VLMbench: A Compositional Benchmark for
Vision-and-Language Manipulation

Kaizhi Zheng Xiaotong Chen
University of California, Santa Cruz University of Michigan, Ann Arbor
kzheng31Q@ucsc.edu cxtQumich.edu
Odest Chadwicke Jenkins Xin Eric Wang
University of Michigan, Ann Arbor University of California, Santa Cruz
ocj@umich.edu xwang366Qucsc.edu
Abstract

Benefiting from language flexibility and compositionality, humans naturally in-
tend to use language to command an embodied agent for complex tasks such
as navigation and object manipulation. In this work, we aim to fill the blank
of the last mile of embodied agents—object manipulation by following human
guidance, e.g., “move the red mug next to the box while keeping it upright.” To
this end, we introduce an Automatic Manipulation Solver (AMSolver) system
and build a Vision-and-Language Manipulation benchmark (VLMbench) based
on it, containing various language instructions on categorized robotic manipula-
tion tasks. Specifically, modular rule-based task templates are created to auto-
matically generate robot demonstrations with language instructions, consisting
of diverse object shapes and appearances, action types, and motion constraints.
We also develop a keypoint-based model 6D-CLIPort to deal with multi-view
observations and language input and output a sequence of 6 degrees of free-
dom (DoF) actions. We hope the new simulator and benchmark will facili-
tate future research on language-guided robotic manipulation. Project website:
https://sites.google.com/ucsc.edu/vimbench/homel

1 Introduction

“Can you help me to clean the disks in the sink?" — humans communicate with each other using
language to issue tasks and specify the requirements. Although recent progress in embodied Al
pushes intelligent robotic systems to reality closer than at any other time before, it is still an open
question how the agent learns to manipulate objects following language instructions. Therefore, we
introduce the Vision-and-Language Manipulation (VLM) task, where the agent must follow language
instructions to do robotic manipulation. Recent benchmarks were developed to evaluate robotic
manipulation tasks with language guidance and visual input [11} 1, 136]. However, the collected task
demonstrations are not modular and can hardly scale because they lack (1) adaptation to novel objects
and (2) categorization for modular and flexible composition to complex tasks. Additionally, the
lack of variations in language also leads to biases in visual reasoning learning. To deal with these
problems, we expect an inclusive, modular, and scalable benchmark to evaluate embodied agents for
various language-guided manipulation tasks.

An ideal VLM benchmark should have at least three characteristics: The first one is scalability.
Such a benchmark should automatically generate various physics-realistic 6 degrees of freedom
(DoF) interactions with affordable objects and expand new tasks effortlessly. The second is task
categorization, which exploits commonality concerning robot motion between semantic tasks and is

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://sites.google.com/ucsc.edu/vlmbench/home

[J . . »
.% Fully open the dishwasher and take out the red plate. ‘ Object-centric Representations

Rotation

Constraints Class: Plate;

Articulated: False;
Color: Red; Size: normal
Relative Position: None
Grasp Pose:

Class: Dishwasher; \

Articulated: True;

Joints: [Door-base: Revolute,
Tray-base: Prismatic]

Color: Gray; Size: normal

Relative Position: None

Translation
Constraints

Step 1: the tray of dishwasher “Fully

Parts:[Base Tray Door]

v

Figure 1: Given the language instructions and observations, the VLMbench requires the agent to
generate an executable manipulation trajectory for specific task goals. On the left, we show that the
complex tasks can be divided into unit tasks according to the constraints of the end-effector, like
“Open the door of the dishwasher" and "Open the door of the fridge" should both follow the rotation
constraints of the revolute joint. On the right, we show examples of object-centric representations,
where all graspable objects or parts generate local grasping poses as their attributes. Depending on
the modular design, we can generate reasonable VLM data automatically.

Goal Position &
Constraints

Step 2: Pick up the red plate “Pick up the red block and place it on the red circle.”

almost ignored in existing works. The third is reasonable language generation, which requires the
benchmark to generate language instructions for testing diverse visual reasoning abilities without
biases. However, existing benchmarks [30} [TT], 36} 1] lack at least one characteristic for VLM tasks.
Motivated by these attributes, we present VLMbench, a highly categorical robotic manipulation
benchmark with compositional language for visual reasoning. To build and scale VLMbench, we
propose AMSolver, an automatic unit task builder that can compose unit tasks to create complex multi-
step tasks and seamlessly adapt to novel objects. Compared to previous benchmarks, VLMbench
categorizes manipulation tasks into various meta-manipulation actions according to the constraints
of robot trajectories for the first time. Meanwhile, the combinations of compositional language
templates and object-centric representations provide numerous variations for visual reasoning in
VLMbench, as shown in Figurem

To investigate the difficulty of the benchmark, we test them with several partially modal methods and
a keypoint-based method, 6D-CLIPort, modified from the state-of-the-art language-guided manipula-
tion method CLIPort [[25]. The results show that there is still a massive room for improvement in the
robust manipulation action generations and accurate language-guided visual understanding. To sum
up, our contributions to this work include the following:

e AMSolver, an automatic demonstration generator for various task semantics, motion con-
straints, object types, and states defined in a novel task template formulation.

* VLMbench, a robot manipulation benchmark on 3D tasks with visual observation and com-
positional language instructions, where we categorize the manipulation tasks by constraints
and provide variations with minimal biases in the first time.

