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Abstract

In this paper, we present a policy gradient method that avoids exploratory noise
injection and performs policy search over the deterministic landscape, with the
goal of improving learning with long horizons and non-local rewards. By avoiding
noise injection all sources of estimation variance can be eliminated in systems with
deterministic dynamics (up to the initial state distribution). Since deterministic
policy regularization is impossible using traditional non-metric measures such
as the KL divergence, we derive a Wasserstein-based quadratic model for our
purposes. We state conditions on the system model under which it is possible to
establish a monotonic policy improvement guarantee, propose a surrogate function
for policy gradient estimation, and show that it is possible to compute exact advan-
tage estimates if both the state transition model and the policy are deterministic.
Finally, we describe two novel robotic control environments—one with non-local
rewards in the frequency domain and the other with a long horizon (8000 time-
steps)—for which our policy gradient method (TDPO) significantly outperforms
existing methods (PPO, TRPO, DDPG, and TD3). Our implementation with all
the experimental settings and a video of the physical hardware test is available at
https://github.com/ehsansaleh/tdpo.

Policy Gradient (PG) methods can be broadly characterized by three defining elements: the policy
gradient estimator, the regularization measures, and the exploration profile. For gradient estimation,
episodic [58], importance-sampling-based [50], and deterministic [54] gradients are some of the most
common estimation oracles. As for regularization measures, either an Euclidean distance within the
parameter space [58, 54, 35], or dimensionally consistent non-metric measures [50, 25, 52, 26, 59]
have been frequently adapted. Common exploration profiles include Gaussian [50] and stochastic
processes [35]. These elements form the basis of many model-free and stochastic policy optimization
methods successfully capable of learning high-dimensional policy parameters.

Both stochastic and deterministic policy search can be useful in applications. A stochastic policy
has the effect of smoothing or filtering the policy landscape, which is desirable for optimization.
Searching through stochastic policies has enabled the effective control of challenging environments
under a general framework [50, 52]. The same method could either learn robotic movements or play
basic games (1) with minimal domain-specific knowledge, (2) regardless of function approximation
classes, and (3) with less human intervention (ignoring reward engineering and hyper-parameter
tuning) [13]. Using stochasticity for exploration, although it imposes approximations and variance,
has provided a robust way to actively search for higher rewards. Despite many successes, there are
practical environments which remain challenging for current policy gradient methods. For example,
non-local rewards (e.g., those defined in the frequency domain), long time horizons, and naturally-
resonant environments all occur in realistic robotic systems [34, 38, 47] but can present issues for
policy gradient search.
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To tackle challenging environments such as these, this paper considers policy gradient methods
based on deterministic policies and deterministic gradient estimates, which could offer advantages by
allowing the estimation of global reward gradients on long horizons without the need to inject noise
into the system for exploration. To facilitate a dimensionally consistent and low-variance deterministic
policy search, a compatible policy gradient estimator and a metric measure for regularization should
be employed. For gradient estimation we focus on Vine estimators [50], which can be easily applied
to deterministic policies. As a metric measure, we use the Wasserstein distance, which can measure
meaningful distances between deterministic policy functions that have non-overlapping supports (in
contrast to the Kullback-Liebler (KL) divergence and the Total Variation (TV) distance).

The Wasserstein metric has seen substantial recent application in a variety of machine-learning
domains, such as the successful stable learning of generative adversarial models [4]. Theoretically,
this metric has been studied in the context of Lipschitz-continuous Markov decision processes
in reinforcement learning [21, 14]. Pirotta et al. [45] defined a policy gradient method using the
Wasserestein distance by relying on Lipschitz continuity assumptions with respect to the policy
gradient itself. Asadi et al. [5] and Rachelson and Lagoudakis [48] used the Wasserstein distance to
derive model-based value-iteration and policy-iteration methods, respectively. On a more practical
note, Ciosek et al. [9] introduced a method which in the deterministic mode optimized policies using
the Wasserstein distance. Pacchiano et al. [43] utilized Wasserstein regularization for behavior-guided
stochastic policy optimization. Moreover, Abdullah et al. [1] has proposed another robust stochastic
policy gradient formulation. Estimating the Wasserstein distance for general distributions is more
complicated than typical KL-divergences [56]. This fact constitutes and emphasizes the contributions
of Abdullah et al. [1] and Pacchiano et al. [43]. However, for our deterministic observation-conditional
policies, closed-form computation of Wasserstein distances is possible without any approximation.

