
A Additional proofs

A.1 Proof of Theorem 1

Before proofing Theorem 1, We first demonstrate the superiority of even-hop neighbors over odd-hop
neighbors from the perspective of random walks.

In a binary node classification task, denote the probability of a random walk of length k that starts
and ends with nodes of the same label as pk, k > 0. Suppose the edge homophily level h is a random
variable that belongs to a uniform distribution in [0, 1] and p1 = h, then:

Lemma 1. If k is odd, Eh[pk] =
1
2 . If k is even, Eh[pk] ≥ 1

2 .

Proof. If k = 1, p1 = h,Eh[p1] = Eh[h] =
1
2 . If k = 2, p2 = h2 +(1−h)2 = 2(h− 1

2 )
2 + 1

2 ≥ 1
2 ,

Eh[p2] =
∫ 1

0
p2dh ≥ 1

2 .

For k > 2,

pk = pk−2

(
(1− h)

2
+ h2

)
+ (1− pk−2) (2h(1− h))

= 4pk−2h
2 − 4pk−2h+ pk−2 − 2h2 + 2h

Eh [pk] = Eh [Eh [pk | pk−2]]

= Eh

[∫ 1

0

pkdh

]
= Eh

[
1

3
pk−2 +

1

3

]
=

1

3
(Eh [pk−2 + 1])

That is, for Eh[pk−2] =
1
2 , Eh[pk] =

1
2 ; for Eh[pk−2] ≥ 1

2 , Eh[pk] ≥ 1
2 . Therefore, Lemma 1 is

proved.

Multi-class Cases. We now provide a brief discussion of the superiority of even-hop neighbors in
multi-class node classification tasks following [14].

Definition 1. The matrix Q ∈ RK×K is an independent between-class random walk matrix if it
holds the following properties:

• Q is a random walk matrix.

• ∀i ̸= j, Qii = Qjj .

• ∀i ̸= j,m ̸= n,Qij = Qmn.

Suppose there are K classes of nodes in the graph, where the number of nodes of each class is the
same, and node labels are assigned independently. Denote h as the edge homophily level, the 1-step
between-class random walk matrix P is in the form of:

P =


h 1−h

K−1 · · · 1−h
K−1

1−h
K−1 h · · · 1−h

K−1
...

...
. . .

...
1−h
K−1

1−h
K−1 · · · h

 ,

where Pij denotes the probability of a 1-step random walk that start with a node of label i and ends
with a node of label j. By definition, P is an independent between-class random walk matrix.

Lemma 2. If M ∈ RK×K is an independent between-class random walk matrix, P ′ = MP is an
independent between-class random walk matrix as well.
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Proof. It can be verified that P ′ is still a random walk matrix, and for all i ̸= j,m ̸= n:

P ′
ii =

K−1∑
m=0

MimPmi =

K−1∑
m=0

MjmPmj = P ′
jj

P ′
ij =

K−1∑
k=0

MikPkj =

K−1∑
k=0

MmkPkn = P ′
mn

By definition, P ′ is an independent between-class random walk matrix.

Denote the k-step between-class random walk matrix as P k. From Lemma 2, we can conclude that
P k is an independent between-class random walk matrix for all k ∈ N+. In Lemma 3, we illustrate
the advantages of even-order propagation by comparing the interaction probability between classes.
Lemma 3. If k is even, the intra-class interaction probability P k

ii is no less than inter-class interaction
probability P k

ij , i ̸= j.

Proof. For k = 2:

P 2
ii = h2 +

(1− h)2

K − 1

P 2
ij =

2h(1− h)

K − 1
+

(K − 2)(1− h)2

(K − 1)2

P 2
ii − P 2

ij =

(
h− 1− h

K − 1

)2

≥ 0

The inequality is tight when h = 1−h
K−1 .

For k = 2m,m > 1,m ∈ N+, Pm is an independent between-class random walk matrix that can be
written as:

Pm =


h′ 1−h′

K−1 · · · 1−h′

K−1
1−h′

K−1 h′ · · · 1−h′

K−1
...

