a valid
adjustment set exists (apart from the requirement S ∩ forb = ∅). If and only if a valid backdoor
adjustment set exists, then O is a valid adjustment set.

Proof. “if”: Given that a valid backdoor adjustment set exists, we need to prove that (i) O∩ forb = ∅
with forb = X ∪ des(YM) and (ii) all non-causal paths from X to Y are blocked by O (given
S). (i) is true by the construction of O in Def. 4 and Alg. C.1 where nodes ∈ des(YM) are not
added and nodes that are X indicate non-identifiability (see Lemma B.2). By Lemma B.3 also
PC ∩ des(YM) = ∅ and X /∈ PC because otherwise no valid adjustment set exists by Lemma B.2.

Lemma B.1 lists all possible motifs on non-causal paths. By Lemma B.2 the occurrence of the motifs
(1a) or (4a) or (4b) for F = X renders the effect non-identifiable, contrary to the assumption. Hence
only the remaining motifs can occur. By Lemma B.4 the motifs (1b), (2a), (2b), (3a), (3b) are blocked
given OS. By Lemma B.5 (part one) the motifs (4a,b) for F ∈ des(YM) are blocked given OS. By
Lemma B.6 (part one) motifs (5a) and (5b) are blocked given OS.

“only if” is trivially true since O is then assumed valid. �

B.8 Proof of Theorem 2

Theorem (O-set vs Adjust-set ). Given Assumptions 1 with O defined in Def. 4 and the Adjust-set
vancs defined in Eq. (2), it holds that JO ≥ Jvancs for any graph G. We have JO = Jvancs only if
O = vancs or O ⊆ vancs and X ⊥⊥ vancs \O |OS.

Proof. We directly use the decomposition in Eq. (S5) with Z = O = AB and Z′ = vancs = BR
with vancs = an(XY S) \ forb and the definitions of R,B,A as in Eq. (S5). For term (iii),
IR;Y |OXS, to be non-zero, there must be an active path from R ⊆ vancs to Y given XOS.
By Lemma B.1, Lemma B.4, Lemma B.5 (second part), and Lemma B.6 (second part), the only
possibly open motifs on paths from R to Y given OXS are “←N↔W ” or “←N↔ C ↔” where
R ∩ des(N) 6= ∅. But since R ⊆ vancs and N /∈ vancs, R cannot contain descendants of N .
Hence, term (iii) is zero. For term (iv), IX;A|BRS = IX;A|vancs, note that A = O \ vancs and,
hence, for all A ∈ A it holds that A ⊥⊥ X | vancs since all A ∈ A then fulfill Def. 3(2b) (for
A ∈ PC see Lemma B.3). Hence, IX;A|vancs = 0 by Markovity. This proves that JO ≥ Jvancs.

We are now left with terms (i) and (ii) in Eq. (S5). By construction of the collider path nodes,
A ⊆ CPC is connected to Y (potentially through M) conditional on vancsX since vancs contains
all remaining collider nodes in C. Then by Faithfulness term (i) IA;Y |BRXS = IA;Y |vancsX can
only be zero if A = ∅. Then O ⊆ vancs. Term (ii), IX;R|OS = 0 if R = vancs \ O = ∅ or
X ⊥⊥ vancs \O |OS together with Faithfulness. �

B.9 Proof of Proposition B.2

Proposition (Collider-minimized O-set is a subset of Adjust.). Given Assumptions 1 with O =
PCPC defined in Def. 4 and the OCmin-set constructed with Alg. C.2 it holds that OCmin ⊆ vancs.
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Proof. Define Cmin = OCmin\P. We need to show thatC ∈ Cmin ⇒ C ∈ vancs for allC ∈ O\P.
Assume C /∈ vancs. Since then all C ∈ O \P fulfill Def. 3(2b) (for C ∈ PC see Lemma B.3), it
holds that C ⊥⊥ X | vancs implying that no link X∗−∗C exists. If a path exists at all, either (i) there
must be at least one collider K with C ∈ an(K) and K /∈ vancs on a path to X or (ii) C ∈ des(X).
We now show that for case (i) C has no open path to X given SO \ {C}. K /∈ an(OS) can be seen
by considering the different parts of OS: K /∈ an(PS) since K /∈ vancs and an(PS) ⊆ vancs.
Further, K /∈ an(vancs ∩C). Finally, K /∈ an(CPC \ vancs) since C ′ ∈ CPC \ vancs fulfill
(by Def. 3(2b)) C ′ ⊥⊥ X | vancs and K��⊥⊥ X | vancs. Hence, X ⊥⊥ C | SO \ {C} implying that
C would be removed in the first loop of Alg. C.2 and C /∈ Cmin, contrary to assumption.

In case (ii) the directed path from X to C for C ∈ C \PC is blocked because PC ⊆ O contains all
parents of C and X /∈ PC since we assume identifiability. This implies that C would be removed in
the first loop of Alg. C.2 and C /∈ Cmin, contrary to assumption. Finally, if there exists a directed
path from X to C = PC ∈ PC \C for PC /∈ vancs we know that all children C ∈ ch(PC) ∩CP
were removed in the first loop of Alg. C.2. Denote the remaining nodes after the first loop of Alg. C.2
by O′Cmin. PC /∈ vancs has no directed path to Y and is separated from Y given SO′Cmin because
the motif PC→C↔ is blocked since C /∈ an(O′Cmin). This implies that PC would be removed in
the second loop of Alg. C.2 and PC /∈ Cmin, contrary to assumption. �

B.10 Proof of Theorem 3

Theorem (Necessary and sufficient graphical conditions for optimality and optimality of O-set).
Given Assumptions 1 and with O = PCPC defined in Def. 4. Denote the set of N-nodes by
N = sp(YMC) \ (forbOS). Finally, given an N ∈ N and a collider path N↔· · ·↔C↔· · ·↔W
(including N↔W ) for C ∈ C and W ∈ YM (indexed by i) with the collider path nodes denoted by
πNi (excluding N and W ), denote by OπN

i
= O(X,Y,S′ = SNπNi ) the O-set for the causal effect

of X on Y given S′ = S ∪ {N} ∪ πNi .