* 6D-CLIPort, a general vision-and-language manipulation baseline model evaluated on all
kinds of VLMbench tasks.

novel object automatic variant automatic constraint-based

Benchmark adaptation trajectory generation object property 6-DoF grasping task formulation
CausalWorld [T] X X v X X
MetaWorld [36] X v X X X
ManipulaTHOR [6] X X v X X
Habitat 2.0 [30] v v v X X
Robomimic [16] X X X X X
BEHAVIOR [27] X v v X X
RLBench [11] X v v X X
CALVIN [18] X X X X X
VLMbench (ours) v v v v v

Table 1: Comparison of existing robotic manipulation benchmarks to VLMbench.

2 Related Work

Robotic Manipulation Benchmarks There are plenty of benchmarks proposed related to visual-
language robotic tasks. ALFRED [26] was proposed to do virtual object rearrangement tasks
guided by visual observation and language instruction between different room-scale locations. Ma-
nipulaTHOR [6]] introduced realistic interaction with objects using a 6 DoF configurable mobile
manipulator. Habitat 2.0 [30] and BEHAVIOR [27]] incorporated real robot navigation with simple
object interaction implementation for more comprehensive mobile manipulation tasks. CALVIN [18]
collects 24 hours of playing data with natural language instructions for long-horizon manipulation
tasks. Regarding static manipulation benchmarks, MetaWorld [36] collects a series of translation-
only tasks with demonstrations for reinforcement learning. CausalWorld [1]] focused on causal
inference within manipulation and showed examples of several simple object rearrangement tasks.
RLBench [11] collected 100 different tasks by specifying robot arm end-effector waypoints for
each of them for robot learning. Besides, crowd-sourcing platforms collect human demonstrations
of a variety of common manipulation tasks through VR/AR devices, such as Robosuite [42] and
Robomimic [16]]. Compared to these works, our VLMbench includes high-level task descriptions
and low-level robot action translations and realizes automatic task builders for easier generation of
complex tasks.

Vision and Language Tasks for Embodied AI Vision and language tasks, such as Vision Question
Answering (VQA) [3L 5], Video Captioning [33| 7, [31]], Image-Text Retrieval [40, 4], connect vision
and NLP research to produce semantics from combined embedding features. Recent works such as
referring object spatial relations [13]] and dynamic events [35] provide valuable reasoning results for
the agent to act. Vision-and-Language Navigation (VLN) (2,132} 134} 21} 120l 9} 41]] proceeds another
step to use visual observations and language instructions for robotic navigation directly. Recent
benchmarks [26, 30} 27]] combined VLN with abstracted object interaction to include more object
rearrangement tasks. Compared to the tasks mentioned above, our benchmark is designed for more
complex robotic manipulation that simulates physics-realistic 6DoF grasping and requires reasoning
ability from the visual-language space to the executable action space.

Language-Instructed Manipulation Various manipulation tasks have been recently researched
with language input, either describing the entire task or serving interactive input for task specifi-
cations. HULC [17] proposes a hierarchical network for long-horizon manipulation tasks, which
contains multi-modal transformers for task planning and a policy network for action generation.
Structformer [[14] proposes an object selection network from language and visual encodings and
a language-conditioned pose generator for semantic object rearrangement. Stepputtis et al. [28]
proposed a closed-loop control model for pouring tasks. CLIPort [25] proposed a two-stream frame-
work to learn a spatial attention map for 2D object manipulations. Lynch et al. [15] fed natural
language instructions to a goal-conditioned policy pretrained using imitation learning for various
tasks. INVIGORATE [39] proposed an interactive system that takes language input to correct false
estimations and re-plan for object grasping in clutter. Shao et al. [24] trained a joint language-vision
model on 7-DoF goal trajectory estimation with another task classifier for multi-task training. Goyal
et al. [8] learned zero-shot task adaptation to accomplish novel tasks through differences described
in natural language. In this paper, our 6D-CLIPort model learns full 6D grasping and conducts
variate-length robot manipulation tasks from language instructions.

Unit Task Template Unit Task Examples

Control
(Obtain/Release object control)
a) Position Constraints: Depend on geometry
b) Orientation Constraints: Depend on geometry

M1 M2
(Move object with goal pose | (Move object along path pose
constraints) constraints)

a) Position Constraints:

a) Position Constraints:
al - Free; a2 — Plane;

al — Free; a2 — Plane;

3 — Line; a4 — Fixed a3 — Line;
2 ne.a e a4 — Fixed trajectory
b) Orientation Constraints: b) Orientation Constraints:
b1 — Free; b2 — Axis; b1 — Free; b2 — Axis;
b3 — Fixed b3 — Fixed; b4 — Depend

on position

Figure 2: The unit task templates of AMSolver. On the left, we show three unit task templates
parameterized by position and orientation constraints over the robot end-effector on either the goal
pose or the entire path. By combining these unit task templates, various task examples can be
generated. For example, on the right, we show three main common task types household tasks and
long-horizon tasks composed of unit tasks.

3 AMSolver: Automatic Manipulation Solver

We consider a rule-based task categorization that supports most daily manipulation tasks, which
follows a unified formulation. To this extent, we propose Automatic Manipulation Solver (AM-
Solverﬂ We focus on simple unit tasks and introduce a unit task template that categorizes motion
constraints and generates a wide range of household tasks (see examples in Figure[2)). The formulation
treats objects as a representation that could have variations in appearance and enables automatic
demonstration generation using off-the-shelf tasks and motion planners.

3.1 Rule-based Unit Tasks

Since the tasks have notable variations, we assume that each complex task can be decomposed into
combinations of several unit tasks from the aspects of end-effector trajectories. We define a unit task
as the semantic step of completing a sub-goal of the entire task. Specifically, a unit task is defined in a
formula of ‘take action on an object under certain constraints’ where two constraints can parameterize
a unit task: (a) position constraints and (b) orientation constraints, which describe the valid spatial
space or orientation range, respectively, of the end-effector for a specific task. We propose three unit
task templates detailed below that can compose the aforementioned complex tasks.

