
Revisiting 3D Object Detection From an Egocentric Perspective
Supplementary Material

This document provides supplementary content to the main paper. In Sec. A, we expand the discussion
on comparing our egocentric metric with a recent planner-based 3D object detection metric. In Sec. B,
we provide more details of the StarPoly architecture and training. Sec. C explains more about how we
select hyperparameters for our egocentric metrics. Finally, Sec. D shows more visualization results.

A Discussion

Similar to our metric, a recent work (planner-centric metrics) [34] also follows an egocentric approach
to evaluate 3D object detection. It measures the KL-divergence of the planner’s prediction based
on either the ground truth or the detection. However, we would like to highlight two differences
between our SDE-based metrics (SDE-AP and SDE-APD) and the planner-centric metrics: stability
and interpretability.

Stability. In the planner-centric metrics [34], a pre-trained planner is required for the evaluation.
Consequently, the metric is highly dependent on the architectural choices of the planner and may vary
drastically when switched to a different one. Moreover, as the proposed planner is learned from data,
many factors in the training can significantly affect the evaluation outcome: 1) the metric depends
on a stochastic gradient descent (SGD) optimization to train the planner, which may fall into a local
minimum; 2) the metric depends on a training set of trajectories, which will vary depending on the
shift of data distribution. Furthermore, if the planner is trained on ground truth boxes, it may not
reflect the preferences of a practical planner which is usually optimized for a certain perception stack.
In contrast, SDE-based metrics don’t require any parametric models. Its evaluation is consistent and
can be universally interpreted across different datasets or downstream applications.

Interpetability. Because the KL-divergence employed in [34] only conveys the correlation of
two sets of distributions, the magnitude of the metric is difficult to interpret. To fully understand
the detection errors, one has to investigate the types of failures made by the planner, which vary
depending on type of planner used. On the other hand, our proposed SDE directly measures the
physical distance estimation error in meters. For SDE-based AP metrics, an intuitive interpretation is
the frequency of detection, whose distance estimation error is within an empirically set threshold.
Therefore, SDE-based metrics have a clear physical meaning, which translates the complex model
predictions into safety-sensitive measurements.

B StarPoly Model Details

B.1 Architecture

Our StarPoly model takes as input the point clouds cropped from (extended) detection bounding
boxes. We apply a padding of 30cm along the length and width dimensions for for all detection
boxes before the cropping. The point cloud is normalized before being fed into StarPoly based on the
center, dimensions, and heading of each bounding box. In addition, the point cloud is subsampled to
2048 points before being processed by StarPoly. We use a PointNet [40] to encode the point cloud
into a latent feature vector of 1024-d. Then, we reduce the dimensions of the latent feature vector
from 1024-d to 512-d with a fully-connected layer. At last, another fully-connected layer is employed
to predict the n-d parameters of a star-shaped polygon, where n is the resolution of the star-shaped
polygon (as stated in Sec. 4.3). We use n = 256 for all the experiments in the main paper. As for
selecting (~d1, ..., ~dn), we uniformly sample directions on the boundary of a square, inspired by the
prior that the objects of interest in this paper, i.e. vehicles, are symmetrical and are approximately of
rounded square or rectangular shapes.
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Figure 11: SDE-APD with various distance thresholds. Note that at more stringent error threshold, e.g., 0.1m,
SDE-APD clearly differentiates different detector’s detected box quality, where 5F-MVF++ keeps outperforming
others and PointPillars excels as well.

Figure 12: SDE-APD with various β. We change the inverse distance weighting degree, β, in SDE-APD
computation. Note that as we increase the degree, which means more focus is shifted to close objects, the
SDE-APD of PointPillars [20] gradually catches up and even surpasses PV-RCNN [44] at β = 3. This is
coherent with our study on SDE-AP’s distance breakdowns. We can therefore conclude that β is a knob in
SDE-APD to control the level of egocentricity based on object distances.

