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Abstract

Text-to-Image generation in the general domain has long been an open problem,
which requires both a powerful generative model and cross-modal understanding.
We propose CogView, a 4-billion-parameter Transformer with VQ-VAE tokenizer
to advance this problem. We also demonstrate the finetuning strategies for various
downstream tasks, e.g. style learning, super-resolution, text-image ranking and
fashion design, and methods to stabilize pretraining, e.g. eliminating NaN losses.
CogView achieves the state-of-the-art FID on the blurred MS COCO dataset,
outperforming previous GAN-based models and a recent similar work DALL-E.
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Figure 1: Samples generated by CogView. The text in the first line is either from MS COCO (outside
our training set) or user queries on our demo website. The images in the second line are finetuned
results for different styles or super-resolution. The actual input text is in Chinese, which is translated
into English here for better understanding. More samples for captions from MS COCO are included
in Appendix [F

1 Introduction

“There are two things for a painter, the eye and the mind... eyes, through which
we view the nature; brain, in which we organize sensations by logic for meaningful
expression.” (Paul Cézanne [I7])

'Codes and models are at https://github. com/THUDM/CogView, We also have a demo website of our
latest model at https://wudao.aminer.cn/CogView/index.html| (without post-selection).

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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As contrastive self-supervised pretraining has revolutionized computer vision (CV) [24} 21} 8} 132]],
visual-language pretraining, which brings high-level semantics to images, is becoming the next
frontier of visual understanding [38}130,/39]. Among various pretext tasks, text-to-image generation
expects the model to (1) disentangle shape, color, gesture and other features from pixels, (2) under-
stand the input text, (2) align objects and features with corresponding words and their synonyms and
(4) learn complex distributions to generate the overlapping and composite of different objects and
features, which, like painting, is beyond basic visual functions (related to eyes and the V1-V4 in
brain [22]), requiring a higher-level cognitive ability (more related to the angular gyrus in brain [3]]).

The attempts to teach machines text-to-image generation can be traced to the early times of deep gen-
erative models, when Mansimov et al. [35] added text information to DRAW [20]]. Then Generative
Adversarial Nets [19] (GANs) began to dominate this task. Reed et al. [42] fed the text embeddings
to both generator and discriminator as extra inputs. StackGAN [54] decomposed the generation into
a sketch-refinement process. AttnGAN [51]] used attention on words to focus on the corresponding
subregion. ObjectGAN [29] generated images following a text—boxes—layouts—image process.
DM-GAN [55] and DF-GAN [435]] introduced new architectures, e.g. dyanmic memory or deep fusion
block, for better image refinement. Although these GAN-based models can perform reasonable
synthesis in simple and domain-specific dataset, e.g. Caltech-UCSD Birds 200 (CUB), the results on
complex and domain-general scenes, e.g. MS COCO [31], are far from satisfactory.

Recent years have seen a rise of the auto-regressive generative models. Generative Pre-Training (GPT)
models [37, 4] leveraged Transformers [48]] to learn language models in large-scale corpus, greatly
promoting the performance of natural language generation and few-shot language understanding [33]].
Auto-regressive model is not nascent in CV. PixelCNN, PixelRNN [47] and Image Transformer [36]]
factorized the probability density function on an image over its sub-pixels (color channels in a
pixel) with different network backbones, showing promising results. However, a real image usually
comprises millions of sub-pixels, indicating an unaffordable amount of computation for large models.
Even the biggest pixel-level auto-regressive model, ImageGPT [7]], was pretrained on ImageNet at a
max resolution of only 96 x 96.

The framework of Vector Quantized Variational AutoEncoders (VQ-VAE) [46] alleviates this problem.
VQ-VAE trains an encoder to compress the image into a low-dimensional discrete latent space, and
a decoder to recover the image from the hidden variable in the stage 1. Then in the stage 2, an
auto-regressive model (such as PixelCNN [47]]) learns to fit the prior of hidden variables. This
discrete compression loses less fidelity than direct downsampling, meanwhile maintains the spatial
relevance of pixels. Therefore, VQ-VAE revitalized the auto-regressive models in CV [41]]. Following
this framework, Esser et al. [[15]] used Transformer to fit the prior and further switches from Lo
loss to GAN loss for the decoder training, greatly improving the performance of domain-specific
unconditional generation.

