
A Proofs

A.1 Proof of Theorem 2.2

To prove statement 1, choose any fcyc ∈ ker(B), let y = [a]−1fcyc + [a]−1B†u for brevity, and
observe that∣∣∣∣∣∣∣∣∂T (fcyc)

∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

=

∣∣∣∣∣∣∣∣[a]−
1
2P

(
Im − dmin[a]

∂h−1θ (y)

∂y
[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

≤ ||[a]−
1
2P [a]||2

∣∣∣∣∣∣∣∣[a]

(
Im − dmin[a]

∂h−1θ (y)

∂y
[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣[a]−
1
2

(
Im − dmin[a]

∂h−1θ (y)

∂y
[a]−1[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

where ||[a]−
1
2P [a]

1
2 ||2 = 1 because [a]−

1
2P [a]

1
2 is a symmetric and idempotent matrix, i.e., an

orthogonal projection. Then∣∣∣∣∣∣∣∣∂T (fcyc)

∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

= max
e∈E

∣∣1− dmin(h−1θ)′(ye)
∣∣ ≤ 1− dmin

dmax

Hence

Lip(T) = sup
fcyc∈Rm

∣∣∣∣∣∣∣∣∂T (fcyc)

∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

≤ 1− dmin

dmax
< 1

Then statement 2 follows from statement 1 and the Banach fixed point theorem. To prove statement 3,
observe that fcyc = Pfcyc, so fcyc = T (fcyc) if and only if

P [a]h−1θ
(
[a]−1f

)
= 0m (17)

where f = fcyc +B†u. But ker(P [a]) = Img(B>), so (17) is equivalent to the existence of x ∈ Rn
such that

h−1([a]−1f) = B>x (18)

and (18) is equivalent to (4).

A.2 Proof of Theorem 2.3

To prove statement 1, let k ≥ 0 and consider iteration k + 1 of the loop. The iteration first defines
v = dmin[a]h−1θ

(
[a]−1f

(k)
cyc + [a]−1fcut

)
on line 6. Then on line 7,

w = argmin
w∈Rn

{
||B[a]B>w −Bv||2

}
=
(
B[a]B>

)†
Bv

and line 8 defines

∆fcyc = v − [a]B>w =
(
Im − [a]B>

(
B[a]B>

)†)
v = Pv

Finally, on line 9,

f (k+1)
cyc = f (k)cyc − Pv = f (k)cyc − dminP [a]h−1θ

(
[a]−1f (k)cyc + [a]−1fcut

)
A simple inductive argument shows that f (k)cyc ∈ ker(B). The base case f (0)cyc = 0m is trivial, for all
k′ ≥ 0, line 9 ensures that f (k

′+1)
cyc ∈ ker(B) so long as f (k

′)
cyc ∈ ker(B). Hence f (k)cyc = Pf

(k)
cyc , and

we conclude that

f (k+1)
cyc = P

(
f (k)cyc − dmin[a]h−1θ

(
[a]−1f (k)cyc + [a]−1fcut

))
= T (f (k)cyc)

13

To prove statement 2, recall from Theorem 2.2 that Lip(T) ≤ 1− d−1maxdmin, which (together with
statement 1) implies that, for all k ≥ 0,

||f (k+1)
cyc − f (k)cyc ||2,[a]−1 ≤

(
1− dmin

dmax

)k
||f (1)cyc − f (0)cyc||2,[a]−1

= dmin

(
1− dmin

dmax

)k
||P [a]h−1θ

(
[a]−1B†u

)
||2,[a]−1

= dmin

(
1− dmin

dmax

)k
ρ

The algorithm terminates after iteration k if and only if ||f (k)cyc − f (k−1)cyc ||
2,[a]−

1
2
≤ ε, so the algorithm

will have terminated after k∗ iterations if

dmin

(
1− dmin

dmax

)k∗−1
ρ ≤ ε

which is equivalent to

k∗ ≥ 1 +
log
(
d−1minρ

−1ε
)

log
(

1− dmin

dmax

)
Finally, to prove statement 3, note that the algorithm terminates after iteration k as soon as

||f (k)cyc − f (k−1)cyc ||2,[a]−1 ≤ ε
If fcyc is the true fixed point of T , then using a general property of contraction mappings,

||f (k)cyc − fcyc||2,[a]−1 ≤ Lip(T)

1− Lip(T)
||f (k)cyc − f (k−1)cyc ||2,[a]−1

≤
(
dmax − dmin

dmin

)
ε

Therefore, the vector f returned by the algorithm satisfies

||f − FNh,θ(G, u)||2,[a]−1 = ||f (k)cyc − fcyc||2,[a]−1 ≤
(
dmax − dmin

dmin

)
ε

A.3 Proof of Theorem 2.4

Let v = [a]h−1θ ([a]−1fcyc + [a]−1B†u). From Theorem 2.2, we can write f = fcyc +B†u, where
fcyc is the unique fixed point of T . Therefore df

dw =
dfcyc
dw +B† dudw , so the remainder of the proof is

to show that dfcycdw = FNg,·(G,0n).