Existing deterministic policy gradient methods (e.g., DDPG and TD3) use deterministic policies
[54, 35, 15], meaning that they learn a deterministic policy function from states to actions. However,
such methods still use stochastic search (i.e., they add stochastic noise to their deterministic actions to
force exploration during policy search). In contrast, we will be interested in a method which not only
uses deterministic policies, but also uses deterministic search (i.e., without constant stochastic noise
injection). We call this method truly deterministic policy optimization (TDPO) and it may have lower
estimation variances and better scalability to long horizons, as we will show in numerical examples.

Scalability to long horizons is one of the most challenging aspects of policy gradient methods that use
stochastic search. This issue is sometimes referred to as the curse of horizon in reinforcement learning
[36]. General worst-case analyses suggest that the sample complexity of reinforcement learning is
exponential with respect to the horizon length [27, 31, 30]. Deriving polynomial lower-bounds for the
sample complexity of reinforcement learning methods is still an open problem [24]. Lower-bounding
the sample complexity of reinforcement learning for long horizons under different settings and
simplifying assumptions has been a topic of theoretical research [10, 57]. Some recent work has
examined the scalability of importance sampling gradient estimators to long horizons in terms of both
theoretical and practical estimator variances [36, 28, 29]. All in all, long horizons are challenging for
all reinforcement learning methods, especially the ones suffering from excessive estimation variance
due to the use of stochastic policies for exploration, and our truly deterministic method may have
advantages in this respect.

In this paper, we focus on continuous-domain robotic environments with reset capability to previously
visited states. The main contributions of this work are: (1) we introduce a Deterministic Vine
(DeVine) policy gradient estimator which avoids constant exploratory noise injection; (2) we derive a
novel deterministically-compatible surrogate function and provide monotonic payoff improvement
guarantees; (3) we show how to use the DeVine policy gradient estimator with the Wasserstein-based
surrogate in a practical algorithm (TDPO: Truly Deterministic Policy Optimization); (4) we illustrate
the robustness of the TDPO policy search process in robotic control environments with non-local
rewards, long horizons, and/or resonant frequencies.

1 Background

MDP preliminaries. An infinite-horizon discounted Markov decision process (MDP) is specified
by (S,A, P,R, µ, �), where S is the state space, A is the action space, P : S ⇥A ! �(S) is the
transition dynamics, R : S ⇥A! [0, Rmax] is the reward function, � 2 [0, 1) is the discount factor,
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and µ(s) is the initial state distribution of interest (where �(F) denotes the set of all probability
distributions over F , otherwise known as the Credal set of F ). The transition dynamics P is defined
as an operator which produces a distribution over the state space for the next state s0 ⇠ P (s, a).
The transition dynamics can be easily generalized to take distributions of states or actions as input
(i.e., by having P defined as P : �(S)⇥A! �(S) or P : S ⇥�(A)! �(S)). We may abuse
the notation and replace �s and �a by s and a, where �s and �a are the deterministic distributions
concentrated at the state s and action a, respectively. A policy ⇡ : S ! �(A) specifies a distribution
over actions for each state, and induces trajectories from a given starting state s as follows: s1 = s,
a1 ⇠ ⇡(s1), r1 = R(s1, a1), s2 ⇠ P (s2, a2), a2 ⇠ ⇡(s2), etc. We will denote trajectories as state-
action tuples ⌧ = (s1, a1, s2, a2, . . .). One can generalize the dynamics (1) by using a policy instead
of an action distribution P(µs,⇡) := Es⇠µs [Ea⇠⇡(s)[P (s, a)]], and (2) by introducing the t-step
transition dynamics recursively as Pt(µs,⇡) := P(Pt�1(µs,⇡),⇡) with P0(µs,⇡) := µs, where µs is
a distribution over S . The visitation frequency can be defined as ⇢⇡

µ
:= (1��)

P1
t=1 �

t�1Pt�1(µ,⇡).
Table 2 of the Supplementary Material summarizes all MDP notation.