The idea of CogView comes naturally: large-scale generative joint pretraining for both text and image
(from VQ-VAE) tokens. We collect 30 million high-quality (Chinese) text-image pairs and pretrain a
Transformer with 4 billion parameters. However, large-scale text-to-image generative pretraining
could be very unstable due to the heterogeneity of data. We systematically analyze the reasons and
solved this problem by the proposed Precision Bottleneck Relaxation and Sandwich Layernorm. As a
result, CogView greatly advances the quality of text-to-image generation.

A recent work DALL-E [39] independently proposed the same idea, and was released earlier than
CogView. Compared with DALL-E, CogView steps forward on the following four aspects:

e CogView outperforms DALL-E and previous GAN-based methods at a large margin ac-
cording to the Fréchet Inception Distance (FID) [25] on blurred MS COCO, and is the first
open-source large text-to-image transformer.

e Beyond zero-shot generation, we further investigate the potential of finetuning the pretrained
CogView. CogView can be adapted for diverse downstream tasks, such as style learn-
ing (domain-specific text-to-image), super-resolution (image-to-image), image captioning
(image-to-text), and even text-image reranking.

o The finetuned CogView enables self-reranking for post-selection, and gets rid of an additional
CLIP model [38]] in DALL-E. It also provides a new metric Caption Loss to measure the
quality and accuracy for text-image generation at a finer granularity than FID and Inception
Score (IS) [43]].



e We proposed PB-relaxation and Sandwich-LN to stabilize the training of large Transformers
on complex datasets. These techniques are very simple and can eliminate overflow in
forwarding (characterized as NaN losses), and make CogView able to be trained with almost
FP16 (OX)). They can also be generalized to the training of other transformers.

2 Method

2.1 Theory

In this section, we will derive the theory of CogView from VAEE] [26]]: CogView optimizes the
Evidence Lower BOund (ELBO) of joint likelihood of image and text. The following derivation will
turn into a clear re-interpretation of VQ-VAE if without text t.

Suppose the dataset (X, T) = {z;,¢;}¥, consists of N i.i.d. samples of image variable x and its
description text variable t. We assume the image x can be generated by a random process involving
a latent variable z: (1) ¢; is first generated from a prior p(t; 8). (2) 2; is then generated from the
conditional distribution p(z|t = t;;0). (3) x; is finally generated from p(x|z = z;;1). We will use a
shorthand form like p(z;) to refer to p(x = x;) in the following part.

Let g(z|z;; ¢) be the variational distribution, which is the output of the encoder ¢ of VAE. The
log-likelihood and the evidence lower bound (ELBO) can be written as:

N N
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reconstruction loss

The framework of VQ-VAE differs with traditional VAE mainly in the KL term. Traditional VAE
fixes the prior p(z|t;; 6), usually as NV (0, I), and learns the encoder ¢. However, it leads to posterior
collapse [23]], meaning that ¢(z|x;; ¢) sometimes collapses towards the prior. VQ-VAE turns to fix ¢
and fit the prior p(z|t;; @) with another model parameterized by 6. This technique eliminates posterior
collapse, because the encoder ¢ is now only updated for the optimization of the reconstruction loss.
In exchange, the approximated posterior ¢(z|x;; ¢) could be very different for different x;, so we
need a very powerful model for p(z|t;; #) to minimize the KL term.

Currently, the most powerful generative model, Transformer (GPT), copes with sequences of tokens
over a discrete codebook. To use it, we make z € {0, ...,|V| — 1}"X%, where |V| is the size of
codebook and h x w is the number of dimensions of z. The sequences z; can be either sampled from
q(z|z;; @), or directly z; = argmax, q(z|x;; ¢). We choose the latter for simplicity, so that ¢(z|z;; ¢)
becomes a one-point distribution on z;. The Equation (2] can be rewritten as:
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reconstruction loss

The learning process is then divided into two stages: (1) The encoder ¢ and decoder 1 learn to
minimize the reconstruction loss. (2) A single GPT optimizes the two negative log-likelihood (NLL)
losses by concatenating text ¢; and z; as an input sequence.

As aresult, the first stage degenerates into a pure discrete Auto-Encoder, serving as an image tokenizer
to transform an image to a sequence of tokens; the GPT in the second stage undertakes most of the
modeling task. Figure [3]illustrates the framework of CogView.

meaning that all computation, including forwarding and backwarding are in FP16 without any conversion,

but the optimizer states and the master weights are FP32.
3In this paper, bold font denotes a random variable, and regular font denotes a concrete value. See this
comprehensive tutorial [12] for the basics of VAE.