...
. . .

...
1−h′

K−1
1−h′

K−1 · · · h′

 ,

The above proof for k = 2 can be generalized to all h ∈ [0, 1]. Therefore, Pm
ii ≥ Pm

ij is satisfied as
well.

Note that Lemma 3 is not satisfied for odd k if h is relatively smaller than 1−h
K−1 .

Proof of Theorem 1

Proof. According to Definition 1, for a graph G with the k-step interaction probability Π̃k, its
k-homophily degree Hk(Π̃) is defined as

Hk(Π̃) =
1

N

K−1∑
l=0

(
RlΠ̃

k
ll −

∑
m ̸=l

√
RmRlΠ̃

k
lm

)
.

The transformed 1-homophily degree with filter g(L̃) is H1(g(I − Π̃)).

Specifically, in a binary node classification problem, the k-homophily degree is:

Hk(Π̃) =
1

N

(
R0Π̃

k
00 +R1Π̃

k
11 − 2

√
R0R1Π̃

k
01

)
Denote a k-order polynomial graph filter as gk(L̃) = w0 + w1L̃+ . . .+ wkL̃

k,

The transformed 1-homophily degree of gk(L̃) is:
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H1

(
gk(I − Π̃)

)
=

1

N

(
R0gk

(
I − Π̃

)
00

+R1gk

(
I − Π̃

)
11

− 2
√
R0R1gk

(
I − Π̃

)
01

)
=
(
√
R0 −

√
R1)

2

N
(w0 + . . .+ wk)

− R0Π̃00 +R1Π̃11 − 2
√
R0R1Π̃01

N
(w1 + 2w2 + . . .+ kwk)

+
R0Π̃

2
00 +R1Π̃

2
11 − 2

√
R0R1Π̃

2
01

N
(w2 + 3w3 + . . .)

− . . .

= c−H1(Π̃)(w1 + 2w2 + . . .+ kwk) +H2(Π̃)(w2 + 3w3 + . . .) + . . .

= c+

k∑
i=1

θiHi(Π̃),

where c is a constant and each θi is a linear sum of {wi} that for arbitrary x ∈ R:
k∑

i=0

θix
i =

k∑
i=0

wi(1− x)i.

Following Lemma 1, the average possibility of deriving a node’s label from its odd-hop neighbors is
1
2 , which means Eh[Hi(Π̃)] = 0 and Varh[Hi(Π̃)] ≥ 0 for odd i. By removing the odd-order terms,
the transformed 1-homophily degree does not decrease on average but enjoys a lower variation.

Rewrite filter gk(L̃) as gk(L̃) = θ0 + θ1(I − L̃) + . . . + θk(I − L̃)k and set θi = 0 for odd i, the
graph filter is then in the form of :

gk(L̃) =

⌊k/2⌋∑
i=0

θi(I − L̃)2i =

⌊k/2⌋∑
i=0

θiP
2i,

which is exactly the graph filter of EvenNet. Therefore, EvenNet has a lower variation on the
transformed 1-homophily degree without sacrificing the average performance.

A.2 Proof of Theorem 2

Lemma 4. Given normalized graph Laplacian L̃ = UΛU⊤ and label difference as ∆y = y0 − y1,
unnormalized α = U⊤∆y = (α0, · · · , αN−1)

⊤ satisfies
∑N−1

i=0 α2
i = N .

Proof. Since L̃ is a real symmetric matrix, UT can be chosen to be an orthogonal matrix. Denote the
element of the i-th row and j-th column of UT as uik.