The value function of ⇡ is defined as V ⇡(s) := E[
P1

t=1 �
t�1rt | s1 = s;⇡]. Similarly, one can

define Q⇡(s, a) by conditioning on the first action. The advantage function can then be defined as
their difference (i.e. A⇡(s, a) := Q⇡(s, a)� V ⇡(s)). Generally, one can define the advantage/value
of one policy with respect to another using A⇡(s,⇡0) := E[Q⇡(s, a) � V ⇡(s) | a ⇠ ⇡0(·|s)] and
Q⇡(s,⇡0) := E[Q⇡(s, a) | a ⇠ ⇡0(·|s)]. Finally, the payoff of a policy ⌘⇡ := E[V ⇡(s); s ⇠ µ] is the
average value over the initial states distribution of the MDP.

Probabilistic and mathematical notations. Sometimes we refer to
R
f(x)g(x)dx integrals as

hf, gix Hilbert space inner products. Assuming that ⇣ and ⌫ are two probabilistic densities,
the Kulback-Liebler (KL) divergence is DKL(⇣|⌫) := h⇣(x), log( ⇣(x)

⌫(x) )ix, the Total-Variation
(TV) distance is TV(⇣, ⌫) =: 1

2 h|⇣(x) � ⌫(x)|, 1ix, and the Wasserstein distance is W (⇣, ⌫) =
inf�2�(⇣,⌫)hkx � yk, �(x, y)ix,y where �(⇣, ⌫) is the set of couplings for ⇣ and ⌫. We de-
fine Lip(f(x, y);x) := sup

x
krxf(x, y)k2 and assume the existence of Lip(Q⇡(s, a); a) and

Lip(rsQ⇡(s, a); a) constants. Under this notation, the Rubinstein-Kantrovich (RK) duality states
that the |h⇣(x)� ⌫(x), f(x)ix| W (⇣, ⌫) · Lip(f ;x) bound is tight for all f . For brevity, we may
abuse the notation and denote sup

s
W (⇡1(·|s),⇡2(·|s)) with W (⇡1,⇡2) (and similarly for other

measures). For parameterized policies, we definer⇡f(⇡) := r✓f(⇡) where ⇡ is parameterized by
the vector ✓. Table 1 of the Supplementary Material summarizes all these mathematical definitions.

Policy gradient preliminaries. The advantage decomposition lemma provides insight into the
relationship between payoff improvements and advantages [25]. That is,

⌘⇡2 � ⌘⇡1 =
1

1� �
· E

s⇠⇢
⇡2
µ
[A⇡1(s,⇡2)]. (1)

We will denote the current and the candidate next policy as ⇡1 and ⇡2, respectively. Taking derivatives
of both sides with respect to ⇡2 at ⇡1 yields

r⇡2⌘⇡2 =
1

1� �


hr⇡2⇢

⇡2
µ
(·), A⇡1(·,⇡1)i+ h⇢⇡1

µ
(·),r⇡2A

⇡1(·,⇡2)i
�
. (2)

Since ⇡1 does not have any advantage over itself (i.e., A⇡1(·,⇡1) = 0), the first term is zero. Thus,
the Policy Gradient (PG) theorem is derived as

r⇡2⌘⇡2

���
⇡2=⇡1

=
1

1� �
· E

s⇠⇢
⇡1
µ
[r⇡2A

⇡1(s,⇡2)]
���
⇡2=⇡1

. (3)

For policy iteration with function approximation, we assume ⇡2 and ⇡1 to be parameterized by ✓2
and ✓1, respectively. One can view the PG theorem as a Taylor expansion of the payoff at ✓1.