2.2 Tokenization

In this section, we will introduce the details about the tokenizers in CogView and a comparison about
different training strategies about the image tokenizer (VQVAE stage 1).

Tokenization for text is already well-studied, e.g. BPE [16] and SentencePiece [28]. In CogView, we
ran SentencePiece on a large Chinese corpus to extract 50,000 text tokens.

The image tokenizer is a discrete Auto-Encoder, which is similar to the stage 1 of VQ-VAE [46] or
d-VAE [39]. More specifically, the Encoder ¢ maps an image « of shape H x W x 3 into Ency(x)
of shape h x w x d, and then each d—dimensional vector is quantized to a nearby embedding in a
learnable codebook {wvo, ..., U|V\—1}’ Vo, € R?. The quantized result can be represented by h x w
indices of embeddings, and then we get the latent variable z € {0, ..., |V| — 1}"**. The Decoder 1)

maps the quantized vectors back to a (blurred) image to reconstruct the input. In our 4B-parameter
CogView, |V| = 8192,d = 256, H = W = 256,h = w = 32.

The training of the image tokenizer is non-trivial due to the existence of discrete selection. Here we
introduce four methods to train an image tokenizer.

o The nearest-neighbor mapping, straight-through estimator [2l], which is proposed by the
original VQVAE. A common concern of this method [39] is that, when the codebook is
large and not initialized carefully, only a few of embeddings will be used due to the curse of
dimensionality. We did not observe this phenomenon in the experiments.

o Gumbel sampling, straight-through estimator. If we follow the original VAE to reparam-

eterize a categorical distribution of latent variable z based on distance between vectors,
. —llvg —Encg (z)i5ll2/7 . . .
ie. p(z P = ulx) = ‘ an unbiased sampling strategy is
€. P(Zixw+j k SIVI=T o ey ()i 1277 2 pling gy

k=0
Zixwt; = argmax, gi — ||vg —Ence(z)]|2/7, gr ~ Gumbel(0, 1), where the temperature
T is gradually decreased to 0. We can further use the differentiable softmax to approximate
the one-hot distribution from argmax. DALL-E adopts this method with many other tricks
to stabilize the training.

o The nearest-neighbor mapping, moving average, where each embedding in the codebook is
updated periodically during training as the mean of the vectors recently mapped to it [46].

o The nearest-neighbor mapping, fixed codebook, where the codebook is fixed after initialized.

Comparison. To compare the methods, we train four
image tokenizers with the same architecture on the
same dataset and random seed, and demonstrate the
loss curves in Figure[2} We find that all the methods are
basically evenly matched, meaning that the learning of
the embeddings in the codebook is not very important, if
initialized properly. In pretraining, we use the tokenizer
of moving average method. 0wt
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2.3 Auto-regressive Transformer Figure 2: Ly loss curves during training

The backbone of CogView is a unidirectional Trans- 1mage tokenizers. All the above methods
former (GPT). The Transformer has 48 layers, with the finally converge to a similar loss level.
hidden size of 2560, 40 attention heads and 4 billion parameters in total. As shown in Figure[3] four
seperator tokens, [ROI1] (reference text of image), [BASE], [BOI1] (beginning of image), [E0I1]
(end of image) are added to each sequence to indicate the boundaries of text and image. All the
sequences are clipped or padded to a length of 1088.

The pretext task of pretraining is left-to-right token prediction, a.k.a. language modeling. Both image
and text tokens are equally treated. DALL-E [39] suggests to lower the loss weight of text tokens; on
the contrary, during small-scale experiments we surprisingly find the text modeling is the key for the
success of text-to-image pretraining. If the loss weight of text tokens is set to zero, the model will fail
to find the connections between text and image and generate images totally unrelated to the input text.
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Figure 3: The framework of CogView. [ROI1], [BASE1], etc., are seperator tokens.

We hypothesize that text modeling abstracts knowledge in hidden layers, which can be efficiently
exploited during the later image modeling.

