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Abstract

Frozen pretrained models have become a viable alternative to the pretraining-then-
finetuning paradigm for transfer learning. However, with frozen models there
are relatively few parameters available for adapting to downstream tasks, which
is problematic in computer vision where tasks vary significantly in input/output
format and the type of information that is of value. In this paper, we present
a study of frozen pretrained models when applied to diverse and representative
computer vision tasks, including object detection, semantic segmentation and video
action recognition. From this empirical analysis, our work answers the questions
of what pretraining task fits best with this frozen setting, how to make the frozen
setting more flexible to various downstream tasks, and the effect of larger model
sizes. We additionally examine the upper bound of performance using a giant
frozen pretrained model with 3 billion parameters (SwinV2-G) and find that it
reaches competitive performance on a varied set of major benchmarks with only
one shared frozen base network: 60.0 box mAP and 52.2 mask mAP on COCO
object detection test-dev, 57.6 val mIoU on ADE20K semantic segmentation, and
81.7 top-1 accuracy on Kinetics-400 action recognition. With this work, we hope to
bring greater attention to this promising path of freezing pretrained image models.

1 Introduction

Transfer learning via the pretraining-then-finetuning paradigm is the cornerstone in the success of
deep neural networks. In computer vision, finetuning backbone networks [29, 21, 13, 38] pretrained
on supervised classification leads to top performance for a wide range of visual recognition tasks,
even on tasks where the input or output format differs from that of pretraining, such as video
action recognition [25], object detection [34], and semantic segmentation [58]. In natural language
processing (NLP), finetuned models that are pretrained on masked language modeling (MLM) also
excel at a large variety of NLP tasks, e.g., on eleven tasks in the case of BERT [11].

Though highly effective, the changes to many network parameters make finetuning parameter-
inefficient. An entirely different model is created for each downstream task, a problem that is
magnified with the rapid increase in model sizes. In NLP, a solution to this problem that has gained
momentum is to freeze pretrained language models when transferring them to downstream tasks. A
small number of task-specific parameters, e.g., task-specific heads [22] or prompts [3, 30, 32, 36],
are introduced, and only these newly added parameters are trained on the downstream task while the

∗Equal contribution. The work is done when Yutong Lin and Ze Liu are interns at Microsoft Research Asia.
Correspondence to: Yue Cao (caoyue10@gmail.com).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Performance with respect to the number of trainable parameters with different base networks
(SwinV2-T/B with supervised training on ImageNet-1K, SwinV2-B/L with supervised training on
ImageNet-22k, and SwinV2-G) under frozen and full finetuning settings on COCO object detection
(left), ADE20K semantic segmentation (middle), and Kinetics-400 video action recognition (right).
Single-scale box mAP for COCO, multi-scale mIoU for ADE20K and top-1 accuracy for Kinetics-400
are reported.

rest of the model is fixed. In this way, the computation and memory costs are reduced considerably,
with a high degree of parameter sharing among models finetuned for different tasks.

This parameter-efficient transfer, however, has yet to gain traction in computer vision. The difficulties
in adopting this approach lie in the differences between the two modalities. In NLP, the input and
output formats of different tasks are similar, where nearly all of them can be defined as a sequence
of tokens. Moreover, the dominant pretraining task of self-supervised masked language modeling
learns information that is broadly valuable in NLP applications. By contrast, such uniformity does
not exist in computer vision. The input and output formats in vision vary greatly, such as image/video
and high/low resolution for inputs, and image-level categories, target coordinates and so on for
outputs. The information that is valuable varies as well among downstream tasks, making the choice
of pretraining task unclear. Due to these challenges, previous investigations have focused only on
downstream tasks similar to the pretraining task, image classification [2, 42, 43, 57, 56, 59].

In this paper, we study parameter-efficient transfer learning that generalizes to a diverse set of
computer vision tasks. Under this setting, our work seeks to answer the following questions:

1. Which pretraining task fits best with this frozen setting?
2. What is the key to making the frozen setting work well when the downstream tasks are

significantly different from the pretraining task?
3. How well can a frozen setting perform with a giant pretrained model, such as SwinV2-G

with 3B parameters?