N−1∑
i=0

α2
i =

N−1∑
i=0

N−1∑
j=0

uij∆y(j)

2

=

N−1∑
i=0

N−1∑
j=0

u2
ij + 2

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

uijuik∆y(j)∆y(k)1{j ̸= k}


=

N−1∑
i=0

N−1∑
j=0

u2
ij + 2

N−1∑
j=0

N−1∑
k=0

(
∆y(j)∆y(k)

N−1∑
i=0

uijuik1{j ̸= k}

)

=

N−1∑
i=0

N−1∑
j=0

u2
ij (Orthogonality)

= N
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Lemma 4 provides the relationship between normalized and unnormalized α, which is also helpful in
defining the SRL loss.
Lemma 5. Given unnormalized graph Laplacian L = ULΛLU

⊤
L and its eigenvalues {λ′

i}, denote
the number of edges on the graph is m, and label difference as ∆y = y0 − y1 ∈ RN×1. For
unnormalized spectrum of label difference on L is α′ = U⊤

L ∆y = (α′
0, α

′
1, . . . , α

′
N−1)

⊤ , then
N−1∑
i=0

λ′
i = 2m (1)

1− h =

∑N−1
i=0 (α′

i)
2λ′

i

2
∑N−1

j=0 λ′
j

Proof. Denote the trace of a matrix M as tr(M), the degree of node vi as di.
N−1∑
i=0

λ′
i = tr(L) =

N−1∑
i=0

di = 2m

The Dirichlet energy of the label difference is defined as:
E(∆y) = ∆y⊤L∆y

=
∑

(i,j)∈E

(∆yi −∆yj)
2

= 4
∑

(i,j)∈E

1{∆yi ̸= ∆yj}

= 4(1− h)m (2)

Using L = ULΛLU
T
L , the Dirichlet energy of the label difference can also be expressed as:

E(∆y) = ∆yTULΛLU
⊤
L ∆y

= α′⊤ΛLα
′

=

N−1∑
i=0

λ′
i(α

′
i)

2 (3)

By integrating equations 1 2 3, we get:

1− h =

∑N−1
i=0 (α′

i)
2λ′

i

2
∑N−1

j=0 λ′
j

Proof of Theorem 2

Proof. For a k-regular graph, denote normalized graph Laplacian as L̃ = UΛU⊤, then
L̃ = D−1/2LD−1/2

= D−1/2ULΛLU
⊤
L D−1/2

=
1

k
ULΛLU

⊤
L (4)

From equation 4, we get U = UL, λi = λ′
i/k. Denote the spectrum of label difference on L̃ as α,

then α = α′. By substituting λ′
i with kλi in Lemma 5, we acquire the equation in Theorem 2.

If α is normalized as in the SRL that satisfies
∑N−1

i=0 α2
i = 1, following Lemma 4, Theorem 2 is in

the form of:

1− h =
N
∑N−1

i=0 (αi)
2λi

2
∑N−1

j=0 λj
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A.3 Proof of Theorem 3

Proof. Denote filter g(λ) as g(λ) =
∑K

i=0 wi(1 − λ)i, geven(λ) = 1
2 (g(λ) + g(2 − λ)) and

godd = g(λ)− geven(λ). The filter geven(λ) is free of odd order terms. The odd filter godd(λ) can
be seen as the gap between the full-order filter and the even-order filter.

geven(λ) =

⌊K/2⌋∑
k=0

wk(1− λ)2k

godd(λ) =

⌊K/2⌋∑
k=0

wk(1− λ)2k+1.

We now consider the SRL gap of the odd-order filter to illustrate the effect of removing odd-
order terms. The regression problem in the spectral domain with normalized α: α = σ(g(Λ)β),∑N−1

i=0 α2
i = 1. Suppose α and β is positive correlated in the form of E[α] = wβ, w > 0, and

λN−1 = 2 for both G1 and G2 (to ensure both graphs can achieve h = 0).

The SRL of filter godd and geven between normalized α and normalized g(λ)β is:

Lodd(G) = 2− 1

Todd

(
N∑
i=0

α2
i g(λi)odd

)

= 2− 1

Todd

N//2∑
i=0

α2
i g(λi)odd −

N∑
i=N//2

α2
i |g(λi)odd|


= 2− 1

Todd

N//2∑
i=0

(α2
i − α2

N−i−1)g(λi)odd

 = 2− Lo (5)

Leven(G1) = 2− 1

Teven

N//2∑
i=0

(α2
i + α2

N−i−1)g(λi)even

 = 2− Le, (6)

where Ttype =
√∑N−1

i=0 gtype(λi)2α2
i .

