Accelerated Training of Physics-Informed Neural
Networks (PINNSs) using Meshless Discretizations

Ramansh Sharma
Department of Computer Science and Engineering, SRM Institute of Science and Technology, India
rs71460srmist.edu.in

Varun Shankar
School of Computing, University of Utah, UT, USA
shankar@cs.utah.edu

Abstract

Physics-informed neural networks (PINNs) are neural networks trained by using
physical laws in the form of partial differential equations (PDEs) as soft constraints.
We present a new technique for the accelerated training of PINNs that combines
modern scientific computing techniques with machine learning: discretely-trained
PINNs (DT-PINNSs). The repeated computation of the partial derivative terms in
the PINN loss functions via automatic differentiation during training is known to
be computationally expensive, especially for higher-order derivatives. DT-PINNs
are trained by replacing these exact spatial derivatives with high-order accurate
numerical discretizations computed using meshless radial basis function-finite
differences (RBF-FD) and applied via sparse-matrix vector multiplication. While
in principle any high-order discretization may be used, the use of RBF-FD allows
for DT-PINNs to be trained even on point cloud samples placed on irregular
domain geometries. Additionally, though traditional PINNs (vanilla-PINNs) are
typically stored and trained in 32-bit floating-point (fp32) on the GPU, we show
that for DT-PINNS, using fp64 on the GPU leads to significantly faster training
times than fp32 vanilla-PINNs with comparable accuracy. We demonstrate the
efficiency and accuracy of DT-PINNS via a series of experiments. First, we explore
the effect of network depth on both numerical and automatic differentiation of a
neural network with random weights and show that RBF-FD approximations of
third-order accuracy and above are more efficient while being sufficiently accurate.
We then compare the DT-PINNS to vanilla-PINNs on both linear and nonlinear
Poisson equations and show that DT-PINN s achieve similar losses with 2-4x faster
training times on a consumer GPU. Finally, we also demonstrate that similar
results can be obtained for the PINN solution to the heat equation (a space-time
problem) by discretizing the spatial derivatives using RBF-FD and using automatic
differentiation for the temporal derivative. Our results show that fp64 DT-PINNs
offer a superior cost-accuracy profile to fp32 vanilla-PINNs, opening the door to a
new paradigm of leveraging scientific computing techniques to support machine
learning.

1 Introduction

Partial differential equations (PDEs) provide a convenient framework to model a large number of
phenomena across science and engineering. In real-world scenarios, PDEs are typically challenging
or impossible to solve using analytical techniques, and must instead be approximately solved using a
numerical method. A variety of numerical methods to solve these PDEs have been developed including
but not limited to finite difference (FD) methods (19) (which work primarily on rectangular domains

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

partitioned into Cartesian grids) and finite element (FE) methods (36)) (which work on domains with
curved boundaries but require partitioning the domain into multidimensional simplices). A modern
class of numerical methods called meshless or meshfree methods generalizes finite difference methods
in such a way as to remove the dependence on Cartesian grids, thereby allowing for the numerical
solution of PDEs on point clouds. Of these, radial basis function-finite differences (RBF-FD) are
among the most popular and widely-used (3;5;137; 185 195 [15 [115 1125 1135 [10; 12255 265 1145 133; [18)), though
a host of other such methods also exist. Much like FD or FE methods, these meshless methods can
also approximate solutions to a desired order of accuracy.

More recently, PDE solvers based on machine learning (ML) have begun to gain in popularity due to
the inherent ability of ML techniques such as neural networks (NNs) to recover highly complicated
functions from data specified at arbitrary locations (15;[20). We focus on a popular class of ML-based
meshless methods called physics-informed neural networks (PINNs) (27). PINNs can be used both
to discover/infer PDEs that govern a given data set, and as direct PDE solvers. Our focus in this
work is on the latter problem, though our techniques extend straightforwardly to inferring PDEs as
well. PINNSs are typically multilayer feedforward deep NNs (DNNs) that are trained using PDEs
and boundary conditions as soft constraints, leveraging automatic differentiation (autograd) for
computing derivatives appearing in the PDE terms. The original PINNs, often referred to as vanilla-
PINN:Ss, are challenging to train, at least partly because PDE-based constraints lead to complicated
loss landscapes (17)). These issues are somewhat ameliorated by using domain decomposition (X-
PINNs) (16) or gradient-enhanced training (G-PINNSs) (38). Other approaches for ameliorating these
issues involve curriculum training or sequence-to-sequence learning (17). Many of these extensions
can also help improve training and test accuracy. Much like other DNNs, PINNs are typically trained
in 32-bit floating-point (i.e., fp32 or single precision).

In this work, we introduce a new technique for accelerating the training of vanilla-PINNs. Our
technique relies on two key features: (a) using RBF-FD to compute highly accurate (nevertheless
approximate) spatial derivatives in place of autograd, and (b) training the DNN in fp64 rather than
fp32. These new discretely-trained PINNs (DT-PINNs) can be trained significantly faster than fp32
vanilla-PINNs on consumer desktop GPUs with no loss in accuracy or change in DNN architecture.
The use of RBF-FD allows DT-PINNSs to retain the meshless nature of vanilla-PINNSs, thereby
allowing for the solution of PDEs on domains with curved boundaries. As RBF-FD uses sparse-
matrix vector multiplication (SpMV) to approximate the derivatives, DT-PINNS are also parallelizable
on modern GPU architectures. It is important to note that DT-PINNs use autograd for the actual
optimization of the PINN weights; only PDE derivatives are discretized using RBF-FD.