(1) Control is a preparation or ending step of a task, which models the transition of the object state,
where the state indicates whether the robot can move the object or not. In this work, we specify
one way of transition: to obtain control by grasping it and release control by opening the gripper.
There are other ways to obtain control, like pushing, hitting, etc. However, these transitions will
naturally lead to the constraints in the following sub-tasks, so they cannot be considered a general
component for any complex task. In this unit task, the position and orientation constraints depend on
the geometry of object instances.

(2) M1 denotes moving the target object with goal pose constraints, which can be modeled as a 6
DoF transform in the robot’s workspace. The position constraints define a bounded goal space in
R?, while the orientation constraints define a valid 3D orientation SO(3). We consider four types of
position constraints: (al) Free, (a2) Plane, (a3) Line, and (a4) Fixed, which means the goal position
is any point inside a 3D space (al), constrained in a 2D plane (a2), constrained in a line-shape area
(a3), or fixed to a certain point (a4). There are three types of orientation constraints: (bl) Free, (b2)

' AMSolver is implemented in CoppeliaSim [23] (Free Educational License) and codes are based on RL-
bench (RLBench Software License) and PyRep [10] (MIT License).

Axis, and (b3) Fixed, which means the goal orientation is unlimited in 3D rotation space (b1), only
rotated along an axis in space (b2), or fixed at a given orientation (b3). For example, M1[a2, b1]
can represent placing the object on a tabletop (with plane position constraint), while M1[a3, b2] can
represent moving the object to a position on one line and ending with a constrained orientation of one
axis, like dropping a stick into the hole.

(3) M2 denotes moving the target object along a trajectory while satisfying the motion constraints
during the entire path, which implies a more strict condition than M1. The constraints are mostly
from object articulation, like revolute joints on doors, or task-specific requirements, like keeping
the opening upward for a full-filled mug. Therefore, there are four kinds of position constraints:
(al) Free, (a2) Plane, (a3) Line, and (a4) Fixed trajectory, which means any position inside a space
(al), a plane (a2), a line (a3) or a predefined path (a4) should be feasible for the trajectory, and four
kinds of orientation constraints: (bl) Free, (b2) Axis, (b3) Fixed, and (b4) Depend on position, which
means every pose in the trajectory should be unlimited orientations (b1), at most rotated along an axis
(b2), fixed to a certain orientation (b3), or depended on the corresponding positions. For example,
M2[a2, b2] means moving the object inside a 2D plane while maintaining the orientation of one
axis, like wiping the table. In contrast, M2[a4, b2] means moving the object along a fixed trajectory
with maintaining the orientation of one axis, like using a screwdriver to tighten a screw. It is worth
mentioning that M2[al,b1] will degenerate to M1[al,bl]. According to our unit task definition, we
have covered every feasible 6 DoF pose of the end-effector. Therefore, we have reason to believe that
these unit tasks can represent any complex task in the action space.

3.2 Object-centric Representation

Some recent works [[12, 37] have used object-centric representations for manipulation. Since the
properties are defined on objects, these representations can easily cross the variations of environ-
ments, agents, and tasks. Our benchmark assumes that objects used in the tasks are rigid and their
fundamental properties will not change during the tasks. Therefore, we can parameterize the objects
as a set of configurations, including class, color, size, and geometry shape. If the object is articulated,
its whole configuration will contain the configuration of each part and the physical constraint of
each connection. For example, a door consists of three parts: the door base, plank, and handle, so
its configuration will contain each part’s configuration and record the positions and ranges of two
revolute joints.

3.3 Automatic Demonstration Generation

To create a task example, the user could compose a task template from the unit library of formulation,
such as a unit task of object rearrangement as Control-M1 or a more complex task of object stacking
as Control-M1-Control-M1-Control-M]1, etc., and then select the objects from a given set to be
included in the scene as the object to be manipulated and distractor objects. The object placement
could be randomized to the customer’s specifications in the simulation. The corresponding language
descriptions could also be generated from templates.

To implement Control as grasping, we create an object-wise grasp pose dictionary. Specifically,
a point cloud-based grasping pose detection algorithm [[19] is implemented to search all feasible
grasping poses, given the object’s shape and robot gripper parameters. The grasp poses are saved and
transformed to world space for a particular task by simply multiplying with the object’s pose. To
implement M1 and M2, we integrate customized motion constraints in the OMPL motion planner
library so that the calculated trajectory satisfies the constraints automatically. Please refer to Appendix
for more details and task examples.

4 VLMbench: Visual-and-Language Manipulation Benchmark

4.1 Problem Definition

Given language instructions, the Vision-and-Language Manipulation (VLM) task requires an embod-
ied agent to follow the instructions to complete tabletop manipulation tasks. Formally, at the beginning
of the task, the agent receives a set of language instructions L = {L, Lo, ..., L, }, where L; denotes
one sentence of arbitrary length. The initial state sg contains multi-view RGB images, depth im-
ages, segmentation information, and robot states, including joint angles, velocities and torques, and

Goal Pose Constraints Tasks Path Pose Constraints Tasks

A | |1 &

oy ¢
\ ’ : { 5
M1[a1,b1]: Pick [Object] and ~ M1[a2,b2]: Stack [Object1] and M2[a1,b2]: Pour water M2[a2,b2]: Wipe [Area]
place it into [Container]. [Object2] in sequence. from [Mug1] to [Mug2]. with a sponge.
Color, Size, Shape, Relative Color, Size, Shape, Relative Color, Size, Relative Color, Size, Shape,