A brief introduction of the Conservative Policy Iteration (CPI) [25], the Trust Region Policy Opti-
mization (TRPO) [50], the Proximal Policy Optimization (PPO) [51], the Deep Deterministic Policy
Gradient (DDPG) [35], and the Twin-Delayed Deterministic Policy Gradient (TD3) [15] policy
gradient methods is left to the Supplementary Material. Whether using deterministic policy gradients
(e.g., DDPG and TD3) or stochastic policy gradients (e.g., TRPO and PPO), all these methods still
perform stochastic search by adding stochastic noise to the deterministic policies to force exploration.
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2 Monotonic Policy Improvement Guarantee

We use the Wasserstein metric because it allows the effective measurement of distances between
probability distributions or functions with non-overlapping support, such as deterministic policies,
unlike the KL divergence or TV distance which are either unbounded or maximal in this case. The
physical transition model’s smoothness enables the use of the Wasserstein distance to regularize
deterministic policies. Therefore, we make the following two assumptions about the transition model:

W (P(µ,⇡1),P(µ,⇡2))  L⇡ ·W (⇡1,⇡2), (4)
W (P(µ1,⇡),P(µ2,⇡))  Lµ ·W (µ1, µ2). (5)

Also, we make the dynamics stability assumption sup
P

t

l=1 L̂
(l�1)
µ,⇡1,⇡2

Q
t�1
i=l+1 L̃

(i)
µ,⇡1,⇡2 < 1, with

the definitions of the new constants and further discussion of the implications deferred to the
Supplementary Material where we also discuss Assumptions 4 and 5 and the existence of other
Lipschitz constants which appear as coefficients in the final lower bound.

The advantage decomposition lemma can be rewritten as

⌘⇡2 = ⌘⇡1 +
1

1� �
· E

s⇠⇢
⇡1
µ
[A⇡1(s,⇡2)] +

1

1� �
· h⇢⇡2

µ
� ⇢⇡1

µ
, A⇡1(·,⇡2)is. (6)

The h⇢⇡2
µ
� ⇢⇡1

µ
, A⇡1(·,⇡2)i term has zero gradient at ⇡2 = ⇡1, which qualifies it to be crudely called

“the second-order term”. We dedicate a full section of our Supplementary Material to the theoretical
derivations and proofs necessary to lower-bound this second-order term into an objective in a form
well-suited for practical optimization. Next, we present the final bound:

Lsup
⇡1

(⇡2) = ⌘⇡1 +
1

1� �
E
s⇠⇢

⇡1
µ
[A⇡1(s,⇡2)]� C2 · sup

s


W (⇡2(a|s),⇡1(a|s))2

�

�C1 · sup
s

����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

2

�
. (7)

For brevity, we denote the
��rs0W (· · · )

��
s0=s

��2
2

expression as LG2(⇡1,⇡2; s) in the rest of the paper.
We have ⌘⇡2 � Lsup

⇡1
(⇡2) and Lsup

⇡1
(⇡1) = ⌘⇡1 . This facilitates the application of Theorem 2.1 as an

instance of Minorization-Maximization algorithms [22].
Theorem 2.1. Successive maximization of Lsup yields non-decreasing policy payoffs.

Proof. With ⇡2 = argmax
⇡
Lsup
⇡1

(⇡), we have Lsup
⇡1

(⇡2) � Lsup
⇡1

(⇡1). Thus,
⌘⇡2 � Lsup

⇡1
(⇡2) and ⌘⇡1 = Lsup

⇡1
(⇡1) =) ⌘⇡2 � ⌘⇡1 � Lsup

⇡1
(⇡2)� Lsup

⇡1
(⇡1) � 0. (8)

Successive optimization of Lsup
⇡1

(⇡2) generates non-decreasing payoffs. However, it is impractical due
to the large number of “sup” terms that need to be expensively statistically estimated and implemented
as constraints [50]. To mitigate this, we take a similar approach to TRPO and replace the maximums
with expectations over the observations.

The Truly Deterministic Policy Optimization (TDPO) method is given in Algorithm 1. In the basic
variant, the coefficients C1 and C2 are constant and a trust region is used. The coefficients C1 and C2

are dynamics-dependent and the Supplementary Material provides practical notes on their choice. In
the advanced variant, we use a line search similar to Schulman et al. [50] and an adaptive tuning of
the exploration scale using an importance sampling derivative estimate, as described in Algorithm 1.