The NN literature does contain efforts to replace automatic differentiation with numerical differentia-
tion. For instance, recent work showed that FD approximations can be efficient for learning generative
models via score matching (23). Another example is an NN architecture that involves learning FD-like
filters for faster prediction of PDEs (35). In the PINN literature, fractional-PINNs (F-PINNs) use
numerical differentiation as autograd cannot compute fractional derivatives (22). Neverthless, to the
best of our knowledge, ours is the first work on using meshless high-order accurate FD-like methods
in conjunction with PINNs, allowing them to be trained without any loss in accuracy on domains
with curved boundaries (just as autograd does). An alternative would involve eliminating autograd
inefficiencies via Taylor-mode differentiation (4). However, we show that at least part of the speedups
observed in DT-PINNSs is because numerical differentiation results in training completing in fewer
epochs than if autograd were to be used.

To alleviate concerns about replacing autograd with RBF-FD, we first compare fp64 RBF-FD
approximation of different orders of accuracy against fp32 autograd for DNNs and show the cost
benefits of using higher-order accurate RBF-FD. Then, to illustrate the features of DT-PINNs, we
focus for brevity on two purely spatial PDEs (the nonlinear and linear Poisson equations) and one
space-time PDE (the heat equation). We use these settings to compare DT-PINNs and vanilla-PINNs
for relative errors, timings, and speedups on a simple desktop GPU. We demonstrate through our
experiments that DT-PINNs offer a superior cost-accuracy profile over vanilla-PINNs.

The remainder of this paper is organized as follows. In Section[2] we review both vanilla-PINNs and
RBF-FD. Next, in Section[3} we discuss how to train DT-PINNSs to solve both the Poisson and heat
equations. Then, in Section[d] we present experimental results comparing RBF-FD and autograd,
and comparing DT-PINNSs against vanilla-PINN on the Poisson and heat equations. We summarize

our results and discuss possible future work in Section[5] Finally, the appendix contains additional
results, code snippets, and key implementation details.

Notation: We use z to refer to spatial coordinates in d dimensions. On the other hand, a bolded
quantity such as c or u indicates a vector with more than d elements (an array). Finally, the ~ symbol
on top of a quantity indicates that the quantity is an approximation.

Broader Impacts: To the best of the authors’ knowledge, there are no negative societal impacts of
our work including potential malicious or unintended uses, environmental impact, security, or privacy
concerns.

2 Review

We now provide a brief mathematical review of both vanilla-PINNs and RBF-FD discretizations.
Unless we note otherwise, all derivatives in this section are spatial or temporal. We focus on three
prototypical PDEs: the nonlinear Poisson equation, the linear Poisson equation, and the heat equation.

2.1 Physics-informed neural networks

Let C R? be a domain with boundary given by 9; here, d is the spatial dimension. We will focus
on the solution of the nonlinear Poisson equation on 2 using PINNs. Let z € R?, and let u : RY — R
be the solution to

Au(z) = "™ + f(z), = € Q, 1)
(an(z) -V + B)u(z) = g(z), x € 09, 2)

where A is the Laplacian in R4, V is the R4 gradient, n(z) is the unit outward normal vector on the

boundary 9, f(z) and g(x) are known functions, and «, 3 € R are known coefficients. If the e*(*)
term is dropped from (T)), we obtain the simpler linear Poisson equation:

Au(z) = f(z), v € Q. 3)

The vanilla-PINN technique for solving either Poisson problem involves approximating the unknown
solution u(z) by a DNN 4(z, w) (where w is a vector of unknown NN weights), so that ||@(z, w) —
u(x)|| < e for some norm ||.|| and some tolerance e. In the absence of existing solution data, this
is accomplished by enforcing (I) and () as soft constraints on @(x) to find the weights w during
training. Denote by X = {xk},ivzl the set of training points at which these constraints are enforced;
in the context of PDEs, these are also called collocation points. For convenience, we divide X into
two sets: [V; interior points in the set X; and [V, boundary points in the set Xj; then, X = X; U Xj,
and N = N, + N, Further, let B = an(z) - V + (. The vanilla-PINN training loss e(x, w) can then
be written as:

N;

|-

Ny
) RS (S IR B

j=1 i=1

e(z,w) =

2

PDE loss in interior Boundary condition loss on boundary

where A and the V term in 5 are both applied through autograd. The tanh activation function is
typically used, L-BFGS is used as the optimizer for finding the weights w, and training is typically
done in fp32 (17). For the linear Poisson equation, one simply omits the e term from the loss above.