If and only if exactly one valid adjustment set exists, or both of the following conditions are fulfilled,
then graphical optimality holds and O is optimal:

(I) For all N ∈ N and all its collider paths i to W ∈ YM that are inside C it holds that OπN
i

does
not block all non-causal paths from X to Y , i.e., OπN

i
is non-valid,

and

(II) for all E ∈ O \P with an open path to X given SO \ {E} there is a link E↔W or an extended
collider path E∗→C↔· · ·↔W inside C for W ∈ YM where all colliders C ∈ vancs.

Proof. If exactly one valid adjustment set exists, then optimality holds by Def. 2 and then this set is
O because O is always valid if a valid set exists (Lemma 1).

The proof is based on Lemma 1 and relation (S5). We will first prove the “if”-statement by showing
that Cond. (I) leads to term (i)≥(iii) and Cond. (II) leads to term (ii)≥(iv) from which optimality
follows by Lemma 1. Then we prove the “only if”-statement by showing that if either of the two
conditions is not fulfilled, then

::
for

:::::
every

::::::::::
adjustment

:::
set

::::
there

::::::
exists

::
an

:::::::::
alternative

:::
set

:::::
such

:::
that

(i)<(iii) or (ii)<(iv) for some distribution P consistent with Gand .
:::::

This
:::::::
implies

:::
that

:
graphical

optimality does not hold.

“if”: We have to show that if both conditions hold, then IA;Y |BRXS ≥ IR;Y |ABXS and IX;R|ABS ≥
IX;A|BRS where O = AB and Z′ = RB with B = O ∩ Z′. Further, we use AP = A ∩ P and
AC = (A ∩CPC) \AP where A = AP ∪AC.

Condition (I) directly leads to IA;Y |BRXS ≥ IR;Y |ABXS as follows.

We subdivide condition (I) into two cases where the former implies the latter: (I.1) There are no
N-nodes, i.e., N = ∅, or (I.2) for all N ∈ N and all its collider paths i it holds that OπN

i
does not

block all non-causal paths from X to Y .

If condition (I.1) holds, then there are no N-nodes. If there are no N-motifs on any path from R to Y ,
then by Lemma B.1, Lemma B.4, and Lemma B.5 (second part) all paths given XOS are blocked
and term (iii) is zero by Markovity.
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If condition (I.2) holds, then there are N-nodes. By Lemma B.6 (second part) the only possibly open
motifs on paths from R to Y given OXS are “←N↔W ” or “←N↔ C ↔” where R∩des(N) 6= ∅.
Term (iii), IR;Y |BXSA = IR;Y |XSO, is then always non-zero since, by definition of the N-nodes,
there exists at least one collider path N↔· · ·↔ C ↔· · ·↔W (including N↔W ) for C ∈ C and
W ∈ YM. To see under which conditions still term (i)≥(iii) consider two ways of decomposing the
following CMI:

IAR;Y |BXS = IA;Y |BXS︸ ︷︷ ︸
term (i’)

+ IR;Y |BXSA︸ ︷︷ ︸
term (iii)

= IR;Y |BXS︸ ︷︷ ︸
term (iii’)

+ IA;Y |BXSR︸ ︷︷ ︸
term (i)

. (S8)

From this decomposition we see that term (i)≥(iii) if and only if term (i’)≥(iii’). Paths from R to
Y via X given SXZ′ \R = BSX are blocked because if X is a collider, then there would be a
non-causal path rendering Z′ invalid. Therefore, for term (iii’) to be non-zero Z′S must contain
at least descendants of an N-node N and all its collider path nodes towards W , denoted πNi , for
at least one path i. Then R ∩ des(N) 6= ∅ and πNi ⊆ BS such that there exists an open path
“N↔ C ↔· · ·↔ C ↔W ” (or N↔W ).

Condition (I.2) now guarantees that for all N ∈ N and all collider paths indexed by i the O-set OπN
i

,
which includes NπNi as a subset, does not block all non-causal paths. By Theorem 1, if OπN

i
is not

valid, then no valid adjustment set Z′ containing NπNi as a subset exists. And this in turn implies
that no valid set with R ∩ des(N) 6= ∅ exists. To show this, assume the contraposition: If there
was such a valid set Z′ with R ∩ des(N) 6= ∅ and πNi ⊂ Z′, then it would open the collider motif
∗→N↔ since R contains descendants of N and lead to an open path “N↔ C ↔· · ·↔ C ↔W ”
(or N↔W ). If Z′ is still valid, it must block all paths from X that end with an arrowhead at N . But
then also Z′ ∪ {N} is valid. Note that since N /∈ forb, S ∩ forb = ∅, and πNi ∩ forb = ∅ since
πNi ⊆ C, the validity of OπN

i
depends only on its ability to block non-causal paths. Hence, term (iii’)

is zero and by Eq. (S8) term (i)≥(iii).

Condition (II) directly leads to IX;R|ABS ≥ IX;A|BRS as follows.

Define E = {E ∈ O \P : X��⊥⊥E | SO \ {E}}. By condition (II) there exists a link E↔W or an
extended collider path E∗→C↔· · ·↔W inside C for W ∈ YM where all colliders C ∈ vancs.
There are two types: (1) E→C↔· · ·↔W (then E ∈ PC) and (2) E↔W or E↔C↔· · ·↔W . We
consider two cases:

Case (1): E ∈ E for which there exists at least one path of type (1). Any valid Z′ with E /∈ Z′ has
to block paths from X to E since otherwise there is a non-causal open path from X to Y through
the motif chain ∗−∗E→C↔· · ·↔W for W ∈ YM: E is open since E /∈ Z′ and the part from E
to W is open since all colliders C ∈ vancs: if C ∈ an(S), the collider is always opened and if
C ∈ an(XY ) then either the directed path to X or Y is open, or C is opened if Z′ contains a node
on that path.