Relative, Direction

& (™ \ <
j p] A
{ * % |

{ ? (i |

LiRIEEHRA) Doy [[0l M1[a4,b3]: Put [Object] M2[a3,b3]: [Slightly/Fully] Mz2[a4,b4]: [Slightly/Fully]

into [Container]. through the hole of [Shape]. [Open/Close]
. . Open/Close] the door.
Color, Size, Relative Color,Shape, Relative the [Level] drawer. 20 IR ;]Action

Amount, Action, Level
Figure 3: We show four task categories with goal-pose constraints on the left side, and on the right
side, we show four task categories with path-pose constraints. For each task category, we visualize
the observations of the overhead view and list the main unit task, variations, and instruction templates.
The red words with brackets indicate the blank in which the variations descriptions can fill. The
blue words indicate the variations in the tasks. The combinations of variations will lead to various
instance-level tasks.

end-effector pose. Given the observations and language instructions, the agent needs to estimate an
executable action command a, directly working on the end-effector or joints. Then, at each step ¢,
the agent receives new observations o; and generates the action a; = f(s¢|so, $1, ..., St—1, L) for the
next step. The step loop will repeat until the agent sends a stop action or should be terminated, e.g.,
achieve the success conditions or the limitation steps. The agent should obey the constraints provided
by language instructions during the run.

4.2 Tasks and Dataset

In previous works, the researchers manually designed manipulation tasks by implicit prior knowledge
without categories. Instead, we are trying to build tasks from the perspectives of elementary manipu-
lation abilities. In other words, since different tasks have various semantic meanings, we consider
the task with the same unit tasks combination should be in the same category from the aspect of the
action space. For example, “Open the door of the fridge," and “Open the door of the microwave"
require the same action ability except for semantic meanings and grasping poses which depend on
the object geometry. Therefore, we define eight general task categories, represented by one typical
task in each category, shown in Table[d.2] and Fig.[3] We use the definitions in the unit task templates
to represent the main constraints of each task category. The task details can be found in Appendix [A]
and dataset statistics can be found in Appendix [C]

Task Variations The manipulated object’s properties can randomly change for each task category,
and every combination leads to a task instance. In the VLMbench, we use eight variations: color,
size, relative position, shape, direction, level, amount, and action type. The variations are from two
perspectives: object and motion. Object variations include color, size, shape, relative position, and
direction. Here, the color is chosen from 20 colors in the seen settings. The size contains the relative
descriptions between two objects, “smaller" and “larger”, and descriptions between three objects,
which are “large",“medium", and “small". The shape contains five types of objects for the seen and
unseen settings. The relative position describes the spatial relationship between two objects, like the
top, front, rear, left, and right. The direction contains two descriptions for rectangular prism in a
plane:“horizontal" and “vertical". For the objects that have the vertical structure, the level includes

“top”, “middle," and “bottom." From the motion view, the variations are amount and action type. The
amount means how far the task needs to be done, consisting of “fully" and “slightly." The action

Task Categories

Main Constraints

Variations

Instructions Samples

Pick & Place objects

M1 - Position: Free,
Orientation: Free

Color, Size, Shape,
Relative Position

“Pick the red cube and place
it into the green container."

Stack objects

M1 — Position: Plane,
Orientation: Axis

Color, Size, Shape,
Relative Position

“Stack the small star and
the medium star in sequence."

Drop pencil

M1 - Position: Line,
Orientation: Axis

Color, Size, Relative Position

“Drop the left pencil
into the right container."

Put into shape sorter

M1 - Position: Fixed,
Orientation: Fixed

Color, Shape, Relative Position

“Put the triangular prism
through the hole of triangle."

M2 — Position: Free,

“Pour the water from

Pour water Orientation: Axis Color, Size, Relative Position the green mug to the red mug."
Wipe tabl M2 — Position: Plane, Color, Size, Directions, “Wipe the horizontial area
1pe table Orientation: Axis Relative Position with a sponge."
M2 - Position: Line, . « "
Use drawer Orientation: Depend on position Amount, Action Type, Level Fully close the top drawer.
M2 — Position: Fi j . .
Use door osition: Fixed trajectory, Amount, Action Type “Slightly open the door."

Orientation: Depend on position
Table 2: The table contains the category-level tasks in our dataset, with their main constraints,
variations and instruction samples.

type includes “open" and “close", especially for the articulated objects. The table of these variations
and models used can be found in Appendix [A]

Unseen Settings All tasks in the unseen settings are unseen <color, shape> combinations from an
unseen color collection and an unseen shape collection (where the shapes include all object classes
and variants). The unseen color collection has five new colors that do not appear during training,
including brown, gold, pink, chocolate, and coral. As for the unseen shape collection, it has some
overlap with the seen library for the tasks with color variations (but the <color, shape> combinations
are always unseen), and is exclusive for the tasks without color variations (e.g., we introduce a
new door model with a rotatable handle for the unseen setting of Door tasks). So there are mainly
three kinds of unseen combinations: <unseen color,unseen shape>, <unseen shape>, and <unseen
color,seen shape>. The exact object models used for each task can be found in Appendix [A]

S Vision-and-Language Manipulation Agent

To provide a baseline method to solve VLM tasks, we propose a neural-network-based agent 6D-
CLIPort that takes in the input of multi-view RGB-D observations and task language descriptions
and outputs 6 DoF pose keypoints along the path that can accomplish a specific task. For instance,
for the pick-and-place task, the agent will iterate twice and output the object’s 6D pose for pick, and
place, separately.