Compare equations 5 and 6. If g(λi) is of different monotonicity against {αi}, which happens when
a trained odd-filter is generalized to graphs of opposite homophily, Lo becomes negative. In contrast,
Le is always positive and benefits from reducing SRL.

Suppose Lo is the approximate SRL gap between g(λ) and geven(λ). The instability of Lo implies
Lg(Gtrain) < Lgeven

(Gtrain) and Lg(Gtest) > Lgeven
(Gtest), reflecting a larger SRL gap of full-

order filters than the even-order filters.

More generally, for the cases where λN−1 < 2, we can still adopt the idea of discarding odd-order
terms. Rewrite g(λ) as g′(λ) =

∑K
i=0(λmid − λ)i, where λmid is the median of {λi}. By applying

the same analysis above, we can see that removing odd-order terms from g′(λ) is still beneficial to
narrow the SRL gap.

A.4 Proof of Corollary 1

Proof. In the case where h(G1) = 0 and h(G2) = 1, denote the label difference of G1 and G2 as ∆y1

and ∆y2, where ∆y1 = (1,−1, 1,−1, . . . , 1,−1)
⊤, ∆y2 = (1, . . . , 1)

⊤.

Denote U = (u0,u1, . . . ,uN−1)
⊤, where ui is the i-th eigenvector of U and uk(n) is the n-th

element of uk.
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On ring graphs, denote akn = sin(π(k + 1)n/N, bkn = cos(πkn/N), then the normalized uk(n)
satisfies:

uk(n) =



akn√
N/2

, for odd k, k < N − 1

bkn√
N/2

, for even k

cos(πn)√
N

, for odd k, k = N − 1
1√
N

for even k, k = 0

Let the normalized spectrum of G1 be δ = UT∆y1 = (δ0, . . . , δN−1)
⊤, the normalized spectrum of

G2 be δ′ = UT∆y2 = (δ′0, . . . , δ
′
N−1)

⊤.

Suppose 1 ≤ i < N−1 is odd, δi = 1√
N/2

∑N−1
i=0 (−1)iaki, δ

′

i =
1√
N/2

∑N−1
i=0 aki and θ = π(i+1)

N ,

then:

δ′i − δi =
1√
N/2

N/2∑
n=1

sin

(
π(i+ 1)(2n− 1)

N

)

=
1√
N/2

N/2∑
n=1

sin ((2n− 1)θ)

=
1√
N/2

∑N/2
n=1 sin(θ) sin ((2n− 1)θ)

sin(θ)

=
1√
N/2

∑N/2
n=1 (cos (2n− 2) θ)− cos (2nθ)

2 sin(θ)

=
1√
N/2

cos(0)− cos(Nθ)

2 sin θ
= 0

Therefore, for odd i and 1 ≤ i ≤ N − 2, δi = δ
′

i. The conclusion can be generalized to even i and
1 ≤ i ≤ N − 2 using the same method.

For i = 0 and i = N − 1, we have δ0 − δ′0 = −
√
N , δN−1 − δN−1 = −

√
N . The spectral gap

between G1 and G2 is:

Lg(G1)− Lg(G2) =

N−1∑
i=0

2(δi − δ′i)g(λi)√∑N−1
j=0 g(λj)2

=
2
√
Ng(0)− 2

√
Ng(2)√∑N−1

j=0 g(λj)2

Therefore, the necessary condition for the spectral gap to be 0 is g(0) = g(2).

B Dataset Details

B.1 Synthetic Datasets.

We conduct cSBM datasets following [2] in the inductive setting. Denote a cSBM graph G as
G ∼ cSBM(n, f, λ, µ), where n is the number of nodes, f is the dimension of features, and λ and µ
are hyperparameters respectively controlling the proportion of contributions from the graph structure
and node features.