Case (2): E ∈ E for which all paths are of type (2). Firstly, all paths from X to E that end
with a tail at E must be blocked by Z′ since otherwise there is a non-causal path as for case (1).
The same holds for paths that end with a head at E if E ∈ vancs. Consider paths that end
with a head at E and E /∈ vancs which implies E ⊥⊥ X | vancs by Def. 3. Then it follows
that E ⊥⊥ X | SO \ {E} and, hence, E /∈ E which we can show by considering where E can
occur with respect to the different motifs listed in Lemma B.1 as follows (see the definitions of
W,V, F,N,C, PC there): Motif (1a) “∗−∗X→ C ↔” is not relevant since then non-identifiability
holds and motif (2a) “X,V ∗−∗ P →W ” is not relevant since E /∈ P. Motifs (3a) “V←W ”,
(4a) “∗−∗F↔W ”, and (5a) “∗−∗N↔W ” are not relevant since no E ∈ O is involved. For the motifs
(1b) “∗−∗X→ PC →E↔”, (2b) “X,V ∗−∗ PC → C ↔· · ·↔E”, and (3b) “X,V← C ↔· · ·↔E”

the path to X is blocked by SO \ {E}. For motif (4b) “∗−∗F↔ C ↔· · ·↔E” or “∗−∗F↔E”,
since SO ∩ forb = ∅ and X ∩ des(forb) = ∅, there must exist a collider ∈ forb or ∗→F↔ on
a path to X which is then blocked. Hence, E /∈ E. Finally, for (5b) “∗−∗N↔ C ↔· · ·↔E” or
“∗−∗N↔E” with N /∈ vancs and X��⊥⊥N | vancs we either have ∗→N↔ or there exists a collider
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on any path to X with K ∈ des(N) and, hence, K /∈ vancs. E��⊥⊥X | SO \ {E} would only be
possible if N or K ∈ an(O \ vancs). The subset O \ vancs fulfills O \ vancs ⊥⊥ X | vancs by
Def. 3. However, N or K ∈ an(O \ vancs) implies that there is a path from O \ vancs to N . Then
X��⊥⊥N | vancs contradicts O \ vancs ⊥⊥ X | vancs implying that N,K /∈ an(O \ vancs) and,
hence, E ⊥⊥ X | SO \ {E} and E /∈ E.

Both cases taken together, it holds that X ⊥⊥ E | SZ′ \ {E} for any valid Z′. Furthermore,
X ⊥⊥ P | SZ′ \ {P} with P ∈ P for any valid Z′ since P is directly connected to Y and, therefore,
a valid Z′ has to block a non-causal path between X and Y through P.

Now decompose term (iv) as

IX;A|Z′S = IX;APAE|Z′S︸ ︷︷ ︸
=0

+IX;A\(APAE)|Z′SAPAE
(S9)

with AP = A ∩P and AE = (A ∩E) \AP. The preceding derivations imply X ⊥⊥ APAE|Z′S
for any valid Z′ and, hence, the first term vanishes.

Consider the set E′ = {E′ ∈ O\P : X ⊥⊥ E′ | SO\{E′}}. This implies that AE′ = A\ (APAE)
fulfills AE′ ⊥⊥ X | SO \AE′ and since SO \AE′ = SBAPAE we have

IX;AE′ | SBAPAE
= 0 . (S10)

This now leads to term (ii) ≥ term (iv) by considering two ways of decomposing the following CMI:

IX;RAE′ |SBAPAE
= IX;AE′ |SBAPAE︸ ︷︷ ︸

=0 by Eq. (S10)

+ IX;R|SBAPAEAE′︸ ︷︷ ︸
term (ii)

(S11)

= IX;R|SBAPAE︸ ︷︷ ︸
≥0

+ IX;AE′ |SBAPAER︸ ︷︷ ︸
term (iv) by Eq. (S9)

. (S12)

“only if”: We need to prove that if either Condition (I) or Condition (II) or both are not fulfilled,
then

::
for

:::::
every

:::::
valid

:::::::::
adjustment

:::
set

::
Z

:::::::::
(including

:::
O)

::::
there

:::::
exists

::
a
::::
valid

:::
set

:::
Z′

:::
and

::
a

:::::::::
distribution

::
P

:::::::::
compatible

::::
with

::
G

::::
such

::::
that

::::::::
JZ < JZ′ ,

::::
i.e.,

::::
with

:
a
:::::::
strictly

:::::
larger

:::::::::
adjustment

:::::::::::
information,

:::::::
implying

:::
that

:
graphical optimality does not hold(implying that also O is not optimal)..

::::
We

:::::::
separate

:::
the

::::
proof

:::
into

:::::::::
adjustment

::::
sets

::
Z

::::
with

:::::::::
O \ Z 6= ∅

:::
for

:::::
which

:::
the

:::::::::
adjustment

:::
set

::::::
Z′ = O

:::::::
together

::::
with

::
a
:::::::
suitably

:::::::::
constructed

::::::::::
distribution

::
P

::::::
fulfills

::::::::
JZ < JZ′

::::
and

:::::::::
O \ Z = ∅

:::
for

:::::
which

:::::
either

:::::::
Z′ = O

::
or

:::::::::
Z′ = OπN

i

:::::
fulfills

:::::::::
JZ < JZ′ ,

:::::::::
depending

::
on

::::::
further

::::
case

::::::::::
distinctions

::
as

::::::::
discussed

::::::
below.

:

The negation of Condition
::
We

::::
first

::::::::
consider

:::::::::
adjustment

::::
sets

::
Z

::::
with

::::::::::
O \ Z 6= ∅,

:::
i.e.

::::::::::
adjustment

:::
sets

::::
that

:::
are

:::
not

:::::::
supersets

::
of

:::
the

::::::
O-set.

::::::::
Consider

::::::::
Z′ = O,

:::::
which

::
is
:::::
valid

::
by

:::::
Thm.

::
1,
::::

and
::::::
implies

:::::
R 6= ∅

::
in
:::
the

::::::::
notation

::::
used

:::::::::
throughout

:::
this

::::::
paper.

:::
For

:::
all

::
Z

:::
we

:::
can

:::::::
actually

::::
show

::::
that

::::
there

::::::
always

:::::
exists

:
a
::::::::::
distribution

::
P

::::
such

::::
that

:::::::::
JZ < JZ′ ,

::::::::::
irrespective

::
of

:::::::
whether

:::::::::
Condition

:
(I) directly leads to

IA;Y |BRXS < IR;Y |ABXS for some distribution P consistent with G as follows: There exists at
least one N-node with at least one collider path N↔· · ·↔C↔· · ·↔W (including N↔W ) for
C ∈ C andW ∈ YM (indexed by i) with collider path nodes denoted πNi such that OπN

i
blocks all

non-causal paths from X
:::::
and/or

:::
(II)

:::::
holds

::
or

:::
not.