Our investigation begins with the first question, where we consider the four most widely-studied
pretraining tasks: supervised classification, contrastive learning, masked image modeling and image-
text alignment. With SwinV2-B [38, 37] as the backbone, the pretraining tasks are evaluated on
popular vision frameworks covering a range of downstream tasks, including Mask R-CNN [20]
with FPN [33] for COCO object detection, Mask2former [9] for ADE20K semantic segmentation,
and Video Swin Transformer [39] for Kinetics-400 (K400) video action recognition. We find that
supervised pretraining and image-text alignment work best under the frozen setting and the model
with ImageNet-22K pretraining performs better than the ImageNet-1K counterpart. However, the
frozen settings still underperform full finetuning by substantial margins.

Towards improving performance over disparate tasks, we next consider how to extend the frozen
setting for better task adaptation. We examine the effects of adding tunable parameters to task-
specific heads and task-based architectural elements such as FPN for object detection and decoders
for semantic segmentation. From a performance analysis and an examination of feature similarity
across different layers by Centered Kernel Alignment (CKA) [27], we make a number of observations
for different tasks on what can help to bridge the performance gap between frozen settings and full
finetuning. Overall, we find that the number of well-placed tunable parameters is the key to make
frozen settings work well.

Finally, we look at the impact of model size on the frozen setting. With its richer content, larger
pretrained models have been found in NLP to require fewer tunable layers. Despite a large difference
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between pretraining and finetuning tasks as well as a relatively small change in model size, we have
observed similar trends for computer vision between SwinV2-L-22K and SwinV2-T-1K in object
detection. We additionally explore the upper bound of performance under the frozen setting, using a
frozen supervised pretrained model with 3 billion parameters trained on 70M images (SwinV2-G).
With this giant model, highly competitive performance is achieved on major benchmarks: 60.0 box
AP on COCO object detection test-dev, 57.6 mIoU on ADE20K semantic segmentation, and 81.7
top-1 accuracy on Kinetics-400 action recognition.

Thanks to the efficiency of this frozen setting, competitive performance are achieved on different
model sizes with much less trainable parameters, as indicated in Figure 1. We hope our work will
inspire further research in this promising direction of freezing pretrained image models. The proposed
approach can serve as a simple baseline and guide the evaluation of future work.

2 Related Work

Representative Visual Pretraining Tasks Throughout the deep learning era, supervised learn-
ing, especially by image classification on ImageNet [10], has been prevalent in vision pretraining.
Leveraging a large amount of data, a supervised pretrained model can efficiently transfer to various
downstream tasks [12, 28, 26, 13, 46, 16, 38, 40, 48, 6] by finetuning. However, supervised pre-
training suffers from severe data-hunger, while the cost of acquiring labeled data is expensive. To
address this issue, several recent studies in self-supervised pretraining have demonstrated promising
results, where self-supervised pretraining achieves finetuning performance on par with the supervised
counterparts on several representative downstream tasks [19, 8]. Among them, contrastive learn-
ing [14, 19, 8, 5, 17] and masked image modeling [7, 1, 18, 54] have been particularly successful.
Contrastive learning compares two image views, maximizing the similarity of positive pairs while
minimizing the similarity of negative pairs. For linear probing, the state-of-the-art contrastive model
even achieves results comparable to supervised models. Differently, masked image modeling learns
by randomly masking some input tokens and reconstructing the raw signals. With masked image mod-
eling, a large-scale model can be trained more effectively and yields better finetuning performance.
Another branches of work utilize image-text pairs and leverage natural language as supervision for
visual-linguistic learning. Among them, image-text alignment pre-training [41, 24] with web-crawled
data have shown great potential for visual recognition tasks, especially under the zero-shot setting.
iCar [53] further bridges image-text alignment and image classification and successfully keep the
characters of both methods.