We note that, for deterministic policies, the squared Wasserstein distance W (⇡2(a|s),⇡1(a|s))2
degenerates to the Euclidean distance over the action space. Any policy defines a sensitivity matrix
at a given state s, which is the Jacobian matrix of the policy output with respect to s. The policy
sensitivity term LG2(⇡1,⇡2; s) is essentially the squared Euclidean distance over the action-to-
observation Jacobian matrix elements. In other words, our surrogate prefers to step in directions
where the action-to-observation sensitivity is preserved within updates.

3 Model-Free Estimation of Policy Gradient

The DeVine advantage estimator is formally defined in Algorithm 2. Unlike DDPG and TD3, the
DeVine estimator allows our method to perform deterministic search by not consistently injecting
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Algorithm 1 Truly Deterministic Policy Optimization (TDPO)
Require: Initial policy ⇡0 and exploration scale �.
Require: Advantage estimator and sample collector oracle A⇡ of Algorithm 2.

1: for i = 0, 1, 2, . . . do
2: Collect trajectories and construct A⇡i using Algorithm 2.
3: Compute the policy gradient g at ✓i : g  r✓0A⇡i(⇡0)|⇡0=⇡i

4: Construct a surrogate Hessian vector product oracle v ! H · v such that for ✓0 = ✓i + �✓,

E
s⇠⇢

⇡i
µ


W (⇡0(a|s),⇡i(a|s))2

�
+

C1

C2
E
s⇠⇢

⇡i
µ


LG2(⇡0,⇡i; s)

�
=

1

2
�✓TH�✓ + h.o.t., (9)

where h.o.t. denotes higher order terms in �✓.
5: Find the optimal update direction �✓⇤ = H�1g using the Conjugate Gradient algorithm.
6: (Basic Variant) Determine the best step size ↵⇤ within the trust region:

↵⇤ =argmax
↵

gT (↵�✓⇤)� C2

2
(↵�✓⇤)TH(↵�✓⇤)

s.t.
1

2
(↵⇤�✓⇤)TH(↵⇤�✓⇤)  �2max (10)

7: (Advanced Variant) Determine the best step size ↵⇤ using a line-search procedure and pick the
best one; each coefficient’s performance can be evaluated by sampling from the environment.

8: (Advanced Variant) Update the exploration scale � in A⇡ using the collected samples.
9: Update the policy parameters: ✓i+1  ✓i + ↵⇤�✓⇤.

10: end for

Algorithm 2 Deterministic Vine (DeVine) Policy Advantage Estimator

Require: The number of workers K, policy ⇡, initial state distribution µ(s), and discount factor �.
Require: An exploration index set distribution ⌫, exploration scale �, and maximal horizon H .

1: Sample an initial state s0 from µ, and then roll out a trajectory ⌧ = (s0, a0, s1, a1, · · · ) using ⇡.
2: Sample the exploration indices set XK := {(t1, j1), (t2, j2), · · · , (tK , jK)} from ⌫.
3: for k = 1, 2, · · · ,K do
4: Compute the value V ⇡1(stk) =

P1
i=tk

�tk�iR(si, ai).
5: Reset the initial state to stk , set a0

tk
:= ⇡(stk) + � · ejk , and use ⇡ for the rest of the trajectory,

with ej being the jth basis element for A. This will create ⌧ 0 = (stk , a
0
tk
, s0

tk+1, a
0
tk+1, · · · ).

6: Compute the value Q⇡1(stk , a
0
tk
) =

P1
i=tk

�tk�iR(s0
i
, a0

i
).

7: Compute the advantage A⇡1(stk , a
0
tk
) = Q⇡(stk , a

0
tk
)� V ⇡(stk).

8: end for

9: Define A⇡1(⇡2) :=
1

K

KX

k=1

dim(A) ·H · �tk

⌫(XK)
·
(⇡2(stk)� atk)

T (a0
tk
� atk)

(a0
tk
� atk)

T (a0
tk
� atk)

·A⇡1(stk , a
0
tk
).