:

::::
Since

::::::::::::::
R ⊆ O = BR,

:::
at

::::
least

::::
one

:::::::
R ∈ R

::::
has

:::
an

:::::
open

::::
path

:
to Y . OπN

i
is the O-set for

the causal effect of X on Y given S′ = S ∪ {N} ∪ πNi . Consider Z′ = OπN
i

. Since also
N /∈ forb, S ∩ forb = ∅, and πNi ∩ forb = ∅, Z′ = OπN

i
is valid. Since N ∈ OπN

i
while

N /∈ O, we have R 6= ∅, and since πNi ⊆ C we have πNi ⊆ BS and there exists an open path
N↔ C ↔· · ·↔ C ↔W (or N↔W ) such that IR;Y |BXS > 0. Similar to Lemma 1 we can now
::::
given

::::::::
ABXS,

:::::
either

:::::::
because

:::::::
R ∈ P,

:::
or,

::
if

::::::::::
R ∈ CPC,

::::
then,

:::
for

::
at
:::::

least
:::
one

:::::::
R ∈ R,

:::::
there

::
is

::
an

::::
open

:::::::
collider

::::
path

:::
(or

::::
link)

::::::::::::::::::::::
R∗→ C ↔· · ·↔ C ↔W

:::
for

::::::::::
W ∈ YM

::::
since

:::
all

::::::::
colliders

::::::::
C ∈ BS.

:::::
Hence

::
it

:::::
holds

:::
that

::::::::::::::
IR;Y |ABXS > 0.

:::::::
Further,

::
if

::::::
A = ∅,

::::
then

:::::::::::
immediately

::::
term

:::
(i),

::::::::::::::
IA;Y |BRXS = 0.

:::::::::::
Alternatively,

::
if

::::::
A 6= ∅,

:::
we construct a distribution P with associated SCM consistent with G where

all links “U∗−∗A” forA ∈ A almost vanish and, hence, term (i’), IA;Y |BXS → 0
:
),
::::::::::::::
IA;Y |BRXS → 0:

Consider the three possible links and associated arbitrary assignment functions in the SCM:
(1) “A→U” with U := fU (. . . , cA, . . .), (2) “A←U” with A := fA(. . . , cU, . . .), and (3) “A↔U”
with A := fA(. . . , cL

U , . . .) where LU denotes one or more latent variables and c ∈ R. We then con-
sider the limit c→ 0 leading to term (i’), IA;Y |BXS → 0

:
),

::::::::::::::
IA;Y |BRXS → 0

:::
and

::::
then

::::
term

::::::::
(i)<(iii).
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::
By

:::::::
Lemma

::
1,
::::::

where
::
P

::
is
:::::::

further
:::::::
modified

:::
to

::
P ′

:::::::
without

::::::::
affecting

::::
term

::::::::
(i)<(iii),

::::
then

::::::::
graphical

::::::::
optimality

::::
does

:::
not

:::::
hold.

:

::::::::
Secondly,

:::
we

:::::::
consider

:::::::::
adjustment

::::
sets

::
Z

::::
with

::::::::::
O \ Z = ∅,

:::
i.e.

:::::::::
adjustment

::::
sets

:::
that

:::
are

::::::::
supersets

::
of

::
the

:::::
O-set

:::
(or

:::
the

:::::
O-set

:::::
itself)

::::
and

::::::::
separately

:::::::
consider

:::
the

:::::
cases

:::
that

:::::
either

:::::::::
Condition

::
(I)

::
or

::::::::
Condition

:::
(II)

:::
are

:::
not

::::::::
fulfilled.

:::
If

::::
both

:::
are

::::
not

::::::::
fullfilled,

::::
then

::::::
either

::
of

:::
the

:::::::::
alternative

::::::::::
adjustment

::::
sets

::
Z′

:::::::::
considered

:::::
below

:::
can

:::
be

::::
used.

:

:::
For

:::
the

::::
case

:::
that

:::::::::
Condition

:::
(I)

::::
does

:::
not

:::::
hold,

::::
there

:::::
exists

::
at
:::::
least

:::
one

:::::::
N-node.

:::::
Now

::::::
further

:::::
divide

::
the

:::::
valid

:::::::::
adjustment

::::
sets

:::
into

:::::
those

::::
with

::::::::::::::
Z ∩ des(N) 6= ∅

::::
and

::::::::::::::
Z ∩ des(N) = ∅.

:

::
In

::::
case

::
of

:::
the

::::::
former

:::::::
(where

:::::::
Z 6= O),

::::::::
consider

:::
the

:::::::
Z′ = O

:::::
(valid

:::
by

:::::
Thm.

:::
1).

:::::
Then

::::::
R = ∅

:::
and

::::
term

:::
(ii),

:::::::::::::
IX;R|ABS = 0.

::::
On

:::
the

::::
other

:::::
hand,

::::::
A 6= ∅

::::
and

:::
by

::::::
Lemma

::::
B.7

::::
there

:::::
exists

:::
an

::::
open

::::
path

::::
from

:::::::::::::::
N ′ ∈ A ∩ des(N)

:::
to

::
X

:::::
given

:::::::::::
BRS = OS

::::
such

:::
that

:::::::::::::
IX;A|RBS > 0.

:::::
Then

::::
term

::::::::
(ii)<(iv)

:::
for

::
all

::
P

:::
that

:::
are

:::::::
faithful

::
to

::
G.

:::
By

::::::
Lemma

::
1,
::::::
where

::
P

::
is

:::::::
modified

::
to

:::
P ′

::::::
without

::::::::
affecting

::::
term

::::::::
(ii)<(iv),

:::
then

::::::::
graphical

:::::::::
optimality

::::
does

:::
not

:::::
hold.

:

::
In

::::
case

::
of

:::
the

:::::
latter,

:::::::::::::::
Z ∩ des(N) = ∅

::::::
(which

:::::::
includes

::::
O),

:::::::
consider

::::::::::
Z′ = OπN

i
.
:::::
OπN

i :
is
::::

the
::::
O-set

::
for

:::
the

::::::
causal

:::::
effect

::
of

::
X

:::
on

::
Y

:::::
given

::::::::::::::::::
S′ = S ∪ {N} ∪ πNi .