These pretraining methods are so successful that almost all the top models of various vision tasks are
finetuned from them. However, in the frozen backbone setting, the performance of these pretraining
tasks for various downstream tasks are still unknown. Based on this motivation, we carried out
a comparison study under the frozen setting with the four most widely-used pretraining tasks –
supervised classification [38, 37], contrastive learning [31], masked image modeling [54] and image-
text alignment [53] – using Swin Transformer as the backbone.

Frozen Language Models With the large scale of today’s language models, the setting of frozen
language models has become important in NLP and receives much attention [35]. Adding external
adapters [22] is a direct solution in this direction and was first introduced in this field. Subsequently,
various solutions specific to NLP have been proposed, including prompt tuning [30], prefix tuning [32],
and low-rank adaptation [23].

Frozen Setting in Vision In computer vision, additive models are the most studied direction for
the frozen setting, where the pretrained weights are frozen and a small number of new parameters
is added for each task. Some of these works [12, 47] directly add the new layers upon off-the-
shelf features, while others introduce a new network with independent access to the input [44, 57]
to address the information loss of the pretrained model, or add task-specific components into the
pretrained model [42, 2, 43], such as batch normalization, residual adapter and so on. However, all
previous works [2, 42, 43, 57] use the additive models only for tasks similar to the image classification
pretraining task. In concurrent work [52], image classification features are reused only for object
detection and instance segmentation. Our paper, for the first time, studies the frozen setting under
different pretrained image models on three representative but diverse vision tasks, namely object
detection, semantic segmentation and video action recognition. Furthermore, we demonstrate the
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Figure 2: Pipeline of the frozen setting, consisting of (i) pretraining of the base network, and (ii)
finetuning of head networks with the frozen base network.

effectiveness of our approach via a giant frozen supervised pretrained model (SwinV2-G), with highly
competitive performance on major benchmarks for the three tasks. Another path is to directly adapt
the prompt learning approach in NLP to computer vision [59, 56], but this is limited to very specific
tasks or scenarios, e.g., requiring a text encoder [59].

3 Methodology

Under the frozen setting, we take the approach of freezing the pretrained base network B(·) and
training a specially designed task-specific head network H(·) for each downstream task.

3.1 Architectural Elements

Base Network We denote deep neural networks designed for image classification, e.g., VGG [49],
ResNet [21] or ViT [13], as the base network, B(·). The base network is also referred to as the
backbone network in some scenarios, and it is intended to provide some core cognitive or perceptual
information about the input. In the frozen setting, after the base network B(·) is pretrained, we do
not update it when it is transferred to downstream tasks, that is, the base network has no tunable
parameters for training on downstream tasks.

For the base network, we adopt a general-purpose backbone architecture, e.g., Swin Transformer [38]
for most experiments, that is compatible with a broad range of vision tasks, without components
specific to any downstream tasks. We note that Swin Transformer is highly scalable, with a giant
version composed of 3 billion parameters [37].

Head Network We denote the task-specific network that is newly added and tuned during transfer
to downstream tasks as the head network, H(·). Note that the input and output formats in vision
vary greatly, so a crucial component of our approach is to effectively adapt the head network to the
properties of the downstream task. With a suitable head design, we find this simple framework to
generally perform well over the sampled downstream tasks under the frozen pretrained image model
setting.

3.2 Pretraining

We consider the most widely-used pretraining tasks – supervised classification [38, 37], contrastive
learning, masked image modeling and visual-linguistic learning – with Swin Transformer as the base
network. Specifically, we utilize Swin Transformer variants specially designed for each of these
pretraining tasks, e.g., vanilla Swin Transformer [38, 37] for supervised classification, EsViT [31] for
contrastive learning, SimMIM [54] for masked image modeling and iCar[53] for visual-linguistic
learning, which are all open-source. For fair comparison, the same base network capacity is main-
tained across the pretraining tasks, such as using Swin Transformer with 224×224 input and a window
size of 7.
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3.3 Frozen Setting on Downstream Tasks

A major challenge of the frozen setting is the varied input and output formats of different vision
tasks, such as object detection with high-resolution images as input and target coordinates and the
corresponding categories as output, semantic segmentation with high-resolution images for input and
pixel-level categories as output, and video action recognition with low-resolution videos for input and
video-level categories as output. Therefore, adapting a frozen base network to a new task requires
careful model design, including a suitable framework and head network, to bridge the gap between
pretraining and finetuning.

