
A Memory and Speed Analysis

We carefully analyzed the training speed and memory usage of the frozen backbone with additional
tunable parameters and full finetuning on COCO object detection, ADE20K semantic segmentation
and K400 video action recognition using various sized models from SwinV2-T to SwinV2-G. As
shown in Table 1 and 2, even with more trainable parameters in the head network, training with a
frozen backbone can significantly improve speed and reduce memory cost, especially for large-scale
models. Moreover, freezing the backbone reduces the memory consumption of a billion-level model
to less than 32G, which makes it possible to run on regular GPUs, thus helping institutions with
limited resources to take advantage of such large models.

Base Network
COCO ADE20K Kinetics-400

Batch Frozen Full ft. Batch Frozen Full ft. Batch Frozen Full ft.
Size 5× BiFPN FPN Size 6× Pix. Dec. 1× Pix. Dec. Size 4× Blocks Linear

SwinV2-T 16 9.74G 9.78G 16 4.24G 5.04G 64 10.43G 15.87G
SwinV2-B 16 10.38G 17.29G 16 4.42G 7.84G 64 13.46G 31.47G
SwinV2-L 16 10.56G 25.81G 16 4.84G 11.77G 32 12.80G 27.05G
SwinV2-G 8 31.05G >80G 8 23.84G 78.77G 16 30.54G >80G

Table 1: Memory usage for models of different sizes.

Base Network
COCO ADE20K Kinetics-400

Batch Frozen Full ft. Batch Frozen Full ft. Batch Frozen Full ft.
Size 5× BiFPN FPN Size 6× Pix. Dec. 1× Pix. Dec. Size 4× Blocks Linear

SwinV2-T 16 0.44s 0.46s 16 0.28s 0.34s 64 0.31s 0.51s
SwinV2-B 16 0.50s 0.65s 16 0.31s 0.41s 64 0.52s 0.96s
SwinV2-L 16 0.57s 0.84s 16 0.34s 0.48s 32 0.45s 0.78s
SwinV2-G 8 1.20s - 8 1.23s 3.08s 16 1.14s -

Table 2: Speed of each iteration for models of different sizes.

B ADE20K with UPerNet vs. Mask2former

For ADE20K semantic segmentation, we further adopt UPerNet [9], another widely used framework,
to conduct comparisons on different pretrained models. We first evaluate four different pretrained
Swin Transformers [7] with UPerNet, including supervised pretraining on ImageNet-1K (SUP-1K),
supervised pretraining on ImageNet-22K (SUP-22K), contrastive learning of EsViT[5] on ImageNet-
1K (EsViT-1K), and masked image modeling of SimMIM [10] on ImageNet-1K (SimMIM-1K).
Results are shown in Table 3. Similar to the results of Mask2former, we can find that the SUP-22K
model works the best in both frozen and finetuning settings. The SUP-1K and the EsViT-1K models
have competitive results. The SimMIM-1K model achieves performance similar to the SUP-1K
model in the finetuning setting but lags behind other models in the frozen setting.

Approach Frozen Full ft.
mIoU mIoU (ms+flip) mIoU mIoU (ms+flip)

SUP-1K 43.9 45.5 49.3 50.2
SUP-22K 48.8 50.0 51.3 52.2
EsViT-1K 41.8 43.4 48.8 49.7

SimMIM-1K 26.0 27.6 48.6 49.3
Table 3: Comparisons of different pretraining tasks on frozen and full finetuning settings with
SwinV2-B as the base network. An UPerNet framework is adopted. Results of mIoU for ADE20K
semantic segmentation are reported. SUP denotes supervised classification as pretraining. ms+flip
denotes multi-scale testing with horizontal flip augmentation.

Even though the SUP-22K model preforms best among different pretrained models, there is a gap
of -2.5 mIoU between the frozen setting and full finetuning. We thus add more parameters in the
head network and see if this could close the gap. As UPerNet has an FPN-like head network, we
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add parameters by replacing FPN with BiFPN. As shown in Table 4, with a 5-layer BiFPN, the
performance gap between the frozen setting and the full finetuning is reduced to -0.2 mIoU.

Head Network Frozen Full ft.
mIoU mIoU (ms+flip) mIoU mIoU (ms+flip)

FPN 48.8 50.0 51.3 52.2
1× BiFPN Layer 49.3 50.5 51.4 52.2
2× BiFPN Layer 49.8 50.8 51.4 52.3
3× BiFPN Layer 50.8 51.4 51.5 52.2
4× BiFPN Layer 50.7 51.9 51.6 52.5
5× BiFPN Layer 51.3 52.6 51.5 52.4

Table 4: Comparisons with different head networks on ADE20K semantic segmentation: FPN or
BiFPN with different layers, using UperNet as the segmentation framework and SwinV2-B with
SUP-22K training as the base network. ms+flip denotes multi-scale testing with horizontal flip
augmentation.

C CKA Analysis on Mask2Former

To further understand the behavior of Mask2Former on ADE20K semantic segmentation, we conduct
a similar Centered Kernel Alignment (CKA) [4] analysis of the feature similarity across different
layers in the pixel decoders and Transformer decoders as done for object detection on COCO. As
show in Figure 1 (a), for each stage (with different resolutions of feature map) of the pixel decoder,
we plot the CKA similarity between the input features (Px of stage x) and the output of each block
(Fx of block x). For the Transformer decoder, as shown in Figure 1 (b), we plot the CKA similarity
between the output features (Fx of head x) of each Transformer decoder. From this figure, we can
observe that the features across heads in the Transformer decoder are almost the same. But in the
pixel decoder, features across different blocks are somewhat different (with lower CKA similarity). In
other words, adding parameters in the pixel decoder provides more useful capacity for transformation,
but adding parameters in the Transformer decoder provides much less useful computation. This well
matches the previous observation on COCO with BiFPN and cascade head (shown in Figure 3 of the
main paper).