For time-dependent PDEs, the PINN becomes a function of space and time @(x,t). We focus on the
forced heat equation, given by

Ou(x,t)

Tk Au(z,t) + f(x,t), z € Q, (5)
Bu(z,t) = g(x,t), © € 09, (6)
u(x, O) = Uo(.]f), (7)

where (7) is an initial condition and wug(x) is some known function. While the A term is handled
via autograd, there are two options to handle temporal derivatives: in a continuous fashion or
a time-discrete fashion. In the former, one samples the full space-time interval 2 x [0, 7] with
collocation/training points, and then uses autograd to compute all spatial and temporal derivatives.
The loss terms are also augmented with the initial condition (7)), which is enforced on the full space-
time solution. In the time-discrete approach, one typically discretizes the time derivative using an
appropriate scheme (such as a Runge-Kutta method), and then proceeds in a step by step fashion. We
focus on the continuous approach in this work.

2.2 Radial basis function-finite differences (RBF-FD)

We now briefly review RBF-FD methods. Given some function f : R¢ — R, the goal of any FD
formula is to approximate the action of a linear operator £ on that function (i.e., to approximate L f)
at some location x. This is typically accomplished by using a weighted linear combination of f at
z1 and its n — 1 nearest neighbors. Mathematically, this can be written as:

n
LF@) |y, =D crf (), ®)
k=1
where the real numbers ¢, are called FD weights, and the set of points x4, . .., z, is called an FD

stencil. In general, given a set of samples X = {z; }jvzl one can repeat the above procedure to find

FD weights at every single point. These weights can be assembled into an N x N differentiation
matrix L so that Lf(x)|y ~ L f(z)|yx. If n << N, L will be a sparse matrix with at most n
non-zero elements per row. If X lies on a Cartesian grid, the entries of L (i.e., the FD weights cy,)
are known in advance. However, if X is a more general point cloud, standard FD cannot be used to
generate the entries of L (see Mairhuber-Curtis theorem (7)). The RBF-FD method involves using an
interpolatory combination of RBFs and polynomials instead. Without loss of generality, we describe

the RBF-FD procedure for 7 and its n — 1 nearest neighbors. Let ¢(r) = r™, where m is odd, be

a radial kernel (a polyharmonic spline), and ¢;(z), j =1,..., (Z'gd) be a basis for polynomials of

total degree ¢ in d dimensions; we use tensor-product Legendre polynomials. The RBF-FD weights
for the operator £ at the point x; are computed by solving the following dense (block) linear system
on this stencil:

A Pl |c La
o) [=[] ®
where
. . . {+d
Aij = (|lzi — =) ,4,5=1,...,n, Pz-j:qj(wi),z:1,...,n,]:1,...,< d), (10)
. {+d
La= Lo (||z — zj])],—s, - Eq—ﬁqj'(m)lx_md—l,---,< d >, (11)

where c is the (column) vector of n RBF-FD weights. The vector A is a set of Lagrange multipliers

enforcing the condition P”c = Lg, thereby ensuring that (a) the RBF-FD weights c can exactly
differentiate all polynomials up to total degree ¢; and that (b) the error in the RBF-FD approximation
to £ when applied to all other functions is O(h*T'=%), where 0 < h < 1 is a measure of sample
spacing in the stencil, and 6 is the number of derivatives in the differential operator £ (6)). We set
¢ = p+ 60 — 1 based on the desired order of convergence p so that the error is O(h?). We then set
the stencil size to n = 2(2‘;d) + 1 as this ensures that (9) has a solution (2), and also set m = £
if £ is odd, and m = ¢ — 1 if £ is even (29). L becomes more dense for higher values of p and
dimension d, as n = O(p?). When this procedure is repeated for each point in the set X, the cost
scales as O(NN) for fixed n, with large speedups possible by computing multiple sets of weights
using each stencil (28} 129; 1315345 32). For domains with fixed boundaries, the RBF-FD weights can
be precomputed and reused during simulation. However, domains with moving boundaries require
recomputation of RBF-FD weights proximal to the boundary every time-step; fortunately, this can be
done quite efficiently (32)).

Ghost points When tackling boundary conditions involving derivatives (such as in (2))) using RBF-
FD, it is common to include a set of N}, ghost points outside the domain boundary 052 into the set of
samples to ensure that RBF-FD stencils at the boundary are less one-sided; this aids in numerical
stability and accuracy. Ghost points allow us to also enforce the PDE at both the interior and boundary
points. We therefore define and use the extended set X=X i U Xy U Xy, where X, is the set of
ghost points. For the remainder of this article, let the RBF-FD differentiation matrix for A be L
(dimensions (N; + Ny) X (N; + 2Ny,)), and for B be B (dimensions N;, x (N; 4+ 2Ny)).

3 Discretely-Trained PINNs (DT-PINNs)

Having described both vanilla-PINNs and RBF-FD, we are now ready to describe DT-PINNs. In
short, DT-PINNSs are PINNs that are trained using the sparse differentiation matrices L and B in
place of the autograd operations used to compute the Laplacian and boundary operators in the loss
function (4) (and its heat equation equivalent). All operations are carried out in fp64.