Object Detection To adapt a frozen pretrained model to the object detection task, we present a few
adjustments. First, object detection generally requires high-resolution images as input and a large
window size in the backbone architecture, while the pretraining task takes low-resolution images and
a small window size. We find that directly changing the size of input images from small to large
but keeping the window size unchanged works relatively well. Second, maintaining the aspect ratio
of the input image is preferable in object detection and thus by default an arbitrary input resolution
is allowed for each image, with undesirable padding on the border of feature maps that change the
distributions of features. We deal with this issue by adopting a multi-scale augmentation similar to
that of image classification. It randomly resizes the original image, then randomly crops a square
part of the resized image [15]. Third, object detection typically utilizes multi-resolution feature maps
as the input of the head network, while most pretraining tasks only take the final output of the base
network. Using Swin Transformer as the base network enables us to directly take the output features
of different stages as the input to the head network, and we find that this choice empirically works
well. For evaluation on this task, we adopt COCO 2017 [34], the most widely-used benchmark for
object detection and instance segmentation, which contains 118K training, 5K validation and 20K
test-dev images.

Semantic Segmentation Semantic segmentation aims to perform pixel-level classification on high
resolution images and has many characteristics similar with object detection. For instance, semantic
segmentation also requires a larger input resolution and window size, and multi-resolution feature
maps for visual recognition at a finer granularity. On these two points, we obtain similar observations
for semantic segmentation as with object detection: larger input with unchanged window size achieves
relatively good performance, and directly using the output features from different stages of Swin
Transformer as the input of the head network also works well for semantic segmentation. For this
task, we adopt the most widely-used benchmark, ADE20K [58], for evaluation. ADE20K covers a
broad range of 150 semantic categories. It has 25K images in total, with 20K for training, 2K for
validation, and another 3K for testing.

Video Action Recognition The main challenge of adapting the frozen pretrained image model to
video action recognition lies in the different input formats. Video action recognition aims to recognize
the action types of each input video, which consists of a sequence of video frames (e.g., 16 frames
per clip). Therefore, it is essential in video action recognition to capture both spatial and temporal
relationships. Previous works based on full finetuning mainly focus on exploring the simultaneous
modeling of spatial and temporal relationships in the base network. For the frozen setting, however,
the pretraining model is capable only of spatial reasoning, so the head network must compensate for
the lack of temporal modeling. For the task of human action recognition, we adopt the widely-used
Kinetics-400 [25] dataset, consisting of ∼240k training videos and 20k validation videos over 400
human action categories.

4 Which Pretraining Task Fits Best with the Frozen Setting?

In this section, we evaluate four prevalent pretraining tasks under the frozen setting, namely supervised
pretraining, contrastive learning, masked image modeling, and visual-linguistic learning. Specifically,
we use six pretrained Swin Transformer models, which include supervised pretraining on ImageNet-
1K (SUP-1K), supervised pretraining on ImageNet-22K (SUP-22K), contrastive learning of EsViT
on ImageNet-1K (EsViT-1K), masked image modeling of SimMIM on ImageNet-1K (SimMIM-1K),
image-text alignment of iCar on Laion[45](iCar-Laion), and jointly training of image-text alignment
and image classification for iCar on Laion and ImageNet-22K (iCar-Laion-22K). For the downstream
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tasks, we adopt SwinV2-B [37] as the base network and three widely-used frameworks as the
head networks: Mask R-CNN [20] with FPN [33] for COCO object detection, Mask2Former [9]
with a one-block pixel decoder for ADE20K semantic segmentation, and a spatial-only Video-
Swin-Transformer [39] variant, where a temporal window size of 1 is used, with a linear head for
Kinetics-400 action recognition.