We assume the number of classes is 2, and each class is of the same size n/2. Each node vi is
assigned with a label yi ∈ {−1,+1} and an f -dimensional Gaussian vector xi =

√
µ
nyiu + Zi√

f
,

where u ∼ N(0, I/f) and Z is a random noise term.
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Assume the generated graph is of average degree d, and denote the adjacency matrix as A. The graph
structure of the cSBM graph is:

P [Aij = 1] =

{
d+λ

√
d

n if vivj > 0
d−λ

√
d

n otherwise.

The parameter Φ discussed in the experiments is in the form of Φ = arctan( λ
mµ

√
n
f ) ∗

2
π , where

m > 0 is a constant. A larger |Φ| reflects a larger λ over µ, that is the proportion of information from
the graph structure is larger.

In practice, we choose n = 3000, f = 2000, d = 5,m = 3
√
3

2 for all graphs. The choices of λ and µ
and the resulting homophily ratio are listed in Table 1. As discussed in [3], only the hyperparameters
µ and λ that satisfy λ2+ µ2f2

n2 > 1 are guaranteed to generate informative cSBM graphs. As presented
in Table 1, all our settings satisfy the need.

Table 1: Statistics of cSBM datasets.

Φ +0.75 +0.50 -0.50 -0.75

λ 1.90 1.46 -1.46 -1.90
µ 0.37 0.69 0.69 0.37

Homophily Level 0.92 0.82 0.18 0.08

C Experiment Details

C.1 Experimental Device

Experiments are conducted on a device with an NVIDIA TITAN V GPU (12GB memory), Intel(R)
Xeon(R) Silver 4114 CPU (2.20GHz), and 1TB of RAM.

C.2 Model Architectures

For GPRGNN, GCNII, GNNGuard and ProGNN, we rely on the officially released code. For FAGCN,
we implement the method with Pytorch Geometric(PyG) based on the released code. For H2GCN,
we rely on the PyG version implemented by [12]. Defense models are based on the DeepRobust
Library implemented versions[11]. Other methods are based on the PyG implemented versions [4].
The URL and commit number are presented in Table 2).

Table 2: Code & commit numbers.

URL Commit

GPRGNN https://github.com/jianhao2016/GPRGNN eb4e930
ProGNN https://github.com/ChandlerBang/Pro-GNN c2d970b

GNNGuard https://github.com/mims-harvard/GNNGuard 88ab8ff
GCNII https://github.com/chennnM/GCNII ca91f56
FAGCN https://github.com/bdy9527/FAGCN 23bb10f
H2GCN https://github.com/CUAI/Non-Homophily-Large-Scale 281a1d0

C.3 Hyperparameter settings

Node classification on cSBM Datasets & Common datasets. For all models, we use early stopping
200 with a maximum of 1000 epochs. All hidden size of layers is set to 64. We use the Adam
optimizer and search the optimal leaning rate over {0.001, 0.005, 0.01, 0.05} and weight decay {0.0,
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0.0005}. For all models, the linear dropout is searched over {0.1, 0.3, 0.5, 0.7, 0.9}. For the model-
specific hyperparameters, we refer to the optimal hyperparameters reported in corresponding papers.
For MLP, we include 2 linear layers. For GCN and H2GCN, we set the number of convolutional
layers to be 2. For GAT, we use 8 attention heads with 8 hidden units each in the first convolutional
layer, and 1 attention head and 64 hidden units in the second convolutional layer. For FAGCN, we
search the number of layers over {2, 4, 8}, ϵ over {0.3, 0.4, 0.5}. For GCNII, we set λ = 0.5 and
search the number of layers over {8, 16, 32}, α over {0.1 0.3 0.5}. For GPRGNN and EvenNet, we
set the number of linear layers to be 2, the learning rate for the propagation layer to be 0.01, and
α = 0.1 for initialization. For both models, we search the dropout rate for the propagation layer over
{0.1, 0.3, 0.5, 0.7} and the order of graph filter over {4, 6, 8, 10}.