10: Return A⇡1(⇡2) and r⇡2A⇡1(⇡2) as unbiased estimators for E
s⇠⇢

⇡1
µ
[A⇡1(s,⇡2)] and the PG.

noise in actions for exploration. Algorithm 2 uses an exploration index sampler ⌫, which samples a set
of time-steps and action dimensions for exploration perturbation. The truly deterministic version of
TDPO uses the deterministic ⌫det which always returns the complete covering of {1, · · · , dim(A)}⇥
{1, · · · , H}. Using ⌫det, DeVine produces exact policy gradients in the limit of small � as stated in
Theorem 3.1, whose proof is deferred to the Supplementary Material.
Theorem 3.1. Assume a finite horizon MDP with both deterministic transition dynamics P and
initial distribution µ, with maximal horizon length of H . Define K = H · dim(A) and ⌫ := ⌫det,
where ⌫det always returns the complete covering of {1, · · · , dim(A)}⇥ {1, · · · , H}. Then we have

lim
�!0
r⇡2A⇡1(⇡2)

��
⇡2=⇡1

= r⇡2⌘⇡2

��
⇡2=⇡1

. (11)

Although this theorem sets the stage for computing a fully deterministic gradient, stochastic approxi-
mation can be used in Algorithm 2 by randomly sampling a small set of states from for advantage
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Figure 1: Results for the simple pendulum with non-local rewards. Upper panel: training curves
with empirical discounted payoffs. Lower panels: trajectories in both the time domain and frequency
domain, showing target values of oscillation frequency, amplitude, and offset. The basic variant of
our method (non-adaptive exploration scales and update coefficients) was used in this experiment.
The initial agent payoffs indicate the performance after the first epoch.

estimation. In other words, Theorem 3.1 would use ⌫ to deterministically sample all trajectory states,
whereas this is not a practical requirement for Algorithm 2 and the gradients are still unbiased if a
random set of vine branches is used.

The DeVine estimator can be advantageous in at least two scenarios. First, in the case of rewards that
cannot be decomposed into summations of immediate rewards. For example, overshoot penalizations
or frequency-based rewards as used in robotic systems are non-local. DeVine can be robust to
non-local rewards as it is insensitive to whether the rewards were applied immediately or after a long
period. Second, DeVine can be an appropriate choice for systems that are sensitive to the injection of
noise, such as high-bandwidth robots with natural resonant frequencies. In such cases, using white
(or colored) noise for exploration can excite these resonant frequencies and cause instability, making
learning difficult. DeVine avoids the need for constant noise injection.

4 Experiments

The next three subsections show challenging robotic control tasks including frequency-based non-
local rewards, long horizons, and sensitivity to resonant frequencies. In Sections 4.1 and 4.2, we use
the basic variant of our method (i.e., fixed exploration scale and update coefficient hyper-parameters
throughout the training). This will facilitate a better understanding of our core method’s capabilities
without any additional tweaks. See the Supplementary Material for a comparison on traditional gym
environments, where the basic variant of TDPO works similarly to existing methods. Section 4.3
includes the most difficult setting in our paper, where we use the advanced variant of our method (i.e.,
with line-search the update coefficient and adaptive exploration scales).

4.1 An Environment with Non-Local Rewards 1

The first environment that we consider is a simple pendulum. The transition function is standard—the
states are joint angle and joint velocity, and the action is joint torque. The reward function is non-

1Non-local rewards are reward functions of the entire trajectory whose payoffs cannot be decomposed into
the sum of terms such as ⌘ =

P
t ft(st, at), where functions ft only depend on nearby states and actions. An

example non-local reward is one that depends on the Fourier transform of the complete trajectory signal.
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Figure 2: Results for the leg environment with a long horizon and resonant frequencies due to ground
compliance. Upper panel: training curves with empirical discounted payoffs. Lower panel: partial
trajectories, restricted to times shortly before and after impact with the ground. Note the oscillations
at about 100 Hz that appear just after the impact at 0.2 s—these oscillations are evidence of a resonant
frequency. The basic variant of our method (non-adaptive exploration scales and update coefficients)
was used in this experiment.