Approach
COCO ADE20K Kinetics-400

Frozen Full ft. Frozen Full ft. Frozen Full ft.
APbox APmask APbox APmask mIoU mIoU acc@1 acc@1

SUP-1K 42.4 38.7 50.5 44.5 49.8 52.3 60.4 77.0
SUP-22K 45.0 41.1 51.9 45.7 51.9 55.3 70.3 79.7
EsViT-1K 42.0 38.5 51.5 45.6 49.7 52.1 62.0 76.5

SimMIM-1K 34.1 32.4 52.9 46.7 42.4 51.7 14.2 75.9
iCAR-Laion 43.3 39.5 51.7 45.5 51.0 55.3 65.1 79.5

iCAR-Laion-22K 44.9 41.2 52.3 46.1 51.1 55.4 69.4 80.2
Table 1: Comparison of different pretraining tasks on frozen and full finetuning settings. Results of
box mAP and mask mAP for COCO object detection, mIoU for ADE20K semantic segmentation, and
top-1 accuracy for Kinetics-400 action recognition are reported. SUP denotes supervised classification
as pretraining.

Results are shown in Table 1. For the models pretrained on the ImageNet-1K dataset, we can
observe that SUP-1K and EsViT-1K perform similarly on almost all the benchmarks, including
both the full finetuning and frozen settings. This phenomenon is understandable, because the linear
evaluation result of EsViT is relatively high, indicating that the features extracted by EsViT-1K
are similar to the SUP-1K counterpart. The SimMIM pretrained model performs competitively
high in the full finetuning setting. For example, it achieves much better performance on COCO,
comparable performance on ADE, and slightly worse performance on K400, in comparison to the
SUP-1K counterpart. However, the SimMIM-1K model performs poorly on all benchmarks in the
frozen setting. This could be foreseen from its poor linear evaluation performance on ImageNet-1K,
indicating that its output features do not capture high-level semantics. The iCAR-Laion model
outperforms SUP-1K and EsViT-1K on almost all the benchmarks, indicating the effectiveness
of learning from large scale image-text datasets. In addition, with jointly training on Laion and
ImageNet-22K, the iCAR-Laion-22K model achieves similar results with the SUP-22K model. We
can also observe that the SUP-22K model outperforms SUP-1K significantly in all settings, reflecting
the great benefit that data scaling brings to supervised pretraining. In general, we find that supervised
pretraining works best under the frozen setting, and we adopt supervised pretrained models by
default in the following experiments. However, in all three downstream tasks, the frozen settings still
underperform full finetuning by substantial margins.

5 What is the Key to Making the Frozen Setting Work?

Towards improving performance over disparate tasks, in this section we consider how to extend the
frozen setting for better task adaptation. For the following investigation, we utilize the best-performing
pretraining task, supervised classification on ImageNet-22K (SUP-22K).

5.1 Adding More Tunable Parameters at Head Networks

To some extent, the poor performance of the frozen setting is understandable. Despite the significant
difference between the pretraining and downstream task, all parameters in the base networks are
locked in the frozen setting, and only a few newly-added parameters are available for task adaptation.
Thus, a direct solution is to add more tunable parameters to the task-specific head networks. As the
head network varies among different downstream tasks, we present task-specific strategies on how to
add parameters to the head.

Object Detection For object detection, we adopt the framework of Mask R-CNN [20] with FPN [33]
as the head network. Previous work on Mask R-CNN mainly explored improvements over FPN and
the box/mask head, so we also examine common alternatives to these two components, e.g., replacing
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Head Network Frozen Full ft.
APbox APmask APbox APmask

FPN 45.0 41.1 51.9 45.7
FPN w. 4× Residual Blocks inside 49.5 44.0 52.1 45.6

BiFPN 51.9 46.0 52.3 45.7
FPN w. Cascade Head 49.0 43.0 54.5 46.9

BiFPN w. Cascade Head 53.8 46.7 54.3 46.9
Table 2: Results for different head networks on COCO object detection and instance segmentation,
including FPN with vanilla box/mask head, FPN with four more residual blocks inside, BiFPN, FPN
with cascade head, and BiFPN with cascade head.