Since fcyc = T (fcyc), and Pfcyc = fcyc, we have

fcyc = P (fcyc − dminv) = fcyc − dminPv

so an equivalent characterization of fcyc is the unique solution to the equations

Bfcyc = 0n
Pv = 0m

Since
dv

dw
=
∂v

∂w
+

∂v

∂fcyc

dfcyc
dw

=
∂v

∂w
+Ddfcyc

dw

then differentiating and factoring out [a], we obtain

B
dfcyc
dw

= 0n

P [a]

(
[a]−1

∂v

∂w
+ [a]−1Ddfcyc

dw

)
= 0m

14

Since ker(P [a]) = Img(B>), there exists x ∈ Rn such that

[a]−1
∂v

∂w
+ [a]−1Ddfcyc

dw
= B>x

which we can re-write as

dfcyc
dw

= [a]D−1
(
B>x− [a]−1

∂v

∂w

)
= [a]g(B>x)

Hence dfcyc
dw is the solution to

B
dfcyc
dw

= 0n (19)

dfcyc
dw

= [a]g(B>x) (20)

which is identical to (3)–(4) with dfcyc
dw in place of f , 0n in place of u, and g in place of hθ.

Furthermore, g respects the same dmin, dmax derivative constraints as hθ, since for each e ∈ E ,

g′e(ηe) =
1

Dee
=
dhθ(ye)

dye

∣∣∣∣
ye=a

−1
e fe

∈ [dmin, dmax]

It follows that dfcycdw is the output of the implicit flow network with flow functions g and parameters
dmin, dmax, evaluated on the original graph G and nodal demands 0n.

A.4 Proof of Theorem 3.1

Since h−1θ is increasing, the optimization problem in (14) has a convex cost function with linear
constraints, so the KKT conditions are necessary and sufficient. Letting x ∈ Rm be a vector of
Lagrange multipliers, the Lagrangian is

L =
∑
e∈E

∫ fe

0

h−1θ (a−1e z) dz − x> (Bf − u)

leading to the stationarity condition

0>m =
∂L
∂f

= h−1θ (f>[a]−1)− x>B

which is equivalent to (4). Additionally, the primal constraint Bf = u is equivalent to (3), so the
minimizer of the optimization problem is identical to the output of the IFN.

A.5 Proof of Theorem 4.2

Due to (L3), it is clear that the derivative bounds (16) hold if and only if∣∣∣∣dN0(x, θ)

dx

∣∣∣∣ ≤ 1, ∀x ∈ R (21)

For all x, x′ ∈ R, by Hölder’s inequality,

|N0(x, θ)− N0(x′, θ)| =
∣∣c̄>(θ) (σ(ax+ b)− σ(ax′ + b))

∣∣
≤ ||c̄(θ)||p ||σ(ax+ b)− σ(ax′ + b)||q

Since σ is non-expansive, its Lipschitz constant with respect to the q-norm is

Lip(σ) = sup
η∈Rk

∣∣∣∣∣∣∣∣∂σ(η)

∂η

∣∣∣∣∣∣∣∣
q

= sup
η0∈R

|σ′(η0)| ≤ 1

and thus
||σ(ax+ b)− σ(ax′ + b)||q ≤ ||a(x− x′)||q ≤ ||a||q|x− x′|

15

Test Case MATPOWER Case Name |V| |E|
IEEE-57 case57 57 135
IEEE-118 case118 118 297
IEEE-145 case145 145 567
IEEE-300 case300 300 709
ACTIVSg200 case_ACTIVSg200 200 445
ACTIVSg500 case_ACTIVSg500 500 1084

Table 2: MATPOWER test case details.

Furthermore, by (L1),

||c̄(θ)||p||a||q =

(
1−

(||c||p||a||q − 1)+
||c||p||a||q

)
||c||p||a||q

= ||c||p||a||q − (||c||p||a||q − 1)+
= min {1, ||c||p||a||q}

so that
|N0(x, θ)− N0(x′, θ)| ≤ min {1, ||c||p||a||q} |x− x′| ≤ |x− x′|

for all x, x′. Hence (21) is satisfied.