We train the model with batch size of 6,144 sequences (6.7 million tokens per batch) for 144,000 steps
on 512 V100 GPUs (32GB). The parameters are updated by Adam with max Ir = 3 x 1074, 8, =
0.9, B2 = 0.95, weight decay = 4 x 1072, The learning rate warms up during the first 2% steps and
decays with cosine annealing [34]. With hyperparameters in an appropriate range, we find that the
training loss mainly depends on the total number of trained tokens (tokens per batch x steps), which
means that doubling the batch size (and learning rate) results in a very similar loss if the same number
of tokens are trained. Thus, we use a relatively large batch size to improve the parallelism and reduce
the percentage of time for communication. We also design a three-region sparse attention to speed up
training and save memory without hurting the performance, which is introduced in Appendix [B]

2.4 Stabilization of training

Currently, pretraining large models (>2B parameters) usually relies on 16-bit precision to save GPU
memory and speed up the computation. Many frameworks, e.g. DeepSpeed ZeRO [40], even only
support FP16 parameters. However, text-to-image pretraining is very unstable under 16-bit precision.
Training a 4B ordinary pre-LN Transformer will quickly result in NaN loss within 1,000 iterations. To
stabilize the training is the most challenging part of CogView, which is well-aligned with DALL-E.

We summarize the solution of DALL-E as to folerate the numerical problem of training. Since the
values and gradients vary dramatically in scale in different layers, they propose a new mixed-precision
framework per-resblock loss scaling and store all gains, biases, embeddings, and unembeddings in
32-bit precision, with 32-bit gradients. This solution is complex, consuming extra time and memory
and not supported by most current training frameworks.

CogView instead regularizes the values. We find that there are two kinds of instability: overflow
(characterized by NaN losses) and underflow (characterized by diverging loss). The following
techniques are proposed to solve them.

Precision Bottleneck Relaxation (PB-Relax). After analyzing the dynamics of training, we find
that overflow always happens at two bottleneck operations, the final LayerNorm or attention.

e In the deep layers, the values of the outputs could explode to be as large as 10* ~
10°, making the variation in LayerNorm overflow. Luckily, as LayerNorm(z) =
LayerNorm(z/ max(x)), we can relax this bottleneck by dividing the maximum firs

e The attention scores Q7 K'/+/d could be significantly larger than input elements, and result
in overflow. Changing the computational order into Q7 (K/ \/&) alleviates the problem.
To eliminate the overflow, we notice that softmax(Q” K/v/d) = softmax(QT K/v/d —

*We cannot directly divide x by a large constant, which will lead to underflow in the early stage of training.
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Figure 4: (a) Illustration of different LayerNorm structures in Transformers. Post-LN is from the
original paper; Pre-LN is the most popular structure currently; Sandwich-LN is our proposed structure
to stabilize training. (b) The numerical scales in our toy experiments with 64 layers and a large
learning rate. Trainings without Sandwich-LN overflow in main branch; trainings without PB-relax
overflow in attention; Only the training with both can continue.

constant), meaning that we can change the computation of attention into

Q'K ( Q" Q" )

= softmax| (—=K —max(—=K)) X « |, 4)
Vd ) (a\/ﬁ (a\/a )
where « is a big number, e.g. a = SZE] In this way, the maximum (absolute value) of
attention scores are also divided by « to prevent it from overflow. A detailed analysis about
the attention in CogView is in Appendix [C]

softmax (

Sandwich LayerNorm (Sandwich-LN). The LayerNorms [1]] in Transformers are essential for
stable training. Pre-LN [50] is proven to converge faster and more stable than the original Post-LN,
and becomes the default structure of Transformer layers in recent works. However, it is not enough

(@—%)Vd

for text-to-image pretraining. The output of LayerNorm 7 + B is basically proportional

> i (z;—7)?2
to the square root of the hidden size of , which is v/d = v/2560 ~ 50 in CogView. If input values
in some dimensions are obviously larger than the others — which is true for Transformers — output
values in these dimensions will also be large (10! ~ 102). In the residual branch, these large values
are magnified and be added back to the main branch, which aggravates this phenomenon in the next
layer, and finally causes the value explosion in the deep layers.

This reason behind value explosion inspires us to restrict the layer-by-layer aggravation. We propose
Sandwich LayerNorm, which also adds a LayerNorm at the end of each residual branch. Sandwich-
LN ensures the scale of input values in each layer within a reasonable range, and experiments on
training 500M model shows that its influence on convergence is negligible. Figure @{(a) illustrates
different LayerNorm structures in Transformers.