Poisson Equation Focusing first on the nonlinear Poisson equation (I)), recall that @(x, w) is the
PINN approximation to the true solution u(x). Let the evaluation of @(x, w) on the set X be @, i.e.,
@ is obtained by evaluating @(x, w) at interior, boundary, and ghost points. Further define the vector
e, which is the loss function evaluated at only the interior and boundary points, i.e., e = e(z, w)| .
Then, the DT-PINN loss function can be written as:

1 1
e=———|La—exp(a) — f||3 + —||Bu — g3 12
N I @) 3+ Ba-gll (12)
—_——
PDE loss in interior and on boundary Boundary condition loss on boundary

where L and B were defined previously, exp(@) is the element-wise exponential of the vector @, and
f= f(z)|x,and g = g(z)|,; here, f has dimension (N; + N;) x 1, and g has dimension N, x 1.
For efficiency, L and B can be precomputed using RBF-FD before the training process begins, and
then simply multiplied with the vector @ to obtain its numerical derivatives. The loss function (I2)
is then minimized over w as usual using autograd in conjunction with a suitable optimizer. For the
linear Poisson equation (3)), we simply drop the exp(@) term.

Heat Equation When using DT-PINNSs for the heat equation, we demonstrate the flexibility of our
method by using a mixed training technique where the time derivative is handled with autograd
and the spatial derivatives are discretized with RBF-FD; this also allows us to bypass the Courant-
Friedrichs-Lewy (CFL) constraint on the time-step. We carefully order the evaluations of the network
so that L and B multiply the right quantities. Let @(x,t, w) be the PINN, and recall that we have
N, time steps over the interval [0, T; in addition, we also have the initial condition at time ¢ = 0,
making for a total of N; 4 1 steps. Define u = ﬂ|x:X7t:kAt’ where At is the timestep. This vector
is the evaluation of @ on all spatial locations (including ghost nodes) for the k-th time slice. This
definition in turn allows us to define two vectors, wa and ug as follows:

L, B
Ly Biy

up = .| uB= . (13)
Liy, By,

The vector a has dimensions (N; + 1)(N; + N;) x 1, and @z has dimensions Ny N}, x 1. Next,
we define the data vectors f and g as follows:

fo g0
fi g1

= .1, g=1| .1, (14)
th N,

where £, = f(z,t)],_x —pap and 8k = 9(z,)| ,_x, ;—p,- Finally, we define two more vectors:
uy = up(x)| y, the vector evaluating the initial condition on the set X (interior and boundary points);

and u;, the vector of evaluations of % at spatial locations (interior and boundary) for each time
slice:

(%)
at /o
(5¢)
iy = : . (15)
oo
(),
where (%—’?)k = % o= X A=k AL This vector is computed using autograd. With these different

vectors defined, we can finally write the DT-PINN loss vector e for the heat equation as

o — i, g B+ : it — s~ I3+ s — gl
€= —""7-"IUyg — U|,._ _ Ut —UA — ———— ||uUB — .
N+ Ny 140 T Me=xmo 12T N YN,) T T A TR T Ny e Bl
Initial condition PDE loss in interior and on boundary Boundary condition loss on boundary
(16)

(@ (b)

Figure 1: Quasi-uniform collocation points and the manufactured solution on the unit disk. The
figure shows (a) N = 1663 interior and boundary collocation points on the unit disk and (b) the
manufactured solution given by (T9).

4 Results

We now present experimental results comparing DT-PINN and vanilla-PINN performance on the
linear Poisson equation (3)), the nonlinear Poisson equation (TJ), and the forced heat equation (3).

Setup All experiments were run for 5000 epochs on an NVIDIA GeForce RTX 2070. All results
are reproducible with the seeds we used in the experiments. We used the L-BFGS optimizer with
manually fine-tuned learning rates for both vanilla-PINNs and DT-PINNs. Both DT-PINNs and
vanilla-PINNs used a constant NN depth of s = 4 layers with 50 nodes each across all runs. We
use quasi-uniform collocation points generated using a node generator (30). Figure [Ib]shows the
manufactured solution as specified in (T9). For the Poisson experiments, we report errors on a test set
of Niest = 21748 points. For the heat equation, we report results directly at the collocation points
for convenience. For all experiments, the spatial domain €2 is set to the unit disk

Q={zecR?||z|3 <1} (17)
For illustration, we show one of the point sets on the unit disk in Figure[Ta|(with N = 1663 points). In
the 2D heat equation experiment, the space-time domain is chosen to be 2 x [0, 1]. The time interval
[0,1] is evenl%f divided into 24 time steps so that V; = 24 (excluding ¢ = 0), and the time-step was
set to At = 5. We measure all errors against a manufactured (specified) solution u, and specify f so
that the solutlon holds true. The boundary condition term g is computed by applying the operator B
to u; we use « = 3 = 1 for all tests. To compare DT-PINNs and vanilla-PINNS to the manufactured
solution u, we report the relative /5 error

i — s
18
fallz (18)

where w is the true solution vector, and u is either the DT-PINN or vanilla-PINN solution vector.