B Experiment Details

B.1 AC Power Datasets

We created datasets from 6 AC power network test cases. Each dataset that we created represents a
snapshot of an AC power network in its steady state, consisting of four components: the network
topology (as an oriented, undirected graph), four attributes on each edge (voltage magnitude at the
two incident nodes, series reactance, and tap ratio), the net power injection at each node, and the
active power flow through each branch.

Original Data We generated our datasets using MATPOWER, an open-source toolbox for power
system simulation in MATLAB [36]. The toolbox includes many standard test cases, which contain
a network topology and tables of electrical and economic parameters for each bus (node), branch
(edge), and generator. We selected 6 test cases, listed in Table 2. The raw data files for these test cases
are available from the MATPOWER source3, and details on the test case file format are contained in
Appendix B of the user manual4.

Data Generation After loading each test case into MATPOWER, we performed the following two
modifications of the network parameters:

1. We set branch resistances (column 3 in the branch data table) to zero, so that transmission
lines in the system are lossless. This step was necessary because IFN is limited to undirected
graphs, while lossy lines are more appropriately modeled with a pair of directed edges,
since the power injected at one endpoint does not equal the power withdrawn from the other
endpoint. Fortunately, branch resistances are typically small before this modification.

2. We replaced any negative series reactances (column 4 in the branch data table) with a
positive value, chosen as the median of the positive series reactances in the same network.
We performed this modification because negative series reactances results in decreasing
constitutive relationships on the corresponding edges, whereas IFN assumes that the consti-
tutive relationship is increasing. This modification only affected two networks: IEEE-145, in
which 24 (4.2%) of the branches were assigned a series reactance of 0.2306; and IEEE-300,
in which 1 (0.1%) of the branches was assigned a series reactance of 0.059.

We then computed the resulting power flows using the runpf function and recorded the results.
3https://github.com/MATPOWER/matpower/tree/master/data
4https://matpower.org/docs/MATPOWER-manual.pdf

16

https://github.com/MATPOWER/matpower/tree/master/data
https://matpower.org/docs/MATPOWER-manual.pdf

Test Case |V| |E|
Fairfield 111 125
Bellingham 121 162
Harrisburg 261 286

Table 3: Water distribution network details.

Pre-Processing Finally, we converted the results from the MATPOWER simulation into a PyTorch
Geometric data object, with the following attributes:

• edge_index, the edge index tensor, containing the topology from the test case.

• x, a tensor of net active power injections at each node, which has the property that 1>n x = 0.
(This tensor is identical to the supply / demand vector u in the paper.)

• edge_attr, a tensor of four relevant attributes for each edge: the voltage magnitudes at the
two incident nodes, the series reactance, and the tap ratio.

• f_true, the tensor of active power flows on each edge simulated by MATPOWER.

The net active power injections at each node are computed according to

ui = PGi − PDi − GSiVM2
i

where PGi is active power generated at i, PDi is active power demanded, GSi is shunt conductance,
and VMi is the voltage magnitude.

B.2 Water Distribution Dataset

We created 3 datasets representing snapshots of municipal water distribution networks in their steady
state, consisting of four components: the network topology (as an oriented, undirected graph), weights
for each edge, the net inflow rates at each node, and the flow rate through each pipe.

Original Data Each of the datasets is based on a network from the ASCE Task Committee on
Research Databases for Water Distribution Systems database [37]. Networks in this database contain
a distribution network topology and tables of hydraulic parameters and operating characteristics for
each node, pipe (edge), pump, reservoir, and storage tank in the network. We selected 3 networks,
listed in Table 3 and plotted in Figure 4. The raw data files are available online5.

Data Generation and Preprocessing We loaded each network INP file into WNTR and ran the
WNTR simulator with a hydraulic accuracy of 10−8. We then converted the results into a PyTorch
Geometric data object, with the following attributes:

• edge_index, the edge index tensor, containing the topology from the test case.

• x, a tensor of net inflows at each node, which has the property that 1>n x = 0.

• edge_attr, a tensor of three relevant attributes for each edge: the pipe length, pipe diameter,
and pipe roughness coefficient.

• f_true, the tensor of flow rates through each pipe simulated by WNTR.

Edge weights are computed according to the formula

ae = (0.27855)CeD
2.63
e L−0.54e (22)

where Ce is the roughness coefficient (unitless), De is the diameter (meters), and Le is the pipe length
(meters) 6.