The overall flow of 6D—CLIPOrtE] is shown in Figure 4| The input data passes through visual and
language encoders. The embedded features are fused together to obtain a pixel-wise feature map that
shows the probability of the object of manipulation interest. The encoding module is reused in 3
models (Attention, Value, and Key Module) as follows: The Attention module takes the maximum
of the feature map to get 2D image sample crops. The Key module takes the input of the rotated
crops and output feature map crops. Then, the feature map crops are used as convolution kernels and
pass through the feature map of the entire image from the Value module to get a 3D pose heatmap
(x-y 2D position and yaw rotation, and their estimations are obtained by maximizing the probability).
Three fully connected neural network modules will regress one of the remaining three dimensions
each (z position and roll, pitch rotation) from this heatmap. Finally, a full 6 DoF pose is composed.
Compared to the state-of-the-art method CLIPort [25]], we resolved its two constraints: 1. increase 3
DoF only motions to full 6 DoF; 2. output an arbitrary number of poses than the fixed two outputs for
pick and place actions. Besides, we introduce some details below.

26D-CLIPort is implemented based on CLIPort [25] (Apache-2.0 License)

Input Data RGB.D Transporter
& “Stack the ‘ ResNet

black cube cLP Feature Pixel-wise

: d th - =)
- ;‘guowecube RGB ResNet50 Fusion & ——> Feature
in sequence. Decoder Map
Step Zero.” ‘ CLIP-

RGB Language |:Language \M'—-T

guag Encoding Module

5

Input Data | —————> Value Convolution wmax [T]|
ﬂ Module > Y
Yaw
Attention
AR
¢ . ﬂ Regressor
Rotate —| n Z
oy — P Roll Roll
—/.' _||:,'> ey —)n Pitoch
Vd - Module .
=2/ < .
L= : ° Regressor 6 DoF
° : Pose

Figure 4: The structure of 6D-CLIPort. Please refer to Sec. [5|for details.

Multi-view Vision Fusion To get a better RGB-D input, we first fuse RGB-D input from several
cameras with known poses into a 3D colored point cloud, and then project it along the vertical
direction facing towards the table plane to get a top-view RGB-D image.

Encoding Module The agent has two feature extraction streams: semantic and spatial streams. The
agent uses the pretrained CLIP’s ResNet50 and Transformer model [22]] to encode the RGB and
languages in the semantic stream. An untrained Transporter ResNet [38]], which has 43 layers and
8 strides, is used in the spatial stream to encode the RGB-D image. Then, the decoder fuses these
latent space features by concatenation, fully convolution, and up-sampling layers and predicts a dense
pixel-wise feature map. More details can be found in [23]].

Implementation Details We separately train the agent for each task category. For example, the
agent for pick and place tasks will jointly train on the data of all variations mentioned in Table 2]
In details, since the VLMbench is built by the unit task templates, the input demonstrations D =
{L,(1,Ca, ..., (;} can be divided into different sub demonstrations by the waypoints generated from
unit task templates, where each step ; = (L;, 0;, g;) consists of language instruction L;, observation
0;, and the 6 DoF sub-goal waypoint pose g; for the current step. For step ¢, we use the observations
in the first frame of this step as o; and prompt high-level instruction L with “Step i" as L;. The input
RGB-D image has a resolution of 160 x 128. The feature heatmap is dimension 16 in x-y 2D plane,
and the crops from the Attention Module are rotated 36 times before feeding into the Key Module.

6 Experiments

6.1 Experimental Setup

Evaluation Settings Before testing each baseline, we preprocess the tasks to help the agent eliminate
trivial steps. 1) we divided tasks into the sub-goal sequences by the ground truth waypoints generated
by AMSolver, so that the agent only needs to estimate the actions of the predefined unit task sequence
for each task. 2) Since we have the ground truth gripper state for each sub-goal, we also provide
whether the gripper should open or close for each action estimation. 3) To increase the grasping
stability, we use the pre-generated grasping pose instead of estimations if these two poses are close
enough (distance is less than 5 cm, and the rotation is less than 10 degrees). 4) To reduce the failure
grasping cases due to the motion planning, we use a predefined pre-grasping offset, which is 8cm
backward along the z-axis of the target grasping pose, and a post-grasping offset, which is 8cm
upward along the z-axis of the world frame.

Pick&Place Stack Drop Shape Sorter

Agent Seen Unseen Seen Unseen Seen Unseen Seen Unseen
Language-Only 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Vision-Only 6.31 9.85 6.89 1.79 0.00 0.00 0.00 0.33
6D-CLIPort 28.28 27.53 22.19 18.37 6.42 6.42 17.33 12.33

6D-CLIPort (GT Ori) 28.03 26.26 26.53 26.02 1791 16.22 24.00 15.67
6D-CLIPort (GT Pos) 83.84 75.25 58.93 50.51 16.89 11.82 18.00 17.33

Pour Wipe Door Drawer

Seen Unseen Seen Unseen Seen Unseen Seen Unseen

Language-Only 0.00 0.00 0.00 0.00 0.00 0.00 4.17 1.04
Vision-Only 0.00 0.00 19.80 20.80 0.00 0.00 14.58 7.29
6D-CLIPort 1.00 1.00 22.40 21.00 6.00 5.00 2292 15.63

6D-CLIPort (GT Ori) 3.67 3.67 25.80 2520 6.00 5.00 23.96 17.71
6D-CLIPort (GT Pos) 0.33 0.67 60.20 53.40 27.00 27.00 43.75 52.08

Table 3: Success rates of all task categories, including both seen and unseen settings.