FPN with BiFPN [51] or adding more residual blocks in FPN, and changing the vanilla box/mask
head to a cascaded box/mask head [4]. Results are shown in Table 2. We can observe that adding
parameters to FPN, e.g., replacing FPN with BiFPN or adding more residual blocks, both significantly
bridge the gap between the frozen setting and full finetuning, from -6.9 to -2.6 box mAP and -6.9
to -0.4 box mAP, respectively. As BiFPN is carefully designed with many interactions between
multi-resolution feature maps, replacing FPN with BiFPN outperforms the model of adding more
residual blocks in FPN. However, replacing the box/mask head with a cascade head [4] improves the
performance of both the frozen and full finetuning settings, from 45.0 to 49.0 box mAP and 51.9 to
54.5 box mAP, but does not bridge the gap between them. Adding more tunable parameters to FPN is
thus found to be more effective than adding to the box/mask head.
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Figure 3: The CKA heatmap on the features across layers in BiFPN (a) and Cascade Head (b). The
detailed architecture of BiFPN (c) and Cascade Head (d).

To understand this difference in behavior, we conduct a performance analysis and an examination of
feature similarity across different layers in BiFPN and Cascade Head by Centered Kernel Alignment
(CKA) [27]. As shown in Figure 3 (a), for each stage (with different resolutions of feature map)
of BiFPN, we plot the CKA similarity between the input features (Px of stage x) and the output
of each block (Fx of block x). For the cascade head, as shown in Figure 3 (b), we plot the CKA
similarity between the input features of each stage (F si

RoI in stage i) and the hidden features inside
each stage (F si

j : output of j’s block in stage i). From this figure, we can observe that the features
across layers and even stages in cascade heads are almost the same except for the last output, but in
BiFPN, features across different layers are different (with lower CKA similarity). In other words,
adding parameters in BiFPN provide more useful capacity for transformation, but adding parameters
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in the cascade head hardly provides useful computation. This difference can be explained by the
architecture of BiFPN (Figure 3(c)) and cascade head (Figure 3(d)). BiFPN follows a sequential
structure, where the input of each block is the output of the previous block. The cascade head follows
a parallel structure, and all stages extract RoI features from the original multi-resolution feature
map, making the input of each stage have extremely high CKA similarity. Also, the transformations
made by each stage are similar. The last output of the cascade head behaves differently because it is
followed by a pooling layer, which is proven to have a great impact on CKA similarity. Consequently,
the number of well-placed tunable parameters is the key to make frozen settings work well.

Head Network Frozen
mIoU

Full Ft.
mIoU

1× Pixel Dec. w. (3+1)× Transformer Dec. 51.0 55.4
6× Pixel Dec. w. (3+1)× Transformer Dec. 52.6 55.3
1× Pixel Dec. w. (9+1)× Transformer Dec. 51.9 55.3
6× Pixel Dec. w. (9+1)× Transformer Dec. 53.2 55.5

Table 3: Results from using different head networks on ADE20K semantic segmentation, with either
one or six pixel decoder blocks, and a Transformer decoder with four or ten blocks.

Semantic Segmentation For semantic segmentation, we adopt Mask2former [9] with a one-
block pixel decoder and four-block transformer decoder as the head network. The framework of
Mask2former is similar to Mask R-CNN in object detection, where the pixel decoder corresponds to
the FPN, and the transformer head corresponds to the box/mask head. Thus, we employ a setting
similar to that used for object detection, by increasing the number of parameters in these two major
components, e.g., changing the pixel decoder to six blocks and the transformer decoder to ten blocks.
As shown in Table 3, similar results can be observed where enlarging the pixel decoder helps more
in bridging the gap than enlarging the transformer head. We also perform a CKA analysis on this
framework and observe behaviors like that in object detection, as shown in the Appendix.

Head Network Frozen
top-1 accuracy

Full Ft.
top-1 accuracy

Linear 70.3 79.7
4× Temporal Blocks 74.7 79.5
4× Global Blocks 77.5 79.8

Table 4: Results with different head networks on Kinetics-400 video action recognition: linear
classifier, four temporal Transformer blocks, and four global (spatiotemporal) Transformer blocks.