standard—rather than define a local reward in the time domain with the goal of making the pendulum
stand upright (for example), we define a non-local reward in the frequency domain with the goal of
making the pendulum oscillate with a desired frequency and amplitude about a desired offset. In
particular, we compute this non-local reward by taking the Fourier transform of the joint angle signal
over the entire trajectory and by penalizing differences between the resulting power spectrum and a
desired power spectrum. We apply this non-local reward at the last time-step of the trajectory. All
methods here only used the current state of the systems, despite the fact that these environments are
in all cases partially observable or history-dependent. Nevertheless, the agents are able to achieve
high-reward behaviors, since these environments have weak history dependence. Note that this
environment is a toy-problem to illustrate frequency dependence, and may as such be solved using
Wavelet or short-term Fourier transformations in conjunction with the existing PG methods. However,
our focus is on the representative features of this example, rather than this particular problem itself.
Implementation details and similar results for more variants are left to the Supplementary Material.

Figure 1 shows training curves for TDPO (our method) as compared to TRPO, PPO, DDPG, and
TD3. These results were averaged over 25 experiments in which the desired oscillation frequency was
1.7 Hz (different from the pendulum’s natural frequency of 0.5 Hz), the desired oscillation amplitude
was 0.28 rad, and the desired offset was 0.52 rad. Figure 1 also shows trajectories obtained by the
best agents from each method. TDPO (our method) was able to learn high-reward behavior and to
achieve the desired frequency, amplitude, and offset. TRPO was able to learn the correct offset but
did not produce any oscillatory behavior. TD3 also learned the correct offset, but not the desired
oscillation. PPO and DDPG failed to learn any desired behavior. We hypothesize that our method
was able to learn good behaviors here because using a deterministic policy for exploration avoids
excitation of spurious frequencies and the DeVine estimator is accurate even for the non-local reward.

4.2 An Environment with Long Horizon and Resonant Frequencies2

The second environment that we consider is a single leg from a quadruped robot [44]. This leg has
two joints, a “hip” and a “knee,” about which it is possible to exert torques. The hip is attached to a
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Figure 3: The best payoff vs. the Hyper-Parameter Optimization (HPO) iteration on a short-horizon
variant of the legged robotic environment. The HPOs are performed for each of the TRPO, PPO,
and TD3 methods in a separate panel. DDPG is a special case of TD3 with HPO. Since TD3 was
considerably more expensive, we only show Optuna and ProSRS for it.

Figure 4: Post Hyper-Parameter Optimization (HPO) training curves with the best settings found for
TRPO and PPO compared to the advanced variant of our method (TDPO with adaptive exploration
scales and line search). TD3 had a significantly poor performance in the initial parameter sweeps.
Due to resource limitations and poor initial performance, we excluded TD3 from this experiment.

slider that confines motion to a vertical line above flat ground. We assume the leg is dropped from
some height above the ground and the task is to recover from this drop and to stand upright at rest
after impact. States given to the agent are the angle and velocity of each joint (slider position and
velocity are hidden), and actions are the joint torques. The reward function penalizes difference from
an upright posture, slipping or chattering at the contact between the foot and the ground, non-zero
joint velocities, and steady-state joint torque deviations. We use the open-source MuJoCo software
for simulation [55], with high-fidelity models of ground compliance, motor nonlinearity, and joint
friction. The control loop rate is 4000 Hz and the rollout length is 2 s, resulting in a horizon of 8000
steps. Implementation details are left to the Supplementary Material.

Figure 2 shows training curves for TDPO (our method) as compared to TRPO, PPO, DDPG and TD3.
These results were averaged over 75 experiments. A discount factor of � = 0.99975 was chosen
for all methods, where (1� �)�1 is half the trajectory length. Similarly, the GAE factors for PPO
and TRPO were scaled up to 0.99875 and 0.9995, respectively, in proportion to the trajectory length.
Figure 2 also shows trajectories obtained by the best agents from each method. TDPO (our method)
was able to learn high-reward behavior. TRPO, PPO, DDPG, and TD3 were not.

We hypothesize that the reason for this difference in performance is that TDPO better handles the
combination of two challenges presented by the leg environment—an unusually long time horizon
(8000 steps) and the existence of a resonant frequency that results from compliance between the foot
and the ground (note the oscillations at a frequency of about 100 Hz that appear in the trajectories
after impact). Both high-speed control loops and resonance due to ground compliance are common
features of real-world legged robots to which TDPO seems to be more resilient.