B.2 Optimization

We train StarPoly on the training split of the large-scale Waymo Open Dataset [53]. Because StarPoly
aims to refine the results of a detector, we first use a pre-trained detector to crop out point clouds as
described in Sec. B.1. Then we optimize StarPoly independently using the prepared point clouds.
For all the experiments in the paper, we use StarPoly trained on MVF++. We find that StarPoly can
generalize to different detectors even if trained only on one detector. For the StarPoly optimization, we
use the Adam optimizer [17] with β1 = 0.9, β2 = 0.99 and learning rate = 0.001 an the parameters.
For all experiments in the paper, we train StarPoly for 500, 000 steps with a batch size of 64 and set
γ = 0.1.

C Details about SDE and SDE-APD

C.1 Selection of metric hyperparameters

Selection of the SDE threshold As defined in main paper Sec. 5, we classify true positive predic-
tions by comparing the SDE with a threshold. We use a threshold of 20cm for all experiments in
the paper. Unlike the IoU threshold, our threshold has a direct physical meaning in safety-critical
scenarios, i.e. the amount of estimation error by perception that an autonomous vehicle can handle.
Therefore, it can be selected according to the real world use cases. In this paper, we select 20cm via
analyzing the SDE of ground truth bounding boxes (as shown in main paper Table 2). We find the

16



overall mean SDE of it to be 0.1m and therefore determine a relaxed value of 0.2m as the threshold.
One can also use different thresholds for the evaluation as one can use different IoU thresholds for the
box classification. Figure 11 illustrates the comparison among detectors with varying thresholds, i.e.,
0.1m, 0.2m, 0.3m. We can see that PointPillars [20] demonstrates stronger performance compared
to PV-RCNN [44] when the threshold is set more stringent. In addition, the effectiveness of using
multi-frame information is more pronounced when the evaluation criterion becomes more rigorous.

Selection of β in the Inverse Distance Weighting To be more egocentric in our evaluation, we
propose to extend the Average Precision (AP) computation by introducing inverse distance weighting.
This strategy aims to automatically emphasize the objects close to the ego-agent’s trajectory than
those far away. As the number of objects grows roughly quadratically with regard to the distance,
setting β = 2 (square inverse) would put equal weight for all distances. Since we want to highlight
the importance of close-by objects, we go a further step and set β = 3.

Fig. 12 shows the SDE-APD (evaluated at time step 0) with different choices of β. Setting β = 0
means all objects contribute equally to the AP metric, where see the greatest gap from the best and the
worst detectors (5F-MVF++ [41] v.s. PointPillars [20]). As we increase the β, i.e. making the overall
AP metric more egocentric, weighting more heavily on the close-by objects, we see the PointPillars
(with great close-by accuracy) catches up with PV-RCNN [44] and MVF++. The general differences
of different detectors also become smaller as they perform similarly well for objects close to the
ego-agent’s trajectory (the difference in the original IoU-AP is more related to their performance
difference on far-away objects).

C.2 Importance of inverse distance weighting and SDE in SDE-APD

Method SDE-APD IoU-APD IoU-AP

5F-MVF++ 0.874 0.989 0.863
MVF++ 0.834 0.981 0.814
PV-RCNN 0.808 0.972 0.797
PointPillars 0.817 0.966 0.720

Table 4: SDE-APD, IoU-APD, and IoU-AP of
different detectors.

In SDE-APD, we introduce inverse distance weight-
ing as a simple proxy of distance breakdowns. To
investigate the impact of such weightings, we extend
IoU-AP to IoU-APD with the same distance weight-
ing as SDE-APD. The results are shown in Tab. 4.
Note that while IoU-APD and IoU-AP have the same
ordering, SDE-APD is able to reveal a different rank-
ing between PointPillars and PV-RCNN, where we
claim that SDE plays a more important role.

C.3 Composition of lateral and longitudinal
distance errors in SDE

Statistics SDElat SDElon
Mean (m) 0.17 0.17

Median (m) 0.12 0.11

Contribution 52% 48%

Table 5: Composition of SDE from
PV-RCNN’s Detection Boxes.