In each episode of one task variation, the simulator imports a test configuration from the pre-collected
test dataset, which includes the initialization poses of objects, the success conditions of the task, and
a set of waypoints that can finish the task for reference. The agent should solve the task in the online
simulator within a limited number of steps. The success rate is used as the primary evaluation metric,
calculated by dividing the number of success conditions satisfied by the number of tests. We use
the average success rate of all variations for each task category. The success conditions are mainly
determined by an object or joint detector. The object detector returns true if particular objects have
moved inside the predefined space, and the joint detector returns true when the joint angle reaches
the predefined range. The success conditions of each task can be found in Appendix [A]

Baselines In addition to the 6D-CLIPort model, we provide two kinds of baseline models for
comparison, one with partial input modalities and the other with partial ground-truth predictions.

To test the influence of different input modalities, we train two other agents with partial modalities:
a Language-Only agent and a Vision-Only agent. These agents use the same model architecture as
6D-CLIPort but have different input modalities. The Language-Only agent uses the CLIP transformer
for language encoding, and the visual inputs are all zeros. The Vision-Only agent uses the same
RGBD inputs as in the 6D-CLIPort agent, but its language input will only include the prompt for
steps indication like “Step zero” without any high-level language instructions.

To measure the capabilities and limitations of 6D-CLIPort, we individually test its position or
orientation estimation abilities by giving the ground-truth values of the other. Although the trajectories
of finishing the tasks are various, and we cannot obtain the optimal position and rotation information,
we can regard the poses of waypoints as sub-optimal solutions. GT Pos means given ground truth
Xx/y/z positions while the other three parameters for 3D orientation are estimated, and GT Ori suggests
the contrary (known orientation, using estimated 3D position).

6.2 Result Analysis

Main Results on Different Task Categories and Variations The main results on different task
categories are shown in Table[3] We observe that 6D-CLIPort performs better on the tasks that have
lower rotation variances, including “Pick&Place,"” “Stack,"“Shape Sorter," “Wipe," and "Drawer."
It indicates that 6D-CLIPort can better estimate the positions than orientations in the 3D spaces.
Moreover, 6D-CLIPort performs poorly on the “Pour" tasks since the task needs to adjust the pouring
poses following the grasping pose, which introduces additional difficulties. Moreover, although the
success rates in the unseen settings are generally lower than those in the seen settings, the performance
drop is reasonable and not dramatic, showing that 6D-CLIPort can transfer the learned manipulation
knowledge from seen objects to unseen objects, benefiting from the powerful transfer ability of the
pre-trained CLIP model [22].

Color Shape Size Relative Position

Agent Seen Unseen Seen Unseen Seen Unseen Seen Unseen
Language-Only 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Vision-Only 6.00 5.00 6.00 850 6.05 5.10 6.80 5.10
6D-CLIPort 15.17 13.00 23.00 19.50 18.35 1492 1531 15.82
6D-CLIPort (GT Ori) 18.67 17.67 28.00 27.25 2097 17.74 2143 18.37
6D-CLIPort (GT Pos) 40.17 35.00 56.25 51.25 44.96 38.51 38.61 34.86
Direction Level Action Type Amount

Seen Unseen Seen Unseen Seen Unseen Seen Unseen

Language-Only 0.00 0.00 4.17 1.04 2.04 051 2.04 0.51
Vision-Only 21.00 24.00 14.58 729 7.14 357 7.14 3.57
6D-CLIPort 22.00 26.00 22.92 15.63 14.29 10.20 14.29 10.20
6D-CLIPort (GT Ori) 26.00 27.00 23.96 17.71 14.80 11.22 14.80 11.22

6D-CLIPort (GT Pos) 53.00 41.00 43.75 52.08 3520 39.29 35.20 39.29
Table 4: Success rates of all variations, including both seen and unseen settings.

We also show the results from the perspective of variations across task categories in Table [d The
results show that the agent is more sensitive to the novel compositions and thus has a larger seen-
unseen performance drop on variations such as “Shape”, “Level”, “Action Type”, and “Amount”.

Impact of Different Input Modalities Table [3|also compares 6D-CLIPort with Language-Only and
Vision-Only agents, demonstrating the impact of different input modalities. (1) The baseline vision-
and-language manipulation model 6D-CLIPort performs the best on all tasks, showing the importance
of both visual observations and language guidance in VLMbench tasks. (2) The Language-Only
agent nearly fails at all the tasks as it is visually blind and thus unable to localize the objects in the
3D space. For “Drawer" tasks, since language instructions can provide the level information (e.g.,
top, middle, and bottom) and action directions (e.g., open and close), the Language-Only agent has
some chance to close the drawer by collisions. (3) Without language guidance, the Vision-Only agent
has a significant performance degradation on all tasks. It fails completely on tasks that require more
strict pose constraints, including “Drop”, “Shape Sorter”, “Pour”, and “Door”. For other tasks such
as “Pick&Place", “Stack," “Wipe," and “Drawer”, the Vision-Only agent can succeed in few cases
(though with pretty low success rates) by randomly grasping an object in the scene for manipulation
because those tasks have a lower variance of the grasping actions and following movements.