652 =

4.1 Effect of neural network depth

We first study the effect of PINN depth (fixing the number of nodes per layer) s on computing the
Laplacian A of the output with respect to the spatial variable z using either autograd or RBF-FD.
We compute errors against fp64 autograd for fp32 autograd and for RBF-FD with p = 2, 3, 4, and 5.
All errors were computed on N = 19638 quasi-uniform collocation points. The results are in shown
in Figure[Za] We see p = 4 and p = 5 are more accurate than fp32 autograd, and that increasing p
increases the accuracy of RBF-FD by about two orders of magnitude. The errors are reasonably low
for p = 3 also. In Figure 2b] we report the time taken for the same test. It is immediately clear that
fp64 autograd is significantly more expensive than the fp32 variant, though both costs scale slowly
with the network depth s. More importantly, the time taken for f{p64 RBF-FD (for all orders) is both
lower than both fp32 and fp64 autograd and is independent of the network depth s, primarily since
the RBF-FD weights can be precomputed and repeatedly reused during training.

Relative error vs s le-1 Time vs s

1072 2.5
-9~ p=2(fp64) -9~ p =2 (fp64)
3 O p = 3 (fp64) O p=3(fp64)
1o -4 p = 4(p64) 20 & p=4(p6d)
-4~ p =5 (fp64) : -4 p=5(fp64)
10-% --%-- autograd (fp32) --%-- autograd (fp32)
1Sy
g ?____9____,____?____9____,____’____Q.;--?»___? ? s V-- autograd (fp64)
o 1073 é
(]
2 10 g
o i
E B---@----@) gf?_* . ‘?rl Jf = 1.0 RN S SR
7] L * vy
e 107 Y v
108 DG S S 4 DR S S o f * o5V |
iNEssas
| e . N
107° A—f--#-—--*«-—-#““f""4 """ 4 f 0.0 Q—---0---—0----ﬁ---i---i--—i---;—---‘----’
1 2 3 4 5 6 7 8 9 10 i 2 3 4 5 6 7 8 10
Network depth (s) Network depth (s)
(@) (b)

Figure 2: Autograd properties as a function of network depth s. The figure shows (a) effect of neural
network depth s on the relative error (with respect to fp64 autograd) and (b) time taken for one
application of autograd on fp32 and fp64, compared to the time taken for SpMV using RBF-FD. The
RBF-FD weights for N = 19638 collocation points were precomputed using an efficient CPU code
in approximately 0.1s. Error bars over 15 random runs are shown.

4.2 Linear Poisson equation

le-4 Relative error vs N 1e2 Time vs N Speedup vs N
25 -9 p=2(fp64) -+-- vanilla-PINN (fp32) 27 V-~ vanilla-PINN (fp64)
+ @ p=3(fp64) 7 -V vanilla-PINN (fp64) - p=2(fp64)
~& p=4(fp64) - p =2 (fp64) y 24 S p=3(fp64)
20 \ -4 p=5(fp64) 6 O p=3(fp64) -9 p=4(fp64)
-4~ vanilla-PINN (fp32) -4 p=4(fp6d) 21 A p=5(fp6d)
- \ e A b=
E | V-~ vanilla-PINN (fp64) 5 A-- p =5 (fp64) 18
k5 * = v e °
o ' = 315 i
g \ 0* v S 2\
=] E Q12| |/ |
& 10 =3 . Y Iy P4
Q v L 9
-9 v, 1 SN S -1,- ———————
o o 6

A TN : ;::*"i?:ff'.’?ﬁ?‘?’fﬂ:“fg{ f

_______ oo + -+ | i
o %---3=»--5-----g-....3-..,{;,_,4}“__.5.__::5 ol [+ o ¥ v v
587 §1° 1667 1230 390 o1 3t 167 o63® 587 §1% 667 1930 39° 4517 3t 167 g63® 687 §2° 1662 1330 396 o1 3* 16T o630
Training set size (N) Training set size (N) Training set size (N)
(@) (b) ©

Figure 3: fp64 DT-PINNs and fp32 vanilla-PINN results on the linear Poisson equation (3] for
different numbers of collocation points (V) and orders of accuracy (p). We show (a) the relative error
in the PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup
attained by fp64 DT-PINNS relative to fp32 vanilla-PINN for those times. Error bars over 5 random
runs are shown.

Next, we study the performance of fp64 DT-PINNs and fp32 vanilla-PINNs on the linear Poisson
equation (3) on the domain (T7). Letting « = [z1, x2], we specify the true solution u to be

u(z) = u(xy,e) = 1 4 sin(mwxy) cos(mrs), (19)
and enforce this by setting f = Au; the true solution u is shown in Figure[Tb] We then solve for @
as described in Section[3] The results of this experiment are shown in Figure[3] We present relative
errors (Figure [3a), wall clock time (Figure 3b), and speedup (Figure [3c). We also present results for

fp64 vanilla PINNS. It is important to note that fp64 DT-PINNs were completely stored and trained
in fp64, a format widely known to be significantly slower on the GPU than fp32.