2Resonant frequencies are a concept from control theory. In the frequency domain, signals of certain
frequencies are excited more than others when applied to a system. This is captured by the frequency-domain
transfer function of the system, which may have a peak of magnitude greater than one. The resonant frequency
is the frequency at which the frequency-domain transfer function has the highest amplitude. Common examples
of systems with a resonant frequency include the undamped pendulum, which oscillates at its natural frequency,
and RLC circuits which have characteristic frequencies at which they are most excitable. See Chapter 8 of Kuo
and Golnaraghi [34] for more information.
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4.3 Practical Training and Hardware Implementation

For the most realistic setting, we take the environment from the previous section and make it highly
stochastic by (a) injecting physical modeling noise into the transition dynamics P , and (b) making
the initial state distribution µ as random as physically possible. We also systematically perform
Hyper-Parameter Optimization (HPO) on all methods to allow the most fair comparison.

Figure 5: The simulation-to-real transfer
of the best TDPO agent to perform a suc-
cessful drop test at 4 kHz control rate.

The choice of the HPO method can have a significant
impact on the RL agent’s performance. We consider a
list of five off-the-shelf HPO implementations and run
them in their default settings: Optuna [2], BayesianOp-
timization [42], Scikit-Optimize [19], GPyOpt [17], and
ProSRS [53]. These implementations include a range
of HPO methods, including Gaussian processes and
tree Parzen estimators. For better performance, HPO
methods need a reasonable set of initial hyper-parameter
guesses. For this, we perform a one-variable-at-a-time
parameter sweep along every hyper-parameter near the
RL method’s default hyper-parameters. These param-
eter sweep results are then input to each HPO method
for full optimization. Using all HPO algorithms for all
RL methods in the long-horizon environment (where
each full training run takes 5 billion samples) is com-
putationally infeasible. To pick the best HPO method,
we benchmark a short-horizon environment with only
200 time-steps in a trajectory. The result is shown in
Figure 3 (see the Supplementary Material for full details
on the HPO methods). Overall, we found that Optuna and ProSRS are the best HPO methods on the
test problem. Since Optuna is widely-tested and arguably the most popular HPO library, we pick it as
the main HPO method for our long-horizon environment.

We repeat the same HPO procedure on the long-horizon environment using Optuna, and pick the
best hyper-parameters found in the course of HPO for a final training. Figure 4 shows this final
training. TDPO shows superior performance in this highly stochastic environment, and such benefits
cannot be obtained by merely performing HPO on other methods. To showcase the practicality of our
method, we picked the best TDPO trained agent, and implemented it on the physical hardware. The
transferred agent was able to successfully perform drop-and-catch tests on the robot system at 4 kHz,
with both global control and suppression of high-frequency transients. Figure 5 shows a glimpse of
this test, and a short video is also included in the code repository.

5 Discussion

We proposed a deterministic policy gradient method (TDPO: Truly Deterministic Policy Optimization)
based on the use of a deterministic Vine (DeVine) gradient estimator and the Wasserstein metric.
We proved monotonic payoff guarantees for our method, and defined a novel surrogate for policy
optimization. We believe that using deterministic policies for exploration and avoiding the need for
consistent noise injection results in lower gradient estimation variances, enabling our method to solve
tasks with longer horizons and non-local rewards. We introduced several realistic robotic control
tasks that have such features and we showed that TDPO performs well on them, in contrast to existing
policy gradient methods.

There are a number of limitations of this paper. First, we assumed continuous environments and
required a state reset capability of the environment, which is commonly available in simulators but
would prevent learning on hardware. Second, TDPO relies on local gradients and thus may not be
able to learn effectively in environments with payoffs that are sparse in either action or state. Such
environments typically need substantial exploration which TDPO may not be able to achieve. Third,
the analysis in this paper does not specifically pinpoint the reasons why existing methods fail on the
long-horizon non-local-reward robotic control environments. For instance, such failures might be
more specifically attributed to either (1) the frequency-based nature of the reward, (2) the non-locality
of the reward signal, or (3) the long horizon. Understanding this is an important prerequisite for
future work.
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