Toy Experiments. Figure [4(b) shows the effectiveness of PB-relax and Sandwich-LN with a toy
experimental setting, since training many large models for verification is not realistic. We find that
deep transformers (64 layers, 1024 hidden size), large learning rates (0.1 or 0.01), small batch
size (4) can simulate the value explosion in training with reasonable hyperparameters. PB-relax +
Sandwich-LN can even stabilize the toy experiments.

Shrink embedding gradient. Although we did not observe any sign of underflow after using
Sandwich-LN, we find that the gradient of token embeddings is much larger than that of the other
parameters, so that simply shrinking its scale by a = 0.1 increases the dynamic loss scale to further
prevent underflow, which can be implemented by emb=emb*alpha+emb.detach()*(1-alpha)
in Pytorch. It seems to slow down the updating of token embeddings, but actually does not hurt
performance in our experiments, which also corresponds to a recent work MoCo v3 [9].

Discussion. The PB-relax and Sandwich-LN successfully stabilize the training of CogView and
a 8.3B-parameter CogView-large. They are also general for all Transformer pretraining, and will
enable the training of very deep Transformers in the future. As an evidence, we used PB-relax
successfully eliminating the overflow in training a 10B-parameter GLM [14]. However, in general,

>The max must be at least head-wise, because the values vary greatly in different heads.



the precision problems in language pretraining is not so significant as in text-to-image pretraining.
We hypothesize that the root is the heterogeneity of data, because we observed that text and image
tokens are distinguished by scale in some hidden states. Another possible reason is hard-to-find
underflow, guessed by DALL-E. A thorough investigation is left for future work.

3 Finetuning

CogView steps further than DALL-E on finetuning. Especially, we can improve the text-to-image
generation via finetuning CogView for super-resolution and self-reranking. All the finetuning tasks
can be completed within one day on a single DGX-2.

3.1 Super-resolution

Since the image tokenizer compresses 256 x 256-pixel images into 32 x 32-token sequences before
training, the generated images are blurrier than real images due to the lossy compression. However,
enlarging the sequence length will consume much more computation and memory due to the O(n?)
complex of attention operations. Previous works about super-resolution, or image restoration,
usually deal with images already in high resolution, mapping the blurred local textures to clear
ones. They cannot be applied to our case, where we need to add meaningful details to the generated
low-resolution images. Figure [5] (b) is an example of our finetuning method, and illustrates our
desired behavior of super-resolution.

The motivation of our finetuning solution for super-resolution is a belief that CogView is trained on
the most complex distribution in general domain, and the objects of different resolution has already
been covered{®| Therefore, finetuning CogView for super-resolution should not be hard.

Specifically, we first finetune CogView into a conditional super-resolution model from 16 x 16 image
tokens to 32 x 32 tokens. Then we magnify an image of 32 x 32 tokens to 64 x 64 tokens (512 x 512
pixels) patch-by-patch via a center-continuous sliding-window strategy in Figure[5(a). This order
performs better that the raster-scan order in preserving the completeness of the central area.

To prepare data, we crop about 2 million images to 256 x 256 regions and downsample them to
128 x 128. After tokenization, we get 32 x 32 and 16 x 16 sequence pairs for different resolution. The
pattern of finetuning sequence is “[ROI1] text tokens [BASE] [BOI1] 16 x 16 image tokens [EOI1]
[ROI2] [BASE] [BOI2] 32 x 32 image tokens [E0I2]”, longer than the max position embedding
index 1087. As a solution, we recount the position index from 0 at [ROI2] ﬂ

5 | 6
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(a) Center—continuous sliding window (b) Different super—resolution results for “a tiger is playing football”.

Figure 5: (a) A 64 x 64-token image are generated patch-by-patch in the numerical order. The
overlapping positions will not be overwritten. The key idea is to make the tokens in the 2nd and 4th
regions — usually regions of faces or other important parts — generated when attending to the whole
region. (b) The finetuned super-resolution model does not barely transform the textures, but generates
new local structures, e.g. the open mouth or tail in the example.

% An evidence to support the belief is that if we append “close-up view” at the end of the text, the model will
generate details of a part of the object.

"One might worry about that the reuse of position indices could cause confusions, but in practice, the model
can distinguish the two images well, probably based on whether they can attend to a [ROI2] in front.