:::
By

:::
the

:::::::
negation

:::
of

::::::::
Condition

:::
(1)

::::
there

:::::
exists

:
at
::::
least

::::
one

::::::
N-node

::::
with

::
at

::::
least

:::
one

:::::::
collider

::::
path

::::::::::::::::::::
N↔· · ·↔C↔· · ·↔W

:::::::::
(including

:::::::
N↔W )

::
for

:::::::
C ∈ C

::::
and

:::::::::
W ∈ YM

::::::::
(indexed

::
by

:::
i)

::::
with

:::::::
collider

::::
path

::::::
nodes

:::::::
denoted

:::
πNi :::::

such
::::
that

::::
OπN

i

:::::
blocks

:::
all

:::::::::
non-causal

::::
paths

:::::
from

::
X

::
to

:::
Y .

:::::
Since

:::
also

::::::::::
N /∈ forb,

::::::::::::
S ∩ forb = ∅,

:::
and

::::::::::::::
πNi ∩ forb = ∅,

:::::::::
Z′ = OπN

i :
is
:::::
valid.

::::::
Since

::::::::
N ∈ OπN

i :::::
while

:::::::
N /∈ Z,

:::
we

::::
have

:::::::::::
N ∈ R 6= ∅,

:::
and

:::::
since

::::::::::
πNi ⊆ OπN

i ::
we

::::
have

::::::::::
πNi ⊆ BRS

::::
and

::::
there

:::::
exists

:::
an

::::
open

::::
path

:::::::::::::::::::::
N↔ C ↔· · ·↔ C ↔W

:::
(or

:::::::
N↔W )

::::::
where

:::::
every

::::::
C ∈ B

::
or

::::::
C ∈ R

::::
such

::::
that

::::::::::::::
IR;Y |ABXS > 0.

:::
As

::::::
above,

:::::
either

::::::
A = ∅

:::
and

::::
term

::
(i)

:::::::::::::::
IA;Y |BRXS = 0,

::
or

::
we

::::
can

:::::::
construct

::
a

:::::::::
distribution

::
P

::::
with

:::::::::
associated

:::::
SCM

::::::::
consistent

::::
with

::
G

:::::
where

::
all

:::::
links

::::::::
“U∗−∗A”

::
for

:::::::
A ∈ A

::::::
almost

:::::
vanish

:::
and,

::::::
hence,

:::::
term

:::
(i),

::::::::::::::
IA;Y |BRXS → 0. Since A ∩ NπNi = ∅ this does

not affect the collider path N↔ C ↔· · ·↔ C ↔W (or N↔W ) such that IR;Y |BXS > 0. By Eq.
then

::::::::::::::
IR;Y |BRXS > 0.

::::
Then

:
term (i)<(iii) . By

:::
and

::
by

:
Lemma 1, where P is further modified to P ′

without affecting term (i)<(iii), then graphical optimality does not hold.
::
As

:::::::::
mentioned

::::::
above,

:::
for

:::
this

::::::::::
distribution

:::
also

:::::::::::
JO < JO

πN
i

.
:

Alternatively, the negation of
::::
Now

:::::::
consider

::::
the

:::::
case

::::
that

:
Condition (II) directly leads to

IX;R|ABS < IX;A|BRS as follows:
:::
does

::::
not

::::
hold.

::::
We

::::
have

:::::::::::
Z = O ∪A′

::::::
which

:::::::
includes

::::::
Z = O

::
for

:::::::
A′ = ∅.

:
By the negation of Condition (II) there exists an E ∈ O \P with X��⊥⊥E | SO \ {E}

such that there is no link E↔W and all extended collider paths E∗→C↔· · ·↔W inside C for
W ∈ YM contain at least one collider C /∈ vancs. Define the set of these non-ancestral colliders as

CE = {C ∈ C : E∗→ · · ·↔C↔· · ·↔W} \ vancs . (S13)

We define EC = {E} ∪ (des(CE) ∩ O) and choose Z′ = O \ EC implying
A = EC::::::::::::

A = EC ∪A′, B = O \ EC, and R = ∅. We need to show that (1) Z′ is valid and
(2) IX;A|BRS = IX;EC|SO\EC

> IX;R|ABS = 0
:::::::::::::::::::::::::::::::::::::::
IX;A|BRS = IX;ECA′|SO\EC

> IX;R|ABS = 0
(since R = ∅).
Ad (1): As a subset of O we have that Z′∩forb = ∅. We investigate whether Z′ blocks all non-causal
paths between X and Y by considering the motifs in Lemma B.1. In addition to all those motifs
listed there,

:
there are modified motifs where unconditioned C-nodes and PC-nodes occur (denoted

without a · ) due to removing EC from O.

Firstly, the unmodified motifs are blocked as before (see Theorem 1): Motif (1a) “∗−∗X→ C ↔”
is not relevant since then non-identifiability holds. By Lemma B.4 the motifs (1b), (2a), (2b), (3a),
(3b) all contain a non-collider in SO \ EC and are blocked. By Lemma B.5 (part one) the motifs
(4a,b) for F ∈ des(YM) are blocked because Z′ ∩ forb = ∅. By Lemma B.6 (part one) motifs (5a)
and (5b) are blocked given SO \ EC because the proof in Lemma B.6 requires that on paths to X
either N is a collider or there exists a descendant collider K and that N,K /∈ an(OS). The latter is
fulfilled because SO \ EC is a subset of SO.

Secondly, all paths from X through the removed node E to W ∈ YM are blocked by SO \ EC:
Paths through P are blocked since E /∈ P and des(CE) ∩ vancs = ∅ and, hence, P ⊆ SO \ EC.
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Paths through colliders are blocked by the negation of condition (II): there is no link E↔W and
all extended collider paths E∗→C↔· · ·↔W inside C for W ∈ YM contain at least one collider
C /∈ vancs. By construction, EC = {E} ∪ (des(CE) ∩O), implying that all these non-ancestral
colliders are blocked.

Thirdly, we consider the modified motifs with unconditioned C,PC ∈ (des(CE) ∩ O). By
definition of CE in (S13), C,PC /∈ vancs. (As a remark, E can potentially be in vancs.)
Motif (1a) “∗−∗X→ C ↔” cannot occur since then non-identifiability holds. Modified motifs
(1,2b’) “X,V ∗−∗ PC →C↔” and (1,2b”) “X,V ∗−∗ PC → C ↔· · ·↔C↔” are blocked since
they contain a

::::::::::
conditioned

:
non-collider. Motifs (1,2b”’) “X,V ∗−∗PC→C↔” are blocked since

C /∈ des(SO \ EC).::::::::::::::::::::::::::::::::::::
SO \ EC = SO \ ({E} ∪ (des(CE) ∩O))

::::
does

:::
not

:::::::
contain

:::
any

:::::::::
descendant

::
of

::
C.