Against adversarial attacks. For the poisson attacks, we use a 2-layer GCN as the surrogate model.
We use the strongest variant of Metattack, which is “Meta-Self” as the attack strategy. For the defense
models, we carefully follow their provided guidelines of hyperparameter settings and use the optimal
hyperparameters as they reported. For GNNGuard, we use the official implementation GCNGuard
with a threshold of 0.1. For other models, we use the Adam optimizer with a learning rate of 0.01,
weight decay of 0.0005, and a dropout rate of 0.5. For FAGCN, we use 8 convolutional layers and a
fixed ϵ = 0.3. For GCNII, we use 16 convolutional layers and a fixed α = 0.2. For GPRGNN and
EvenNet, we set the order of graph filter K to be 4 in the DICE attack. In the poison attacks, the PPR
initialization α for GPRGNN and EvenNet is searched over {0.1, 0.2, 0.5, 0.9} and K is set to be 10.

For all models, we use early stopping 30 with a maximum of 200 epochs. Other hyperparameters are
kept the same as the ones in the node-classification experiments.

C.4 Additional Defense Results

Homophily gap We include the homophily gap between training and test graph for Citeseer and
ACM datasets in Fig 1 and 2. The homophily gaps of all attacks on all datasets grow larger as the
perturb ratio increases.
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Figure 1: Homophily level of training graphs and test graphs on Citeseer after attacks.
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Figure 2: Homophily level of training graphs and test graphs on ACM after attacks.

Additional Experiments about Defense against Poison Attacks. Similar to DICE attacks, we
provide the performance of GNN models under poison attacks of different perturb ratios. The results
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are presented in Figure 3 and 4. In most cases, EvenNet achieves SOTA with fewer introduced
parameters.
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Figure 3: Meta attack on three homophilic datasets. EvenNet is marked with “△”.
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Figure 4: MinMax attack on three homophilic datasets. EvenNet is marked with “△”.

D Spectral Methods under Perturbations

D.1 More Graph filters

Spectral methods have gained plenty of attention these years. Besides GPRGNN, we additionally
include BernNet [7] and pGNN [5] which are advanced spectral GNNs for comparison. We run the
experiments of spectral GNNs against Meta, MinMax attacks, and the evasion DICE on dataset ACM.
We tune the hyperparameters of these methods using the same search space in corresponding papers.
The results are summarized below:

Table 3: Defense performance under Metattack with perturb ratio 20%.

Methods \Dataset Cora Citeseer ACM
GPRGNN 76.27 ± 1.43 69.63 ± 1.53 88.79 ± 2.21

pGNN 72.68 ± 2.38 67.20 ± 1.30 89.92 ± 0.66
BernNet 74.38 ± 2.00 67.93 ± 1.33 87.82 ± 0.98
EvenNet 77.74 ± 0.82 71.03 ± 0.97 89.78 ± 0.90

Table 4: Defense performance under MinMax attack with perturb ratio 20%.

Methods \Dataset Cora Citeseer ACM
GPRGNN 77.18 ± 1.37 72.81 ± 0.78 88.24 ± 1.28

pGNN 77.06 ± 1.32 72.22 ± 0.53 88.96 ± 0.56
BernNet 69.10 ± 1.07 67.82 ± 0.79 87.79 ± 0.41
EvenNet 78.40 ± 1.26 73.51 ± 0.60 89.80 ± 0.46

Compared with spatial methods, spectral methods which handle both homophily and heterophily are
generally more robust. Nevertheless, EvenNet still holds superiority against other spectral methods
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Table 5: Defense performance under DICE attack on ACM dataset with different perturb ratios.

Methods \Perturb Ratios 0.4 0.8 1.2
GPRGNN 79.31 ± 1.05 73.21 ± 1.93 63.41 ± 9.21

pGNN 86.67 ± 0.91 84.55 ± 2.66 81.62 ± 2.32
BernNet 86.37 ± 3.30 82.79 ± 3.74 81.90 ± 4.46
EvenNet 89.24 ± 0.52 88.26 ± 0.82 88.67 ± 0.64

when faced with large homophily changes. In the evasion DICE attack, where the homophily gap is
directly injected between training and test graphs, the superiority of EvenNet is apparent.