Ablation Study on Position and Orientation Estimation We provide partial ground-truth predic-
tions and do a unit test of the agent’s position and orientation estimation abilities. The results are
shown in Table[3|and Table @] From the results, we can see the position estimation ability significantly
limits the performance of 6D-CLIPort in those tasks which need correct object localization, such as
“Pick & Place”, “Stack”, and “Shape Sorter” tasks. One primary reason why the GT position brings
more improvement is that it eliminates the difficulties of localizing the target object, one of the main
challenges in compositional reasoning. For example, the instruction “place the red cube into the green
container” requires the model to localize the correct cube and container and providing GT position
makes the task much easier. Besides, from the perspective of pose variances, when we divide the task
into steps, the orientation of each step has fewer variances than the position in many tasks, such as
picking, stacking, and wiping. Furthermore, for the tasks requiring the cooperation of position and
orientation, such as “Pour” and “Door” tasks, we observe that giving partially ground truth may still
not guarantee better task completion results. More results and analysis can be found in Appendix D]

7 Conclusion and Future Work

Vision-and-Language Manipulation (VLM) tasks are essential since they are inevitable for embodied
Al For further research in this area, we propose VLMbench, which includes various VLM tasks, and
AMSolver, used for automatic VLM task generation. In addition, we test the 6D-CLIPort agent, a
keypoint-based 6 DoF agent, on the benchmark. The results show that the current models can finish
VLM tasks, but it is still a new area needed to be explored. We hope the VLMbench can push the
research to find general language-guided manipulation agents.

10

Limitations Our work still has limitations that can be improved by future work. First, we only
consider rigid body object manipulation in the VLMbench. It is important to include soft material
objects in the future. Second, indirect manipulation tasks, like throwing the ball and playing billiards,
are not included in the VLMbench. Third, since we generated data with template languages in the
simulator, the gap between the virtual environment and the real world cannot be ignored.

Ethical Concerns We do not see significant risks of security threats or human rights violations in our
work. Since our work contributes to the field of language-guided manipulations, we do not encourage
real-world robot experiments depending on our benchmark without any real-world data fine-tuning.
Due to the gap between the simulator and the real world, the agents may execute unexpected actions.

References

[1] Ahmed, O., Triuble, F., Goyal, A., Neitz, A., Bengio, Y., Scholkopf, B., Wiithrich, M., Bauer,
S.: Causalworld: A robotic manipulation benchmark for causal structure and transfer learning.
arXiv preprint arXiv:2010.04296 (2020)

[2] Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Siinderhauf, N., Reid, I., Gould, S., Van
Den Hengel, A.: Vision-and-language navigation: Interpreting visually-grounded navigation
instructions in real environments pp. 3674-3683 (2018)

[3] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C.L., Parikh, D.: Vqa: Visual
question answering pp. 2425-2433 (2015)

[4] Chen, H., Ding, G., Liu, X., Lin, Z., Liu, J., Han, J.: Imram: Iterative matching with recurrent
attention memory for cross-modal image-text retrieval pp. 12655-12663 (2020)

[5] Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied question answering
pp- 1-10 (2018)

[6] Ehsani, K., Han, W., Herrasti, A., VanderBilt, E., Weihs, L., Kolve, E., Kembhavi, A., Mottaghi,
R.: Manipulathor: A framework for visual object manipulation pp. 4497—4506 (2021)

[7] Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-based lstm
and semantic consistency. IEEE Transactions on Multimedia 19(9), 2045-2055 (2017)

[8] Goyal, P., Mooney, R.J., Niekum, S.: Zero-shot task adaptation using natural language. arXiv
preprint arXiv:2106.02972 (2021)

[9] Gu, J., Stefani, E., Wu, Q., Thomason, J., Wang, X.E.: Vision-and-language navigation: A
survey of tasks, methods, and future directions. In: Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (ACL) (2022)

[10] James, S., Freese, M., Davison, A.J.: Pyrep: Bringing v-rep to deep robot learning. arXiv
preprint arXiv:1906.11176 (2019)

[11] James, S., Ma, Z., Arrojo, D.R., Davison, A.J.: Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters 5(2), 3019-3026 (2020)

[12] Li, C., Xia, F.,, Martin-Martin, R., Lingelbach, M., Srivastava, S., Shen, B., Vainio, K., Gokmen,
C., Dharan, G., Jain, T., et al.: Igibson 2.0: Object-centric simulation for robot learning of
everyday household tasks. arXiv preprint arXiv:2108.03272 (2021)

[13] Liu, R., Liu, C, Bai, Y., Yuille, A.L.: Clevr-ref+: Diagnosing visual reasoning with referring
expressions pp. 4185-4194 (2019)

[14] Liu, W., Paxton, C., Hermans, T., Fox, D.: Structformer: Learning spatial structure for language-
guided semantic rearrangement of novel objects. arXiv preprint arXiv:2110.10189 (2021)

[15] Lynch, C., Sermanet, P.: Language conditioned imitation learning over unstructured data. arXiv
preprint arXiv:2005.07648 (2020)

[16] Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C., Kulkarni, R., Fei-Fei, L., Savarese,
S., Zhu, Y., Martin-Martin, R.: What matters in learning from offline human demonstrations for
robot manipulation. arXiv preprint arXiv:2108.03298 (2021)

11

[17] Mees, O., Hermann, L., Burgard, W.: What matters in language conditioned robotic imitation
learning. arXiv preprint arXiv:2204.06252 (2022)

[18] Mees, O., Hermann, L., Rosete-Beas, E., Burgard, W.: Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters (RA-L) 7(3), 7327-7334 (2022)

[19] ten Pas, A., Gualtieri, M., Saenko, K., Platt, R.: Grasp pose detection in point clouds. The
International Journal of Robotics Research 36(13-14), 1455-1473 (2017)

[20] Pashevich, A., Schmid, C., Sun, C.: Episodic transformer for vision-and-language navigation
pp- 15942-15952 (2021)

[21] Qi, Y., Wu, Q., Anderson, P., Wang, X., Wang, W.Y., Shen, C., Hengel, A.v.d.: Reverie:
Remote embodied visual referring expression in real indoor environments. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9982-9991 (2020)