Figure [3a] shows the relative errors for DT-PINNS as a function of the number of collocation points
N. DT-PINNSs for p = 3,4, 5 produce similar relative errors to both fp32 and fp64 vanilla-PINNs
for the same value of N. In contrast, the DT-PINN using p = 2 is generally less accurate, showing
that higher-order accuracy is needed to reach the same relative errors as vanilla-PINNs. Examining
Figures [3b]and [3c] we also see that all fp64 DT-PINNs can be trained much more rapidly than both
fp32 and fp64 vanilla-PINNSs. In fact, Figure [3c| shows a maximum training speedup of 4x for
DT-PINNSs even if p = 2 is ignored. In general, fp64 DT-PINNS for p > 2 are trained much
more quickly than vanilla-PINNs without a significant loss in accuracy. We also note that using
fp32 DT-PINNSs did not lead to greater speedups over the fp64 DT-PINNs, with a loss in accuracy.
These results are shown in Appendix [A.T.2]

1e2 Training epochs vs N 1e2 Training epochs vs N
--4-- vanilla-PINN (fp32) i -4%-- vanilla-PINN (fp32)
9 V-- vanilla-PINN (fp64) ,," 9 V-- vanilla-PINN (fp64)
-9 p=2(fp32) ! -9 p=2(fp64)
8 @ p=3(fp32) ! 8 O p =3 (fp64)
; -9 p=4(fp32) / , -9 p=4(fp64)
-4 p=5(fp32) / -4 p =5 (fp64)
I I
S]
o5 o5 .
o o N
wa wa | : /'ﬁ__,_y ________ B
3 3 i \,(\/ \\i
1 1 -@-s +’ |
0 0
587 §1° 4663 1230 139° o1 G 16T g63® 587 2% 166 ;3¢ 1396 poTT ¥ 167 ye3°
Training set size (N) Training set size (N)
() (b)

Figure 4: Number of training epochs to achieve the lowest relative error as a function of number of
collocation points N and order p for (a) fp32 DT-PINNSs and (b) fp64 DT-PINNSs. Error bars over 5
random runs are shown.

The superior performance of fp64 DT-PINNs becomes clearer when we examine the number of
training epochs as a function of the number of collocation points N (Figure[d). Figures[dajand[4b|both
illustrate that both fp32 and fp64 DT-PINNs reach their lowest relative errors in fewer epochs than
vanilla-PINNs. These results provide evidence that DT-PINNs have simpler loss function landscapes
than their vanilla-PINN counterparts, also implying that loss functions involving linear combinations
of NN values are easier to minimize than loss functions involving derivatives of NNs. Figure 4b]also
shows that only fp64 DT-PINNs take fewer epochs to train as /V is increased. We also see that moving
to fp64 does not appear to significantly speed up vanilla-PINNS. It is therefore the combination of
discrete training and fp64 that results in speedups for increasing N

4.3 Nonlinear Poisson equation

Next, to understand the influence of nonlinearities in terms not including the differential operator, we
test the performance of DT-PINNs on the nonlinear Poisson equation (T)). To measure errors, we use
the manufactured solution given by (I9), and set f = Au — e*. The results are shown in Figure 3}
for simplicity, we omit p = 2 and fp64 vanilla-PINNs as both these have poor cost-accuracy tradeoffs.
First, Figure [5a] shows that despite some outliers, fp64 DT-PINNs achieve comparable relative errors
to fp32 vanilla-PINNs. Further, Figure [5b|shows that DT-PINNS are still trained faster than vanilla-
PINNs. However, when comparing Figure [5¢|to Figure [3c| (linear Poisson equation), we see that the
average speedup is higher for the linear Poisson equation. This shows that DT-PINNs may not offer
speedups over vanilla-PINNs if terms not involving differential operators dominate training
times.

'We also attempted to train fp32 vanilla-PINNs using ghost points, but using ghost points offered no
improvement (results not shown).

le-4 Relative error vs N 1le2 Time vs N Speedup vs N

6
3.0 8 p=3(p6d) -4 vanilla-PINN (fp32) 8- p=3(fp6d)
-4 p =4 (p64) @ p=3(fp64) @ p=4(fp6d)
8 A= p =5 (fp64) 5| @ p=4(ip6d) A~ p =5 (fp64)
2.5 . ila-| - =
-4-- vanilla-PINN (fp32) 4~ p=5(fp64)
'6 1
.]
£20 - ey
5 © ™ ‘
0 s -
E 15 Esi| | A ;
2 E NP ~
[7) A ¢+ T~—~\
0 - 2 é
0.5 I S - 1
R
B @18 663 136 1396 1T 3b g6l 05° B 1% (663 136 1496 11 3b g6l o° 587 g1® (663 30 ;100 1T 3F g6 106%°

Training set size (N) Training set size (N)

(a) (b (©)

Figure 5: fp64 DT-PINNSs and fp32 vanilla-PINN results on the nonlinear Poisson equation (T]) for
different numbers of collocation points (/V) and orders of accuracy (p). We show (a) the relative error
in the PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup
attained by fp64 DT-PINNS relative to fp32 vanilla-PINN for those times. Error bars over 5 random
runs are shown.

4.4 Heat equation

le-3 Relative error vs p Speedup vs p
10] ¢ -9-- DT-PINN (fp64) 5.5 -9~ DT-PINN (fp64)
\ -=%-- vanilla-PINN (fp32)
5.0
0.8
5 a.5
= 9
o \,
5 S4a.0
) 0.6 T
2 035
- (-3
% 04 V30
&0
2.5 N
0.2{ | I ! [2.0 T
! T I 1
1.5
2 3 a 5 2 3 a 5
Order of accuracy (p) Order of accuracy (p)
(@) (b)

Figure 6: fp64 DT-PINN and fp32 vanilla-PINN results on the heat equation on N = 828 spatial
points and N; = 24 time-steps. The figure shows (a) the relative error for f{p64 DT-PINNs as
a function of approximation order p; and (b) the speedup attained by fp64 DT-PINNs over fp32
vanilla-PINNs as a function of p. Error bars over 5 random runs are shown.