D.2 Graph Filters under Random Attacks

We analyze the performance of graph filters under homophily change in the main body of the paper
and show that graph filters suffer from performance degradation if there is a large homophily gap
between training and test graphs. We now discuss cases where a homophily gap is not huge after the
graph structure is perturbed, for example, when the graph is under random attacks for both training
and test sets.

We conduct Random Attacks on datasets Cora and Citeseer for the spectral methods. In Random
attacks, we randomly delete and add edges from/to the graph (we choose to delete or add with equal
probability), and train graph filters on the perturbed graph. A large homophily gap does not exist
since the deleted/added edges are randomly chosen on the whole graph.

We also include a spatial method EGCNGuard from [1], which is an efficient version of GNNGuard
for comparison. The results are summarized in Table 6 and Table 7:

Table 6: Defense performance under Random attacks on Cora

Methods \Perturb Ratio 20% 40% 60%
GPRGNN 82.62 ± 0.31 78.86 ± 0.60 76.68 ± 0.12

pGNN 83.54 ± 0.19 80.52 ± 0.52 77.18 ± 0.49
BernNet 78.40 ± 3.11 73.69 ± 3.20 69.34 ± 1.48
EvenNet 82.37 ± 0.49 78.95 ± 0.47 76.01 ± 0.71

EGCNGuard 77.62 ± 1.40 75.77 ± 1.46 73.20 ± 1.01

Table 7: Defense performance under Random attacks on Citeseer

Methods \Perturb Ratio 20% 40% 60%
GPRGNN 73.45 ± 0.81 70.25 ± 0.46 69.72 ± 0.79

pGNN 72.61 ± 0.93 72.52 ± 0.66 70.36 ± 1.44
BernNet 66.98 ± 1.25 66.47 ± 0.73 66.80 ± 0.39
EvenNet 73.01 ± 0.68 71.30 ± 0.78 69.66 ± 0.50

EGCNGuard 72.12 ± 0.82 69.61 ± 1.42 66.98 ± 2.60

Although EvenNet is designed based on homophily generalization, we could all spectral methods
including EvenNet are quite robust under random attacks, reflecting good stability under random
perturbations of graph structures. For a more comprehensive analysis of the performance of graph
filters under random perturbations, we refer the readers to stability theory, where the bound of change
in output of graph filters is discussed [6, 9, 10]. EvenNet as a spectral method holds the stability
property as well.

E Scability to large graphs

In this section, we try to run EvenNet on a larger dataset to verify its efficiency. For comparison, we
include vanilla GCN and the efficient implementation of GNNGuard EGCNGuard from [1]. Notice
that we could not run GNNGuard and ProGNN for their O(N2) space complexity.
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In Table E and Table E, we present the performance and running time of EvenNet on dataset ogbn-
arxiv against Random attacks. We could see that EvenNet uses almost the same time as a 2-layer
GCN with the same hidden size. And EGCNGuard of O(|E|) space complexity is still 3x slower
than EvenNet in practice.

Table 8: Defense performance under Random attacks on dataset ogbn-arxiv.

Methods \Perturb Ratio 20% 40% 60%
GCN 64.07 60.96 58.45

EGCNGuard 64.52 60.81 57.18
EvenNet 64.18 61.20 58.97

Table 9: Computational time under Random attacks on dataset ogbn-arxiv.

Methods Avg. training time per epoch (s×10−3)
GCN 0.253

EGCNGuard 1.181
EvenNet 0.38

F Defense against Graph Injection Attacks

In the main body of the paper, we mainly focus on graph modification attacks, which are graph
structural attacks that add/remove edges to/from the existing graph. Another line of graph structural
attack is graph injection attacks (GIAs), where new nodes are injected into the graph with generated
features and form connections with existing nodes on the graph. According to [1], GIAs significantly
degrade the performance of GNNs by injecting only a few nodes with limited budgets. The authors
also state that injecting nodes with suspicious features that result in homophily inconsistency helps in
enhancing the ability to attack.