Video Action Recognition For video action recognition, it is crucial to capture both spatial and
temporal relationships, but the pretraining model is only capable of spatial reasoning. Under the
frozen setting, the lack of temporal modeling thus needs to be compensated for in the head network.
In our experiments, we adopt a spatial-then-temporal Video-Swin-Transformer [39] framework that
is enhanced with additional Transformer blocks, either temporal-only or global (spatiotemporal).
In Table 4, we can observe that under the full finetuning setting, adding global blocks and adding
temporal blocks work similarly with a linear classifier. On the other hand, adding temporal blocks in
the frozen setting leads to significantly better performance than the linear classifier setting, which
verifies the need for temporal reasoning. Also, adding global blocks in the frozen setting improves
substantially over adding temporal-only blocks. Although the base network is pretrained for spatial
reasoning and global blocks are added, there is still a non-trivial gap between the frozen and full
finetuning settings. This may be due to some missing information from the original features, and the
remaining gap may be reduced by further introducing a network with independent access to the input,
which is beyond the scope of this paper and left for future work.

5.2 Does Larger Pretrained Base Network Need Smaller Head Network?

When the pretrained model becomes larger, it generally contains richer and more valuable information,
so for downstream tasks, we generally expect that a larger pretrained model does not require as
large of a head. In NLP, it is verified that only a few layers or a few prompts are needed when the
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Figure 4: Performance improvements on COCO object detection, ADE semantic segmentation, and
Kinetics-400 action recognition with increases in the number of trainable parameters.

pretrained model is extremely large, e.g., 173B. For computer vision, we seek an answer to whether
the current best pretrained models have similar properties. We perform the empirical study with
different sizes of pretrained models, SwinV2-T/B with ImageNet-1K pretraining, and SwinV2-B/L
with ImageNet-22K pretraining, on the three representative downstream tasks. From Figure 4 (a),
on COCO object detection, we can surprisingly observe a clear trend, that SwinV2-L-22K requires
fewer parameters to converge (a 5-layer BiFPN), while SwinV2-T-1K requires more parameters
to converge (a 9-layer BiFPN). On ADE20K semantic segmentation in Figure 4 (b), we also find
that SwinV2-T-1K requires more parameters to converge (a 6-layer pixel decoder) than other larger
base networks. On Kinetics-400 video action recognition in Figure 4 (c), different models appear to
require a similar number of parameters to converge. This observation matches the previous one, that
after careful tuning, there is still a non-trivial gap between the frozen and full finetuning settings on
video action recognition (as shown in Table 4), indicating a larger difference between pretraining and
video recognition tasks than others.

6 Results with Different Sizes of Base Networks

Base Network
COCO ADE20K Kinetics-400

Head Frozen Full ft. Frozen Full ft. Frozen Full ft.
Network APbox APmask APbox APmask mIoU mIoU acc@1 acc@1

SwinV2-T-1K Mask. 49.6 44.0 49.8 43.8 48.9 50.3 70.6 75.7
SwinV2-B-1K Mask. 50.3 44.5 51.1 44.8 51.5 52.7 73.3 77.9

SwinV2-B-22K Mask. 52.5 46.6 52.3 45.7 53.2 55.5 77.7 79.8
SwinV2-L-22K Mask. 53.0 46.8 53.0 46.5 54.4 56.5 78.7 79.8
SwinV2-B-22K Cascade. 53.8 46.7 54.3 46.9 - - - -

SwinV2-G-ext22K HTC 57.9 50.4 - - 57.6 - 81.7 -
HTC† 59.3 51.6 - -

Table 5: Comparison of different-sized base networks with carefully designed head networks on
frozen and full finetuning settings, including SwinV2-T/B pretrained on ImageNet-1K, SwinV2-B/L
pretrained on ImageNet-22K, and SwinV2-G pretrained on ext22K. Results of box mAP and mask
mAP for COCO object detection validation set, mIoU for ADE20K semantic segmentation, and top-1
accuracy for Kinetics-400 action recognition are reported. Mask. denotes Mask R-CNN is used as the
head network, and Cascade. refers to Cascade Mask R-CNN. † denotes multi-scale testing on COCO.