[22] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P, Clark, J., et al.: Learning transferable visual models from natural language
supervision pp. 8748-8763 (2021)

[23] Rohmer, E., Singh, S.P.N., Freese, M.: V-rep: A versatile and scalable robot simulation
framework pp. 1321-1326 (2013). https://doi.org/10.1109/IROS.2013.6696520

[24] Shao, L., Migimatsu, T., Zhang, Q., Yang, K., Bohg, J.: Concept2robot: Learning manipulation
concepts from instructions and human demonstrations. The International Journal of Robotics
Research 40(12-14), 1419-1434 (2021)

[25] Shridhar, M., Manuelli, L., Fox, D.: Cliport: What and where pathways for robotic manipulation
pp- 894-906 (2022)

[26] Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer, L., Fox,
D.: ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks (2020),
https://arxiv.org/abs/1912.01734

[27] Srivastava, S., Li, C., Lingelbach, M., Martin-Martin, R., Xia, F., Vainio, K.E., Lian, Z.,
Gokmen, C., Buch, S., Liu, K., et al.: Behavior: Benchmark for everyday household activities
in virtual, interactive, and ecological environments pp. 477-490 (2022)

[28] Stepputtis, S., Campbell, J., Phielipp, M., Lee, S., Baral, C., Amor, H.B.: Language-conditioned
imitation learning for robot manipulation tasks (2020)

[29] Sucan, ILA., Moll, M. Kavraki, L.E.: The Open Motion Planning Library.
IEEE Robotics & Automation Magazine 19(4), 72-82 (December 2012).
https://doi.org/10.1109/MRA.2012.2205651, https://ompl.kavrakilab.org

[30] Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre, N., Mukadam,
M., Chaplot, D.S., Maksymets, O., et al.: Habitat 2.0: Training home assistants to rearrange
their habitat. Advances in Neural Information Processing Systems 34 (2021)

[31] Wang, X., Chen, W., Wu, J., Wang, Y.F.,, Wang, W.Y.: Video captioning via hierarchical
reinforcement learning. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

[32] Wang, X., Huang, Q., Celikyilmaz, A., Gao, J., Shen, D., Wang, Y.F., Yang Wang, W., Zhang,
L.: Reinforced cross-modal matching and self-supervised imitation learning for vision-language
navigation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. pp. 6629-6638 (2019)

[33] Wang, X., Wu, J., Chen, J., Li, L., Wang, Y.F., Wang, W.Y.: Vatex: A large-scale, high-quality

multilingual dataset for video-and-language research. In: The IEEE International Conference
on Computer Vision (ICCV) (October 2019)

12

https://arxiv.org/abs/1912.01734
https://ompl.kavrakilab.org

[34] Wang, X., Xiong, W., Wang, H., Wang, W.Y.: Look before you leap: Bridging model-free and
model-based reinforcement learning for planned-ahead vision-and-language navigation. In: The
European Conference on Computer Vision (ECCV) (September 2018)

[35] Yi, K., Gan, C., Li, Y., Kohli, P., Wu, J., Torralba, A., Tenenbaum, J.B.: Clevrer: Collision
events for video representation and reasoning. arXiv preprint arXiv:1910.01442 (2019)

[36] Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., Levine, S.: Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning pp. 1094-1100
(2020)

[37] Yuan, W., Paxton, C., Desingh, K., Fox, D.: Sornet: Spatial object-centric representations for
sequential manipulation pp. 148-157 (2022)

[38] Zeng, A., Florence, P., Tompson, J., Welker, S., Chien, J., Attarian, M., Armstrong, T., Krasin,
I., Duong, D., Sindhwani, V., Lee, J.: Transporter networks: Rearranging the visual world for
robotic manipulation. Conference on Robot Learning (CoRL) (2020)

[39] Zhang, H., Lu, Y., Yu, C.,, Hsu, D., La, X., Zheng, N.: Invigorate: Interactive visual grounding
and grasping in clutter. arXiv preprint arXiv:2108.11092 (2021)

[40] Zhang, Q., Lei, Z., Zhang, Z., Li, S.Z.: Context-aware attention network for image-text retrieval
pp- 3536-3545 (2020)

[41] Zheng, K., Zhou, K., Gu, J., Fan, Y., Wang, J., Li, Z., He, X., Wang, X.E.: Jarvis: A
neuro-symbolic commonsense reasoning framework for conversational embodied agents. arXiv
preprint arXiv:2208.13266 (2022)

[42] Zhu, Y., Wong, J., Mandlekar, A., Martin-Martin, R.: robosuite: A modular simulation frame-
work and benchmark for robot learning. arXiv preprint arXiv:2009.12293 (2020)

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Please see Abstract and SectionE]

(b) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

(c) Did you describe the limitations of your work? [Yes] Please see Section
(d) Did you discuss any potential negative societal impacts of your work? [Yes] Please see
Section[7]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Please see it in
Appendix. We present the implementation details there.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see it in Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please see it in Appendix

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] Please see it in Appendix
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Please see Section [3]
and
(b) Did you mention the license of the assets? [Yes] Please see Section[3]and [3]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Please see it in Appendix

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We follow the open-source agreement and its license strictly.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The dataset has no sensitive or personally
identifiable information.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

14

	Introduction
	Related Work
	AMSolver: Automatic Manipulation Solver
	Rule-based Unit Tasks
	Object-centric Representation
	Automatic Demonstration Generation

	VLMbench: Visual-and-Language Manipulation Benchmark
	Problem Definition
	Tasks and Dataset

	Vision-and-Language Manipulation Agent
	Experiments
	Experimental Setup
	Result Analysis

	Conclusion and Future Work