In our default definition, SDE is the maximum value of the
lateral distance error and the longitudinal error. In Tab. 5 we
investigate the composition of the two sub-distance-errors of
the SDE. Specifically, we employ the detection boxes predicted
by PV-RCNN as the detection output and calculate the mean
and average of all valid SDElat and SDElon. Note that “valid”
means that the object doesn’t intersect with the lateral line (for
SDElat) or the longitudinal line (for SDElon) and that the box
is matched with a ground truth object. We also compute the
portion of SDEs that are equal to its lateral component, i.e.
SDElat > SDElon, and the portion of SDEs that are equal to
the longitudinal component. From the statistics, we find that the lateral and longitudinal components
contribute almost equally to the final SDE.

C.4 Distribution of signed SDE

In this work, we intend to bring attention to the idea of egocentric evaluation. We propose SDE
without sign as a simple implementation of this idea with minimal hyperparameters required. It is
straightforward to extend it to more complicated versions with the sign included. In Fig. 13, we
provide a plotting of the distribution of signed SDE of detector boxes. It demonstrates that box
predictions are generally oversized, i.e. with positive SDEs. Based on specific requirements of an
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Figure 13: Distribution of Signed SDE. We show
the distribution of max(SDElat, SDElon) of PV-
RCNN’s box detections, where positive means
over-sized predictions while negative means under-
sized. Box predictions have an oversizing bias.

Measure TP Collision FP/FN Collision
Mean Median Mean Median

IoU ↑ 0.902 0.911 0.904 0.903

SDE ↓ 0.114 0.095 0.161 0.153

Table 6: Distributions of error measures in two types
of collision detection cases. In “TP Collision”, both the
ground truth points and the prediction report a collision.
In “FP/FN Collision”, either the ground truth (FN) or
the prediction (FP) reports a collision. Here we use the
aggregated point clouds to test collision. The results
align with Tab. 1.

Figure 14: Qualitative Results for evaluating predictions at a future time step. Top: predictions at time T=0.
Bottom: evaluations at T=8s. On the right of each row is the zoom-in view where the prediction and point
cloud cropped by the ground truth bounding box are shown. SDElons are reported under zoom-ins for each
representation. A far away object at T=0 can become very close to the agent in a future time step (as shown for
T=8s). While convex visible contour (CVC) may achieve comparable results to StarPoly at T=0, its performance
considerably drops when evaluated at T=8s. This is why StarPoly achieves better results than the box and CVC
representations across different time steps.

application, one can also have more fine-grained thresholds, e.g. different thresholds for positive and
negative, and select the most suitable set up based on their priorities.

C.5 Collision correlation of SDE and IoU based on contours

In Tab. 1, we use ground truth box to test collisions, to align with the evaluation of IoU. In Tab. 6,
we re-computed the table using the contours drawn from our aggregated ground truth points, which
should be the more accurate shape accessible. The gap between IoU and SDE is almost the same as
the original Tab. 1 using boxes for collision tests.

D Qualitative Results

In this section we provide additional qualitative analysis. Fig. 14 shows how our metrics evaluate
predictions at a future time step. We compare different representations both at the current time frame
and at a future time frame. Our metrics are egocentric in the sense that they take into account the
relative positions of the objects to the agent’s trajectory in both the current and future time steps.
Clearly, our proposed representation, StarPoly outperforms both box and convex visible contour
(CVC) representations at the future time step. Fig. 15 shows a case when the CVC fails to capture the
full shape of the object due to its vulnerability against occlusions.
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Figure 15: Qualitative Results showing the limitation of the convex visible contour (CVC). As depicted, due to
the occlusion, CVC fails to cover the whole extent of the object. Note that we have visualized both the Lidar
points from the current frame (in gray) as well as the aggregated points (in green) which are used to represent
the true object shape.
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