:
Motif (2a’) “X,V ∗−∗P→W ” is not possible since P ∈ P ⊆ vancs. Motifs (3a) “V←W ”,

(4a) “∗−∗F↔W ”, and (5a) “∗−∗N↔W ” are not modified since no conditioned node occurs. Mo-
tif (3b’) “X,V←C↔” is blocked because due to C /∈ vancs there must exist a descendant of C
that is a collider K /∈ vancs on the path to X . Since EC contains all descendants of C, also K and
all its descendants are not in SO \ EC and K is blocked. Finally, motifs (4b’) “∗−∗F↔C↔” and
(5b’) “∗−∗N↔C↔” are blocked since SO \ EC does not contain any descendant of C. This proves
the validity of Z′.

Ad (2): To show that IX;A|BRS = IX;EC|SO\EC
> IX;R|ABS = 0

we
:::::::::::::::::::::::::::::::::::::::
IX;A|BRS = IX;ECA′|SO\EC

> IX;R|ABS = 0,
::::::::::::

we
:::::::::::::::::

decompose
:::::::::::::::::::::::::::::::::::::
IX;ECA′|SO\EC

= IX;EC|SO\EC
+ IX;A′|SO:::

and
:::::

prove
::::

that
::
at

::::
least

:::
the

::::
first

::::
term

::
is

::::::::
non-zero.

:::
We

start from the assumption
:
in

:::
the

::::::::
negation

::
of

:::::::::
Condition

:::
(II) that E��⊥⊥X | SO \ {E}. This implies

that there exists a path from X to E where no non-collider is in SO \ {E} and for every collider K
it holds that des(K) ∩ SO \ {E} 6= ∅. With Z′ = O \ EC all non-colliders are still open. Consider
those colliders K with des(K) ∩ (O \ {E}) ⊆ EC \ {E}. Then these colliders are closed on the
path from E to X . However, for each such K there is a C ∈ EC \ {E} with C ∈ des(K). Then
the path from X through ∗→K→· · ·→C is open given SO \ EC. Hence, at least for the last such
collider on the path from E to X there is an open path from C ∈ EC \ {E} to X given SO \ EC.
Then Faithfulness implies that IX;A|BRS = IX;EC|SO\EC

> IX;R|ABS = 0
:::::::::::::::
IX;EC|SO\EC

> 0
and, hence, term (ii) < term (iv) holds for all distributions P consistent with G. By Lemma 1, where
the distribution P is modified to P ′ without affecting term (ii)<(iv), then graphical optimality does
not hold.

:::::
Note

:::
that

::::
this

:::
also

::::::
proves

::::
that

:::::::::::
JO < JO\EC

.

This concludes the proof of Theorem 3. �

B.11 Proof of Corollary B.1

Corollary (Minimality and minimum cardinality). Given Assumptions 1, assume that graphical
optimality holds, and, hence, O is optimal. Further it holds that:

1. If O is not minimal, then JO > JZ for all minimal valid Z 6= O,

2. If O is minimal valid, then O is the unique set that maximizes the adjustment information
JZ among all minimal valid Z 6= O,

3. O is of minimum cardinality, that is, there is no subset of O that is still valid and optimal.

Proof. We again define disjunct sets R,B,A with A = O \ Z, R = Z \O, and B = O ∩ Z, where
any of them can be empty, but not both R and A since then Z = O. Hence O = AB and Z = BR.
Consider relation (S5) in this case,

JO = JZ
+ IA;Y |BRXS︸ ︷︷ ︸

(i)

+ IX;R|ABS︸ ︷︷ ︸
(ii)

− IR;Y |ABXS︸ ︷︷ ︸
(iii)

− IX;A|BRS︸ ︷︷ ︸
(iv)

. (S14)

Part 1 and 2: Since graphical optimality holds, we know that JO = JZ can only be achieved if term (i)
= term (iii) and term (ii) = term (iv). From Eq. (S8) we know that term (i) = (iii) can only hold if
IA;Y |BXS = 0. But this implies A = ∅ by Faithfulness since, by construction, A ⊂ O is always
connected to Y (potentially through M) given XSO \A. Then term (iv) = 0 and, by optimality,
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IX;R|∅BS = 0. But the latter would imply that Z = BR is either not minimal anymore since R is
not connected to X and, hence, does not block any non-causal path not already blocked by B. Then
JO > JZ among all minimal valid Z (Part 1). Or Z is minimal and R = ∅, for which Z = O is the
unique set maximizing JZ among all minimal valid Z 6= O (Part 2).

Part 3, i.e., that removing any subset from O decreases JO follows directly from setting R = ∅ and
considering A 6= ∅ (since otherwise nothing would be removed). Then term (ii) and term (iii) are
both zero and by optimality term (iv), which must be smaller or equal to term (ii), is zero. Since A is
connected to Y (see Part 1) by Faithfulness we have JO > JO\A. �
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C Algorithms

Algorithm C.1 Construction of O-set and test for backdoor-identifiability.
Require: Causal graph G, cause variable X , effect variable Y , mediators M, conditioned variables

S
1: Initialize P = ∅, C = ∅ and PC = ∅
2: for W ∈ YM do
3: P = P ∪ pa(W ) \ forb
4: for W ∈ YM do
5: Initialize nodes in this level L = {W}
6: Initialize ignorable nodes N = ∅
7: while |L| > 0 do
8: Initialize next level L′ = ∅
9: for C ∈ sp(L) \ N do

10: if C = X then
11: return No valid backdoor adjustment set exists.
12: if C /∈ C and Def. 3 (1) C /∈ forb and ((2a) C ∈ vancs or (2b) C ⊥⊥ X | vancs)

then
13: C = C ∪ {C}
14: L′ = L′ ∪ {C}
15: else
16: if C /∈ C then
17: N = N ∪ {C}
18: L = L′ \ N
19: for C ∈ C do
20: if X ∈ pa(C) then
21: return No valid backdoor adjustment set exists.
22: PC = PC ∪ pa(C)
23: return O = PCPC