Following [1], we apply non-targeted GIAs with Harmonious Adversarial Objective(HAO) including
PGD+HAO, AGIA+HAO, TDGIA+HAO as the attack methods. The authors claim that GIAs with
HAO cause larger homophily gaps between training and test graphs. We test the defense performance
of EvenNet on dataset grb-cora, grb-citeseer [13] and Arxiv [8]. We use the same budgets as in [1],
which is reported in Table F. We compare EvenNet including Layernorm in MLP layers with different
combinations of EGCNGuard with Layernorm and LNi operation. (Layernorm is shown to be
effective against GIAs.) We set the threshold for EGCNGuard as 0.1. We set the order of EvenNet K
as 2 and tune the PPR-like initialization of EvenNet α over {0.1, 0.2, 0.5, 0.9}

The results are summarized below in Table F and Table F. We are not able to run AGIA+HAO on
Arxiv dataset due to resource limitations.

Table 10: Fixed budges of GIA attacks.

Datasets \Perturb Ratio Inject Nodes Degree
Cora 60 20

Citeseer 90 10
Arxiv 1500 100

Table 11: Defense performance of EvenNet under GIA with fixed budgets.

Methods \Datasets grb-Cora grb-Citeseer arxiv
PGD+HAO 76.24 71.68 59.04
AGIA+HAO 75.25 71.26 –

TDGIA+HAO 77.23 70.85 55.12

Notice that although GIAs include structural modifications by adding edges between injected nodes
and existing nodes, GIAs are not pure structural attacks. The injected node features are usually
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Table 12: Defense performance of EGCNGuard under GIA with fixed budgets.

Methods \Datasets grb-Cora grb-Citeseer Arxiv
PGD+HAO 75.50 58.10 69.37
AGIA+HAO 72.88 56.32 –

TDGIA+HAO 73.75 58.10 51.23

learnable, and therefore suspicious node features together with structural perturbations are included,
which is beyond the scope of the paper. We choose to leave designing robust spectral methods
under feature perturbations to future works. Notwithstanding GIAs are somehow out of the scope of
EvenNet, we can see that EvenNet is still competitive against strong spatial baselines in Table F and
Table F, which verifies the ability of EvenNet under homophily change.

G Defense on Heterophilic Graphs

In the main body of the paper, we conduct attacks mainly on homophilic graphs. In this section,
we add experiments about the MinMax attack on heterophilic datasets chameleon and squirrel with
GCN being the surrogate model. We set the perturb ratio to be 20%. For the hyperparameters, we
search the learning rate over {0.01, 0.05} and set weight decay to be 0 for all models. We set the
threshold in EGCNGuard to 0.1. The number of layers used in H2GCN and FAGCN is set to be 2,
and ϵ is searched over {0.3, 0.4, 0.5} for FAGCN. For GPRGNN and EvenNet, we set α = 0.1 for
PPR initialization and K = 10. The results are summarized below:

Table 13: The average test accuracy against MinMax attack on heterophilic graphs over 5 different
splits.

Method & Dataset Chameleon Squirrel
MLP 48.84 ± 1.66 30.31 ± 1.25
GCN 49.93 ± 0.70 31.16 ± 2.19

EGCNGuard 45.34 ± 2.80 27.34 ± 0.90
H2GCN 51.42 ± 1.31 28.41 ± 1.08
FAGCN 49.98 ± 1.27 33.64 ± 1.10

GPRGNN 50.42 ± 0.83 32.47 ± 1.36
EvenNet 52.87 ± 1.88 33.21 ± 0.96

We can see from the results that EvenNet is still effective in defense against attacks on heterophilic
graphs. Yet, we did not focus on heterophilic datasets as GNNs already perform badly on them, which
is also a reason why current attacks mainly focus on homophilic graphs. On the Squirrel dataset, the
performance of GNNs is only slightly higher than MLP, reflecting an almost useless graph structure.
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