(a) CKA Similarity of Pixel-Decoder (b) CKA Similarity of Transformer-Head
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Figure 1: CKA heatmap on the features across different layers in the pixel decoder (a) and Transformer
decoder (b) in Mask2former on ADE20K semantic segmentation.

D Detailed Settings

Object Detection and Instance Segmentation on COCO Object detection and instance segmenta-
tion experiments are conducted on COCO 2017 [6]. We adopt a Mask R-CNN framework and the
large-scale jittering augmentation [3]. Detailed configurations are listed in Table 5.
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Hyperparameters 1% 10% 100%
Frozen Full Ft. Frozen Full Ft. Frozen Full Ft.

Detector Mask RCNN Mask RCNN Mask RCNN
Training input size (1024, 1024) (1024, 1024) (1024, 1024)
Training scale ratio (0.1, 2.0) (0.1, 2.0) (0.1, 2.0)
Rand horizontal flip 0.5 0.5 0.5

Test input size (1333, 800) (1333, 800) (1333, 800)
Training epochs 12 12 72

Warm-up iterations 500 500 500
Batch size 16 16 16

Layer decay ✗ 0.95 ✗ 0.95 ✗ 0.95
Base learning rate 1e-3 1e-5 3e-4 3e-5 3e-4 3e-5

Weight decay 0.5 0.1 0.1 0.05 0.05 0.05
Optimizer AdamW AdamW AdamW
Adam β (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Learning rate scheduler Multi-Step Multi-Step Multi-Step
Step γ 0.1 0.1 0.1

Step epochs (8, 11) (8, 11) (63, 69)
Stochastic depth 0.3 0.3 0.3

Table 5: Hyperparameters for the frozen setting and the full finetuning on COCO object detection
dataset with 1%, 10% and all training data.

Semantic Segmentation on ADE20K For the semantic segmentation task, we adopt widely-
used ADE20K [11] as the benchmark. Experiments are conducted with both Mask2former [2]
and UPerNet [9]. All experiments follow the settings listed in Table 6 except for those with the
SimMIM-1K pretrained model. For SimMIM-1K with Mask2former, we use a learning rate of 3e-4
for full finetuning. For SimMIM-1K with UPerNet, we use a learning rate of 2e-4 and a weight decay
of 0.05 for full finetuning.

Hyperparameters Mask2former UPerNet
Frozen Full Ft. Frozen Full Ft.

Training input size (512, 512) (512, 512)
Training scale ratio (0.5, 2.0) (0.5, 2.0)
Rand horizontal flip 0.5 0.5

PhotoMetricDistortion ✓ ✓
Test input size (2048, 512) (2048, 512)

Training iterations 160,000 160,000
Warm-up iterations 0 1,500

Batch size 16 16
Backbone lr ratio ✗ 0.1 ✗ ✗

Layer decay ✗ ✗ ✗ 0.95
Base learning rate 3e-4 1e-4 2e-3 2e-5

Weight decay 0.02 0.05 0.05 0.01
Optimizer AdamW AdamW
Adam β (0.9, 0.999) (0.9, 0.999)

Learning rate scheduler Poly (power=0.9) Linear
Stochastic depth 0.3 0.3

Table 6: Hyperparameters for the frozen setting and full finetuning on ADE20K semantic segmenta-
tion.

Video Action Recognition on Kinetics-400 Video action recognition experiments are evaluated on
the Kinetics-400 dataset. We follow Video Swin Transformer [8] for most of the settings. Detailed
hyperparameters are shown in Table 7.

Swin-G Setting To explore the performance upper bound under the frozen setting, we use a strong
training setting for the Swin-G model. For COCO object detection, we adopt a framework of
HTC [1, 7] and a large scale jittering augmentation with an input size of (1024, 1024). The window
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Hyperparameters Froze Full Ft.
Training Input size (16, 224, 224)

Patch size (1, 4, 4)
Rand horizontal flip 0.5
Rand resized crop ✓

Training scale ratio (0.5, 2.0)
Test view 4×3

Training epochs 30
Warm-up epochs 2.5

Batch size 64
Base learning rate 3e-4

Weight decay 0.05
Optimizer AdamW
Adam β (0.9, 0.999)

Learning rate scheduler Cosine
Stochastic depth 0.2

Table 7: Hyperparameters for the frozen setting and full finetuning on Kinetics-400 video action
recognition.

size is set as 32, the learning rate is 6e-4, and the batch size is 32. A weight decay of 0.05 and a
stochastic depth rate of 0.3 are used. For ADE20K semantic segmentation, we set the image input
size as (640, 640) and the window size as 40. The learning rate is 3e-4 and the batch size is 16.
A weight decay of 0.02 and a stochastic depth rate of 0.3 are used. For Kinetics-400 video action
recognition, we use a window size of 16, a learning rate of 2e-4, a stochastic depth of 0.1 and a batch
size of 128.
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