5http://www.uky.edu/WDST/index.html
6https://wntr.readthedocs.io/en/latest/hydraulics.html

17

http://www.uky.edu/WDST/index.html
https://wntr.readthedocs.io/en/latest/hydraulics.html

Figure 4: Network maps of the three water distribution systems: Fairfield (upper left), Bellingham
(upper right), and Harrisburg (bottom).

18

B.3 Details on IFN

Our IFN implementation uses Algorithm 1 to compute the layer’s forward pass. We set the maximum
number of iterations in this algorithm to 100, with a tolerance of ε = 10−2 for power and ε = 10−4

for water. With the release of PyTorch 1.11.0, the torch.linalg.lstsq method7 now supports
automatic differentiation, allowing PyTorch to automatically backpropagate through the Algorithm 1
iterations, instead of using Theorem 2.4. We found that Algorithm 1 terminated with a small enough
number of iterations that automatic differentiation was faster, so we opted to use this rather than
the method from Theorem 2.4. We trained the IFN models to minimize the RMSE loss function by
minimizing the RMSE loss function

`rmse =

√
1

|El|
∑
e∈E

(fe − FNh,θ(G, u)e)
2

B.4 Details on Baselines

We implemented all of the baselines by adapting Silva’s code8 from [4], refactoring some utility
functions to decrease runtime. Following [4], we perform the following two data normalization steps:

1. negative flows are converted into positive flows by flipping the orientation of the correspond-
ing edges and replacing the entries of f_true with their absolute value, and

2. flows are proportionally normalized to the range [0, 1] within each network.

After training with the normalized flows and computing the missing flow predictions, the predictions
are denormalized before computing the testing RMSE.

Div The minimizing divergence baseline from [3] has a single hyperparameter, λ, from the regular-
ization term λ2||f ||22 in the loss function. We set λ = 0.1 for all networks and fractions of labeled
edges by hand-tuning the parameter to the proper order of magnitude.

Bilevel Baselines All three of the bilevel baselines (Bil-MLP, Bil-GCN, and Bil-True) have several
hyperparameters related to the bilevel optimization algorithm. For most of these parameters, we use
the same settings as [4]: the number of iterations for the inner optimization problem is 300 during
training and 3000 during evaluation, and the number of k-fold cross validation folds is 10; however,
we increased the number of iterations of the outer optimization problem from 10 to 100, with an early
stopping interval of 10, to ensure that the outer optimization problem was given sufficient time to
converge. As with [4], we used a 2-layer MLP and GCN in Bil-MLP and Bil-GCN, respectively, but
we increased the size of the hidden layer to 64.

Bil-True Like IFN, the baselines Bil-MLP and Bil-GCN train a model to predict edge weights
from side information (if we interpret Q as a diagonal matrix of edge weights). We devised Bil-True
as a third baseline to use the “ground-truth edge weights” instead of training a model. For water
experiments, these ground-truth edge weights are given by (22). For the power experiments, we
compute these edges weights from the AC active power flow equation: in a lossless AC power grid,
active power flows fij on each edge {i, j} ∈ E are given by

fij =
vivj
xijτij

sin(θi − θj) ≈
vivj
xijτij

(θi − θj) (23)

where vi, vj are the voltage magnitudes on incident nodes, xij is the series reactance, τij is the tap
ratio, and θi, θj are the incident voltage angles. Since (23) is the constitutive relationship for AC
power networks, examining its linear approximation in light of (15) suggests using xijτij/vivj as the
regularizer weight on fij .

B.5 Details on Training

We trained all models in a Google Colab notebook, using the Adam optimizer. We used an initial
learning rate of 0.01, which we found to have good performance for all of the models. Training was
terminated when the training loss had not decreased for 10 epochs.

7https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html
8https://openreview.net/forum?id=l0V53bErniB

19

https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html
https://openreview.net/forum?id=l0V53bErniB

	Introduction
	Contributions
	Related Work
	Preliminaries and Notation

	Implicit Flow Networks
	Evaluating the Implicit Flow Network
	Computing the Gradients

	Comparison with Optimization Models
	Models for Flow Functions
	Numerical Experiments
	Datasets
	Models and Experiment Details
	Results

	Conclusion
	Proofs
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.4
	Proof of Theorem 3.1
	Proof of Theorem 4.2

	Experiment Details
	AC Power Datasets
	Water Distribution Dataset
	Details on IFN
	Details on Baselines
	Details on Training