Algorithm C.2 Construction of Omin and OCmin-sets. The relevant code for OCmin is indicated in
parentheses.
Require: Causal graph G, cause variable X , effect variable Y , mediators M, conditioned variables

S, O = PCPC-set
1: Initialize Omin = O (Cmin = CPC \P)
2: for Z ∈ Omin (Z ∈ Cmin) do
3: if Z has no active path to X given SO \ {Z} then
4: Mark Z for removal
5: Remove marked nodes from Omin (Cmin)
6: for Z ∈ Omin (Z ∈ Cmin) do
7: if Z has no active path to Y given XSOmin \ {Z} (given XSPCmin \ {Z}) then
8: Mark Z for removal
9: Remove marked nodes from Omin (Cmin)

10: return Omin (OCmin = PCmin)
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D Further details and figures of further numerical experiments

D.1 Setup

We compare the following adjustment sets (see definitions in Section 2.3):

• O

• Adjust
• OCmin

• Omin

• AdjustXmin

• Adjustmin

To investigate the applicability of different estimators, we use above adjustment sets together with the
following estimators from sklearn (version 0.24.2) and the doubleml (version 0.4.0) package (see
instantiated class for parameters):

• Linear ordinary least squares (LinReg) regressor LinearRegression()
• k-nearest-neighbor (kNN) regressor KNeighborsRegressor(n_neighbors=3)
• Multilayer perceptron (MLP) regressor MLPRegressor(max_iter=2000)
• Random forest (RF) [Breiman, 2001] regressor RandomForestRegressor()
• Double machine learning for partially linear regression models (DML) [Cher-

nozhukov et al., 2018] DoubleMLPLR(data, ml_g, ml_m) from doubleml with
ml_g=ml_g=MLPRegressor(max_iter=2000) from sklearn

Sklearn [Pedregosa et al., 2011] and doubleml [Bach et al., 2021] are both available under an MIT
license.

As data generating processes we consider linear and nonlinear experiments generated with the
following generalized additive model:

V j =
∑
icifi(V

i) + ηj for j ∈ {1, . . . , Ñ} . (S15)

To generate a structural causal model among Ñ variables we randomly choose L links whose
functional dependencies are linear for linear experiments and one half is fi(x) = (1 + 5xe−x

2/20)x
for nonlinear experiments. Coefficients ci are drawn uniformly from±[0.1, 2]. For linear experiments
we use normal noise ηj ∼ N (0, σ2) and, in addition, for nonlinear models 1

3 of the noise terms
is Weibull-distributed, both with standard deviation σ drawn uniformly from [0.5, 2]. From the Ñ
variables of each dataset we randomly choose a fraction λ as unobserved and denote the number
of observed variables as N . For each combination of N ∈ {5, 10, 15, 20}, L ∈ {2Ñ , 3Ñ}, and
λ ∈ {30%, 40%, 50%} we randomly create a structural causal model and then randomly pick an
observed pair (X = V i, Y = V j) connected by a causal path, set S = ∅, and consider the intervention
do(V i = V i + 1 = x) relative to the unperturbed data (x′) as ground truth, which corresponds to
the linear regression coefficient in the linear case. We further assert that the following criteria hold:
(1) the effect is identifiable, (2) the minimal adjustment cardinality is |vancsmin(X,Y )| > 0, and
(3) the (absolute) causal effect is ≥ 10−3 to make sure that Faithfulness holds (if these criteria cannot
be fulfilled, another model is generated). We create 500 models for each combination of N,L, λ.
Surprisingly, among in total 12,000 randomly created configurations 93% fulfill the optimality
conditions in Thm. 3. This may indicate that also in many real-world scenarios graphical optimality
actually holds. Here we do not consider the effect of a selected conditioning variable S since it would
have a similar effect on all methods considered.

For the considered graphs the computation time to construct adjustment sets is very short and
arguably negligible to the actual cost of fitting methods that use these adjustment sets. The results
were evaluated on Intel Xeon Platinum 8260.
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D.2 Figures for linear least squares estimator
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LinReg  |  random_lineargaussian  |  n= 30 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  72 / 34   Adjust:  10 / 7   OptCmin:  7 / 46   Optmin:  5 / 4   AdjustXmin:  2 / 7   Adjustmin:  0 / 0

Figure S2: Results of linear experiments with linear estimator and sample size n = 30. The
diagonal depicts letter-value plots [Hofmann et al., 2017] of adjustment set cardinalities and the off-
diagonal shows pairs of RMSE ratios for all combinations of (O, Adjust, OCmin, Omin, AdjustXmin,
Adjustmin) for optimal configurations (left in blue) and non-optimal configurations (right in green).
Values above 200% are not shown. The dashed horizontal line denotes the median of the RMSE ratios,
and the white plus their average. The letter-value plots are interpreted as follows: The largest box
shows the 25%–75% range. The next smaller box above (below) shows the 75%–87.5% (12.5%–25%)
range and so forth. The numbers on best-ranked methods at the top indicate the percentage of the
12,000 randomly created configurations where the method had the lowest variance. The highest
percentage is marked in bold. Note that the highest ranked method may outperform others only by
a small margin. The results in the letter-value plots provide a more quantitative picture. See also
Fig. S7 where the ranks are further distinguished by the O-set cardinality.
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LinReg  |  random_lineargaussian  |  n= 50 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  78 / 39   Adjust:  10 / 6   OptCmin:  5 / 45   Optmin:  3 / 3   AdjustXmin:  2 / 5   Adjustmin:  0 / 0

Figure S3: As in Fig. S2 but for n = 50.
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LinReg  |  random_lineargaussian  |  n= 100 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  81 / 45   Adjust:  9 / 6   OptCmin:  4 / 38   Optmin:  2 / 2   AdjustXmin:  1 / 6   Adjustmin:  0 / 0

Figure S4: As in Fig. S2 but for n = 100.
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LinReg  |  random_lineargaussian  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  85 / 50   Adjust:  8 / 6   OptCmin:  2 / 36   Optmin:  1 / 0   AdjustXmin:  1 / 5   Adjustmin:  0 / 0

Figure S5: As in Fig. S2 but for n = 1000.
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LinReg  |  random_lineargaussian  |  n= 10000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  86 / 53   Adjust:  8 / 4   OptCmin:  1 / 36   Optmin:  1 / 0   AdjustXmin:  1 / 5   Adjustmin:  0 / 0

Figure S6: As in Fig. S2 but for n = 10000.