Next, we compare fp64 DT-PINNs and fp32 vanilla-PINNs on the 2D heat equation. In order to
demonstrate the flexibility of our method, we adopt a mixed training approach where only spatial
derivatives are discretized with RBF-FD. We specify the true solution u to be

u(xz,t) = u(xy, x2,t) = 1 4 sin(mway) cos(mas) sin(nt), (20)

and specify f = %’; — Auw so that the solution u satisfies the heat equation for all space-time. We
compute the initial condition as ug(z,0) = u(x1,22,0) = 1. We trained on N = 828 spatial
collocation points over 25 time slices (including time ¢ = 0) for a total of 20, 700 spacetime
collocation points; we express all results as a function of p. These results are shown in Figure [f]

Training set size (N)

First, Figure [6a] shows similar results to the 2D Poisson equation, with p > 2 achieving relative
errors similar to fp32 DT-PINNGs. Figure [6b|shows that we achieve 2-4x speedups over vanilla-PINNs.
We observed in our experiments that the speedup appears to increase as a function of the number
of time-steps IV; (results not shown). It is likely that one could achieve further speedups by also
discretizing the temporal derivatives, but we leave this exploration for future work.

S Summary and future work

We presented a novel technique, DT-PINNSs, that involves training PINNs by using RBF-FD for
spatial derivatives, and using fp64 weights and training instead of fp32. This involved replacing
all autograd operations (dense matrix-matrix multiplies) related to PDE loss terms with an SpMV
operation. We showed that using an RBF-FD approximation order of p > 2 resulted in DT-PINNs
that were comparable in accuracy to vanilla-PINNs while offering 2-4x speedups in training times for
both the linear and nonlinear Poisson equations. We also showed that DT-PINNS trained in a mixed
fashion (autograd for time, RBF-FD for space) also achieved comparable accuracy and speedup on
the heat equation. DT-PINNs therefore constitute a new paradigm for scientific machine learning that
allow practitioners to leverage existing sophisticated scientific computing techniques to accelerate
ML training times.

There are several possible extensions to our current work. It is likely that using DT-PINNs in
conjunction with X-PINNs and G-PINNs will yield even greater speedups in training times. Further,
DT-PINNSs open the door to leveraging compute more efficiently. For instance, the SpMV operations
could be parallelized using distributed memory systems in conjunction with GPUs, thereby allowing
scaling to very large training sets; alternatively, the SpMV operation could be parallelized on many-
core CPUs while other operations are conducted on the GPU. It may also be profitable to explore
mixed-precision training of DT-PINNs. Finally, DT-PINNs can be viewed as vanilla-PINNs with
partially linearized constraints; it may be profitable to explore other types of constraint linearization
to accelerate training and simplify loss function landscapes.

Acknowledgments and Disclosure of Funding
VS was supported by National Science Foundation (NSF) grant CCF 1714844.

References

[1] Barnett, G. A. (2015). A Robust RBF-FD Formulation based on Polyharmonic Splines and
Polynomials. PhD thesis, University of Colorado Boulder.

[2] Bayona, V., Flyer, N., Fornberg, B., and Barnett, G. A. (2017). On the role of polynomials in
RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys., 332:257-273.

[3] Bayona, V., Moscoso, M., Carretero, M., and Kindelan, M. (2010). RBF-FD formulas and
convergence properties. J. Comput. Phys., 229(22):8281-8295.

[4] Bettencourt, J., Johnson, M. J., and Duvenaud, D. (2019). Taylor-mode automatic differentiation
for higher-order derivatives in jax.

[5] Davydov, O. and Oanh, D. T. (2011). Adaptive meshless centres and RBF stencils for Poisson
equation. J. Comput. Phys., 230(2):287-304.

[6] Davydov, O. and Schaback, R. (2018). Minimal numerical differentiation formulas. Numerische
Mathematik, 140(3):555-592.

[7] Fasshauer, G. E. (2007). Meshfree Approximation Methods with MATLAB. Interdisciplinary
Mathematical Sciences - Vol. 6. World Scientific Publishers, Singapore.

[8] Flyer, N., Barnett, G. A., and Wicker, L. J. (2016a). Enhancing finite differences with radial basis
functions: Experiments on the Navier-Stokes equations. J. Comput. Phys., 316:39—62.

[9] Flyer, N., Fornberg, B., Bayona, V., and Barnett, G. A. (2016b). On the role of polynomials in
RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys., 321:21-38.

10

[10] Flyer, N., Lehto, E., Blaise, S., Wright, G. B., and St-Cyr, A. (2012). A guide to RBF-generated
finite differences for nonlinear transport: shallow water simulations on a sphere. J. Comput. Phys.,
231:4078-4095.

[11] Flyer, N. and Wright, G. B. (2007). Transport schemes on a sphere using radial basis functions.
J. Comput. Phys., 226:1059-1084.