After careful design of the head networks for each downstream task, we compare different sizes
of base network with the best setup of frozen and full finetuning settings, including SwinV2-T/B
pretrained on ImageNet-1K, and SwinV2-B/L pretrained on ImageNet-22K, shown in Table 5. On
COCO object detection, the performance gap is well bridged, where SwinV2-B/L-22K even achieve
on-par performance under the frozen and full finetuning settings with two different head networks. But
on ADE20K, there is still a significant performance gap. For example, using SwinV2-L-22K as the
base network, the frozen setting still underperforms the full finetuning setting by 2.1 mIoU. A large
performance gap between the frozen and full finetuning settings can also be observed on Kinetics-400
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video action recognition. Interestingly, the performance gaps on ImageNet-1K pretrained models are
significantly larger than that for models pretrained on ImageNet-22K, indicating that enlarging the
pretraining dataset from ImageNet-1K to ImageNet-22K helps to bridge the task gap of pretraining
and finetuning on action recognition.

We additionally explore the upper bound of performance under the frozen setting, using a frozen
supervised pretrained model with 3 billion parameters trained on 70M images (SwinV2-G), shown in
Table 5. With this giant model, highly competitive performance is achieved on major benchmarks:
59.3/60.0 box mAP and 51.6/52.2 mask mAP on COCO validation/test-dev sets, 57.6 mIoU on
ADE20K semantic segmentation, and 81.7 top-1 accuracy on Kinetics-400 action recognition.

7 When Does Frozen Setting Outperform Full Finetuning?

To further explore the potential of the frozen setting, we compare it with full finetuning in the low-data
scenario. More specifically, we test these two settings with a small portion of the COCO training
dataset. Following the standard practice in semi-supervised learning [50, 55], we construct two
datasets with only 1% and 10% (about 12K and 120K training images, respectively) of COCO.

Head Network
1% data 10% data

Frozen Full ft. Frozen Full ft.
APbox APmask APbox APmask APbox APmask APbox APmask

FPN 27.5 26.4 27.5 25.8 39.1 36.2 42.2 37.5
1× BiFPN Layer 29.8 27.6 26.3 24.7 42.8 38.5 42.0 37.3
2× BiFPN Layer 31.4 28.4 26.3 24.6 44.2 39.4 42.1 37.3
3× BiFPN Layer 32.1 28.9 25.9 24.3 44.6 39.7 42.3 37.6
4× BiFPN Layer 31.9 28.6 26.0 24.1 45.0 40.0 42.1 37.4

Table 6: Results for different head networks on COCO with 1% and 10% labeled data. Head networks
include FPN and BiFPN.

Results are shown in Table 6. For training with 1% labeled data, when adopting FPN as head, the
frozen setting achieves performance competitive with the full finetuning one. With an increasing
number of BiFPN layers, we can observe stable performance improvements for the frozen setting and
inferior performance for full finetuning, which indicates an overfitting issue for the full finetuning
setting. For training with 10% data, there is a performance gap of -3.1 box mAP between the frozen
setting and full finetuning with FPN as the head network. Compared with training on the full COCO
training dataset, this gap is reduced from -6.9 box mAP to -3.1 box mAP. When replacing FPN with
BiFPN, the frozen setting surpasses full finetuning with a clear margin of 2.9 box AP and 2.6 mask
AP.

8 Conclusion

In this paper, we presented a detailed empirical study of frozen pretrained models for diverse computer
vision tasks. Based on our observations, we proposed strategies for extending the frozen setting to
work effectively for various downstream tasks, and also found that a universal representation with
solid performance over assorted benchmarks can be learned for a giant frozen model. Our study
highlights the strong potential of this transfer learning approach, and we hope it will kindle further
interest in this research direction.
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