20



2 4 6 8 10 12 14 16
Cardinality of O-set

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
op

-ra
nk

ed

Optimal configurations

% Optimal configs.
Opt
Adjust
OptCmin
Optmin
AdjustXmin
Adjustmin

2 4 6 8 10 12 14 16
Cardinality of O-set

0

20

40

60

80

100
Non-optimal configurations

LinReg  |  random_lineargaussian  |  n= 30 |  dX = 1  
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LinReg  |  random_lineargaussian  |  n= 50 |  dX = 1  
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LinReg  |  random_lineargaussian  |  n= 100 |  dX = 1  
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LinReg  |  random_lineargaussian  |  n= 1000 |  dX = 1  
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Figure S7: Percentage of configurations where each method has the lowest variance for linear
experiments, stratified by the cardinality of the O-set (x-axis) for n = 30 (top) to n = 10,000
(bottom). 21



D.3 Figures for non-parametric estimators
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kNN  |  random_lineargaussian  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  46 / 11   Adjust:  7 / 8   OptCmin:  4 / 25   Optmin:  39 / 50   AdjustXmin:  0 / 0   Adjustmin:  2 / 4

Figure S8: As in Fig. S2 but with kNN estimator (k = 3) and n = 1000. See also Figs. S15,S16
where the ranks are further distinguished by the O-set cardinality.

23



0

5

10

15

20
Opt

   
0%

50%

100%

150%

200%
Opt/Adjust

   
0%

50%

100%

150%

200%
Opt/OptCmin

   
0%

50%

100%

150%

200%
Opt/Optmin

   
0%

50%

100%

150%

200%
Opt/AdjustXmin

   
0%

50%

100%

150%

200%
Opt/Adjustmin

   
0%

50%

100%

150%

200%
Adjust/Opt

0

5

10

15

20
Adjust

   
0%

50%

100%

150%

200%
Adjust/OptCmin

   
0%

50%

100%

150%

200%
Adjust/Optmin

   
0%

50%

100%

150%

200%
Adjust/AdjustXmin

   
0%

50%

100%

150%

200%
Adjust/Adjustmin

   
0%

50%

100%

150%

200%
OptCmin/Opt

   
0%

50%

100%

150%

200%
OptCmin/Adjust

0

5

10

15

20
OptCmin

   
0%

50%

100%

150%

200%
OptCmin/Optmin

   
0%

50%

100%

150%

200%
OptCmin/AdjustXmin

   
0%

50%

100%

150%

200%
OptCmin/Adjustmin

   
0%

50%

100%

150%

200%
Optmin/Opt

   
0%

50%

100%

150%

200%
Optmin/Adjust

   
0%

50%

100%

150%

200%
Optmin/OptCmin

0

5

10

15

20
Optmin

   
0%

50%

100%

150%

200%
Optmin/AdjustXmin

   
0%

50%

100%

150%

200%
Optmin/Adjustmin

   
0%

50%

100%

150%

200%
AdjustXmin/Opt

   
0%

50%

100%

150%

200%
AdjustXmin/Adjust

   
0%

50%

100%

150%

200%
AdjustXmin/OptCmin

   
0%

50%

100%

150%

200%
AdjustXmin/Optmin

0

5

10

15

20
AdjustXmin

   
0%

50%

100%

150%

200%
AdjustXmin/Adjustmin

   
0%

50%

100%

150%

200%
Adjustmin/Opt

   
0%

50%

100%

150%

200%
Adjustmin/Adjust

   
0%

50%

100%

150%

200%
Adjustmin/OptCmin

   
0%

50%

100%

150%

200%
Adjustmin/Optmin

   
0%

50%

100%

150%

200%
Adjustmin/AdjustXmin

0

5

10

15

20
Adjustmin

kNN  |  random_nonlinearmixed  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  55 / 22   Adjust:  11 / 14   OptCmin:  5 / 31   Optmin:  25 / 28   AdjustXmin:  0 / 0   Adjustmin:  2 / 2

Figure S9: As in Fig. S2 but for kNN estimator (k = 3), the nonlinear model, and n = 1000.
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MLP  |  random_lineargaussian  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  31 / 32   Adjust:  13 / 4   OptCmin:  18 / 26   Optmin:  10 / 6   AdjustXmin:  18 / 25   Adjustmin:  8 / 5

Figure S10: As in Fig. S2 but for MLP estimator and n = 1000.
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MLP  |  random_nonlinearmixed  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  24 / 28   Adjust:  15 / 9   OptCmin:  17 / 24   Optmin:  13 / 9   AdjustXmin:  17 / 19   Adjustmin:  11 / 9

Figure S11: As in Fig. S2 but for MLP estimator, the nonlinear model, and n = 1000.
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RF  |  random_lineargaussian  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  14 / 10   Adjust:  10 / 5   OptCmin:  14 / 17   Optmin:  24 / 24   AdjustXmin:  13 / 19   Adjustmin:  22 / 22

Figure S12: As in Fig. S2 but for RF estimator and n = 1000.
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RF  |  random_nonlinearmixed  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:
   Opt:  21 / 25   Adjust:  14 / 10   OptCmin:  16 / 18   Optmin:  15 / 12   AdjustXmin:  16 / 23   Adjustmin:  14 / 10

Figure S13: As in Fig. S2 but for RF estimator, the nonlinear model, and n = 1000.
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DML  |  random_lineargaussian  |  n= 1000 |  dX = 1  
 93% of configurations are optimal  |  percentage of best-ranked among optimal / non-optimal configurations:

   Opt:  24 / 19   Adjust:  13 / 4   OptCmin:  20 / 29   Optmin:  12 / 8   AdjustXmin:  19 / 28   Adjustmin:  10 / 9

Figure S14: As in Fig. S2 but for DML estimator and n = 1000.
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Figure S15: As in Fig. S7 but including non-parametric estimators for n = 1000.
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kNN  |  random_nonlinearmixed  |  n= 1000 |  dX = 1  
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Figure S16: As in Fig. S15 but for nonlinear experiments.
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