3.2 Image Captioning and Self-reranking

To finetune CogView for image captioning is straightforward: exchanging the order of text and image
tokens in the input sequences. Since the model has already learnt the corresponding relationships
between text and images, reversing the generation is not hard. We did not evaluate the performance
due to that (1) there is no authoritative Chinese image captioning benchmark (2) image captioning is
not the focus of this work. The main purpose of finetuning such a model is for self-reranking.

We propose the Caption Loss (CapLoss) to evaluate the correspondence between images and text.
More specifically, CapLoss(z,t) = ﬁzyzlo —log p(t;|x,to.s—1), wWhere t is a sequence of text
tokens and x is the image. CapLoss(z, t) is the cross-entropy loss for the text tokens, and this method

can be seen as an adaptation of inverse prompting [56] for text-to-image generation. Finally, images
with the lowest CapLosses are chosen.

Compared to additionally training another constrastive self-supervised model, e.g. CLIP [38]], for
reranking, our method consumes less computational resource because we only need finetuning. The
results in Figure [9] shows the images selected by our methods performs better in FID than those
selected by CLIP. Figure[6] shows an example for reranking.
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Figure 6: 60 generated images for “A man in red shirt is playing video games” (selected at random
from COCO), displayed in the order of CapLoss. Most bad cases are ranked in last places. The
diversity also eases the concern that CogView might be overfitting a similar image in the training set.

3.3 Style Learning

Although CogView is pretrained to cover diverse images as possible, the desire to generate images of a
specific style or topic cannot be satisfied well. We finetune models on four styles: Chinese traditional
drawing, oil painting, sketch, and cartoon. Images of these styles are automatically extracted from
search engine pages including Google, Baidu and Bing, etc., with keyword as “An image of {style}
style”, where {style} is the name of style. We finetune the model for different styles separately,
with 1,000 images each.

During finetuning, the corresponding text for the images are also “An image of {style} style“.
When generating, the text is “A {object} of {style} style“, where {object} is the object to
generate. In this way, CogView can transfer the knowledge of shape of the objects learned from
pretraining to the style of finetuning. Figure[7]shows examples for the styles.
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Figure 7: Generated images for “The Oriental Pear]” (a landmark of Shanghai) in different styles.




3.4 Industrial Fashion Design

When the generation targets at a single domain, the (SRR AT WO\ D T2
complexity of the textures are largely reduced. In e Bagay Cropped pants

these scenarios, we can (1) train a VQGAN [13]
instead of VQVAE for the latent variable for more
realistic textures, (2) decrease the number of pa-
rameters and increase the length of sequences for
a higher resolution. Our three-region sparse atten-
tion (Appendix [B) can speed up the generation of
high-resolution images in this case.

We train a 3B-parameter model on about 10 million
fashion-caption pairs, using 50x 50 VQGAN image
tokens and decodes them into 800 x 800 pixels. ) ) )
Figure [§] shows samples of CogView for fashion Figure 8: Generated images for fashion design.

design, which has been successfully deployed to Alibaba Rhino fashion production.

4 Experimental Results

4.1 Machine Evaluation

At present, the most authoritative machine evaluation metrics for general-domain text-to-image
generation is the FID on MS COCO, which is not included in our training set. To compare with
DALL-E, we follow the same setting, evaluating CogView on a subset of 30,000 captions sampled
from the dataset, after applying a Gaussian filter with varying radius to both the ground-truth and
generated imagesﬁ The captions are translated into Chinese for CogView by machine translation.
To fairly compare with DALL-E, we do not use super-resolution. Besides, DALL-E generates 512
images for each caption and selects the best one by CLIP, which needs to generate about 15 billion
tokens. To save computational resource, we select the best one from 60 generated images according
to their CapLosses. The evaluation of CapLoss is on a subset of 5,000 images. We finally enhance
the contrast of generated images by 1.5. Table[I]shows the metrics for CogView and other methods.

Table 1: Metrics for machine evaluation. Statistics about DALL-E and GANs are extracted from their
figures. FID-k means that all the images are blurred by a Gaussian Filter with radius k.