[12] Flyer, N. and Wright, G. B. (2009). A radial basis function method for the shallow water
equations on a sphere. Proc. Roy. Soc. A, 465:1949-1976.

[13] Fornberg, B. and Lehto, E. (2011). Stabilization of RBF-generated finite difference methods for
convective PDEs. J. Comput. Phys., 230:2270-2285.

[14] Fuselier, E. J. and Wright, G. B. (2013). A high-order kernel method for diffusion and reaction-
diffusion equations on surfaces. J. Sci. Comput., 56(3):535-565.

[15] Han, J., Jentzen, A., and E, W. (2018). Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505-8510.

[16] Jagtap, A. D. and Karniadakis, G. E. (2020). Extended physics-informed neural networks
(xpinns): A generalized space-time domain decomposition based deep learning framework for
nonlinear partial differential equations. Communications in Computational Physics, 28(5):2002—
2041.

[17] Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, M. W. (2021). Characterizing
possible failure modes in physics-informed neural networks. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems.

[18] Lehto, E., Shankar, V., and Wright, G. B. (2017). A radial basis function (RBF) compact
finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput.,
39:A2129-A2151.

[19] LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems. STAM.

[20] Long, Z., Lu, Y., Ma, X., and Dong, B. (2017). Pde-net: Learning pdes from data.

[21] Okuta, R., Unno, Y., Nishino, D., Hido, S., and Loomis, C. (2017). Cupy: A numpy-compatible
library for nvidia gpu calculations. In Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems
(NIPS).

[22] Pang, G., Lu, L., and Karniadakis, G. E. (2019). fpinns: Fractional physics-informed neural
networks. SIAM Journal on Scientific Computing, 41(4):A2603-A2626.

[23] Pang, T., Xu, K., LI, C., Song, Y., Ermon, S., and Zhu, J. (2020). Efficient learning of generative
models via finite-difference score matching. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages
19175-19188. Curran Associates, Inc.

[24] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32.

[25] Piret, C. (2012). The orthogonal gradients method: A radial basis functions method for solving
partial differential equations on arbitrary surfaces. J. Comput. Phys., 231(20):4662-4675.

[26] Piret, C. and Dunn, J. (2016). Fast RBF OGr for solving pdes on arbitrary surfaces. AIP
Conference Proceedings, 1776(1).

[27] Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686-707.

11

[28] Shankar, V. (2017). The overlapped radial basis function-finite difference (RBF-FD) method: A
generalization of RBF-FD. J. Comput. Phys., 342:211-228.

[29] Shankar, V. and Fogelson, A. L. (2018). Hyperviscosity-based stabilization for radial basis
function-finite difference (rbf-fd) discretizations of advection— diffusion equations. J. Comput.
Phys., 372:616 — 639.

[30] Shankar, V., Kirby, R., and Fogelson, A. (2018a). Robust node generation for mesh-free
discretizations on irregular domains and surfaces. SIAM Journal on Scientific Computing,
40(4):A2584—-A2608.

[31] Shankar, V., Narayan, A., and Kirby, R. M. (2018b). Rbf-loi: Augmenting radial basis
functions (rbfs) with least orthogonal interpolation (loi) for solving pdes on surfaces. Journal of
Computational Physics, 373:722-735.

[32] Shankar, V., Wright, G. B., and Fogelson, A. L. (2021). An efficient high-order meshless method
for advection-diffusion equations on time-varying irregular domains. Journal of Computational
Physics, 445:110633.

[33] Shankar, V., Wright, G. B., Kirby, R. M., and Fogelson, A. L. (2014). A radial basis function
(RBF)-finite difference (FD) method for diffusion and reaction—diffusion equations on surfaces. J.
Sci. Comput., 63(3):745-768.

[34] Shankar, V., Wright, G. B., and Narayan, A. (2020). A robust hyperviscosity formulation for
stable RBF-FD discretizations of Advection-Diffusion-Reaction equations on manifolds. SIAM
Journal on Scientific Computing, 42(4):A2371-A2401.

[35] Shi, Z., Gulgec, N. S., Berahas, A. S., Pakzad, S. N., and Taka¢, M. (2020). Finite difference
neural networks: Fast prediction of partial differential equations. In 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 130—135. IEEE.

[36] Strang, G., Fix, G. J., and Griffin, D. (1974). An analysis of the finite-element method.

[37] Wright, G. B. and Fornberg, B. (2006). Scattered node compact finite difference-type formulas
generated from radial basis functions. J. Comput. Phys., 212(1):99-123.

[38] Yu,J., Lu, L., Meng, X., and Karniadakis, G. E. (2022). Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823.

ChecKklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? To the
best of the authors’ knowledge, there are no negative societal impacts of our work
including potential malicious or unintended uses, environmental impact, security, or
privacy concerns.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

12

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We release the datasets and codebase we used as part of the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Review
	Physics-informed neural networks
	Radial basis function-finite differences (RBF-FD)

	Discretely-Trained PINNs (DT-PINNs)
	Results
	Effect of neural network depth
	Linear Poisson equation
	Nonlinear Poisson equation
	Heat equation

	Summary and future work