Model FID-0 FID-1 FID-2 FID-4 FID-8 IS CapLoss

AttnGAN 352 44.0 72.0 108.0 100.0 233 3.01
DM-GAN  26.5 39.0 73.0 1190 1123 322 2.87
DF-GAN  26.5 33.8 55.9 91.0 97.0 18.7 3.09
DALL-E 27.5 28.0 45.5 83.5 8.0 179 —

CogView  27.1 194 13.9 194 23.6 182 243

Caption Loss as a Metric. FID and IS are designed to measure the quality of unconditional
generation from relatively simple distributions, usually single objects. However, text-to-image
generation should be evaluated pair-by-pair. Table[I]shows that DM-GAN achieves the best unblurred
FID and IS, but is ranked last in human preference (Figure [T0fa)). Caption Loss is an absolute
(instead of relative, like CLIP) score, so that it can be averaged across samples. It should be a better
metrics for this task and is more consistent with the overall scores of our human evaluation in § .2}
Comparing self-reranking with CLIP. We
evaluate the FID-0 and IS of CogView-generated
images selected by CLIP and self-reranking on
MS COCO. Figure 9] shows the curves with dif-
ferent number of candidates. Self-reranking gets
better FID, and steadily refines FID as the num-
ber of candidates increases. CLIP performs bet-
ter in increasing IS, but as discussed above, it is
not a suitable metric for this task.

Figure 9: IS and FID-0 for CLIP and self-ranking.

8We use the same evaluation codes with DM-GAN and DALL-E, which is available at https://github/
com/MinfengZhu/DM-GAN.
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Discussion about the differences in performance between CogView and DALL-E. Since DALL-
E is pretrained with more data and parameters than CogView, why CogView gets a better FID even
without super-resolution? It is hard to know the accurate reason, because DALL-E is not open-source,
but we guess that the reasons include: (1) CogView uses PB-relax and Sandwich-LN for a more stable
optimization. (2) DALL-E uses many cartoon and rendered data, making the texture of generated
images quite different from that of the photos in MS COCO. (3) Self-reranking selects images better
in FID than CLIP. (4) CogView is trained longer (96B trained tokens in CogView vs. 56B trained
tokens in DALL-E).

4.2 Human Evaluation

Human evaluation is much more persuasive than machine evaluation on text-to-image generation. Our
human evaluation consists of 2,950 groups of comparison between images generated by AttnGAN,
DM-GAN, DF-GAN, CogView, and recovered ground truth, i.e., the ground truth blurred by our
image tokenizer. Details and example-based comparison between models are in Appendix [E]

Results in Figure show that CogView outperforms GAN-based baselines at a large margin.
CogView is chosen as the best one with probability 37.02%, competitive with the performance
of recovered ground truth (59.53%). Figure b)(c) also indicates our super-resolution model
consistently improves the quality of images, especially the clarity, which even outperforms the
recovered ground truth.

B AtnGAN B AtNGAN

DM-GAN . DM-GAN N DM-GAN

7{ &R DF-GAN 4.5 @@ DF-GAN

BN CogView BN CogView

40| EED CogView (super-resolution)

@ Recovered Ground Truth (upper bound)

CogView EED CogView (super-resolution)
(super-resolution) ; Recovered Ground Truth

37.02 B8 (ypper bound)

Recovered
Ground Truth
(upper bound)

ARGCAY

rall Score . Image Clarity Texture Quality Relevance to the Caption

(@) Human Preference. The percentage of the model B
to be chosen as best in all the questions. (b) Overall scores (1-10) for the models. (c) Scores (1-5) for the models on three important aspects.

Figure 10: Human Evaluation results. The recovered ground truth is obtained by first encoding the
ground truth image and then decoding it, which is theoretically the upper bound of CogView.

5 Conclusion and Discussion

Limitations. A disadvantage of CogView is the slow generation, which is common for auto-regressive
model, because each image is generated token-by-token. The blurriness brought by VQVAE is also
an important limitation. These problems will be solved in the future work.

Ethics Concerns. Similar to Deepfake, CogView is vulnerable to malicious use [49] because of its
controllable and strong capacity to generate images. The possible methods to mitigate this issue are
discussed in a survey [3]]. Moreover, there are usually fairness problems in generative models about
humanﬂ In Appendix D} we analyze the situation about fairness in CogView and introduce a simple
“word replacing” method to solve this problem.

We systematically investigate the framework of combining VQVAE and Transformers for text-to-
image generation. CogView demonstrates promising results for scalable cross-modal generative
pretraining, and also reveals and solves the precision problems probably originating from data
heterogeneity. We also introduce methods to finetune CogView for diverse downstream tasks. We
hope that CogView could advance both research and application of controllable image generation
and cross-modal knowledge understanding, but need to prevent it from being used to create images
for misinformation.

https://thegradient.pub/pulse-lessons
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