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A More discussion about LSR and KLSR

Note that if n� m, using the push-through identity [Henderson and Searle, 1981], we reformulate
C = (X>X+λI)−1X>X asC = X>(λI+XX>)−1X to reduce the computational cost from
O(n3) to O(mn2). In C = (K + λI)−1K, when n is large (e.g.> 5000), we perform randomized
SVD [Halko et al., 2011] on K: K ≈ VrΣrV

>
r . Then C ≈ VrΣ1/2

r (λI + Σ)−1Σ
1/2
r V >r , where

r = 20k works well in practical applications. The time complexity of computingC isO(rτn+rn2).
The computation of the smallest k + 1 eigenvalues of L is equivalent to compute the largest k + 1
eigenvalues and eigenvectors of D−1/2AD−1/2, which is sparse. The time complexity is O(kτn).
We have the following result.

Proposition A.1. Let ĉ be the optimal solution of minimizec 1
2‖φ(y) − φ(X)c‖2 + λ

2 ‖c‖
2,

where φ is induced by Gaussian kernel and y is arbitrary. Then ‖ĉi − ĉj‖ ≤√
2− 2 exp (−‖xi − xj‖2/(2ς2)).

It shows that when two data points in X , e.g. xi and xj , are close to each other, the corresponding
two elements in ĉ, e.g. ĉi and ĉj , have small difference. Hence KLSR with Gaussian kernel utilizes
local information to enhance C.

In LSR and KLSR, let λ ∈ Λ, τ ∈ T , and Θ = Λ × T . The algorithm of AutoSC-GD with only
LSR and KLSR is shown in Algorithm 1. The total time complexity is

O
(
|Λ|(mn2 + rτ̄n+ rn2) + 2|Λ||T |kτ̄n

)
,

where τ̄ denotes the mean value in T . The time complexity is at most O(|Λ|
(
mn2 + |T |kmn)

)
when τ ≤ r ≤ m ≤ n. It is worth noting that Algorithm 1 can be easily implemented parallelly,
which will reduce the time complexity to O(max(m, r)n2 + kmn). On the contrary, SSC, LRR,
and their variants require iterative optimization and hence their time complexity is about O(tmn2),
where t denotes the iteration number and is often larger than 100.

B The algorithm of AutoSC+NSE

See Algorithm 2.

C More theoretical results

∗Corresponding author
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Algorithm 1 AutoSC-GD with Only LSR and KLSR

Input: X , k, F , Λ, T
1: Normalize the columns ofX to have unit `2 norm.
2: for fu in F do
3: for λi in Λ do
4: Construct C by (13) or (15).
5: for τj in T do
6: C ← |C � (1− I)|.
7: Truncate C with parameter τj .
8: For j = 1, . . . , n, let cj ← cj/|cj |1.
9: A = (C +C>)/2.

10: L = I −D−1/2AD−1/2.
11: Compute σ1, . . . , σk+1 and v1, . . . ,vk.
12: ∆uij = REG(L), Vuij = [v1, . . . ,vk].
13: end for
14: end for
15: end for
16: Z = V>

ūīj̄
, where {ū, ī, j̄} = argmaxu,i,j∆uij .

17: Normalize the columns of Z to have unit `2 norm.
18: Perform k-means on Z.
Output: k clusters: C1, . . . , Ck.

Algorithm 2 AutoSC+NSE

Input: X , k, F , Θ, n̂.
1: Select n̂ landmarks fromX by k-means to form X̂ .
2: Apply AutoSC-GD or AutoSC-BO to X̂ with F and Θ.
2: Get Ẑ from the best Laplacian matrix given by AutoSC-G or AutoSC-BO.
3: Use mini-batch Adam to solve (17).
4: Compute Z by (18).
5: Perform k-means on Z.

Output: k clusters: C1, . . . , Ck.

C.1 Theoretical guarantee for KLSR

Definition C.1 (Polynomial Deterministic Model). The columns of X0 ∈ Rm×n are drawn from a
union of k different polynomials {gj : Rr → Rm, r < m}kj=1 of order at most p and are further
corrupted by noise, say X = X0 + E. Denote the eigenvalue decomposition of the kernel matrix
K of X as K = V ΣV >, where Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ · · ·σn. Let γ = σd+1/σd.
Denote vi = (vi1, . . . , vin) the i-th row of V and let v̄i = (vi1, . . . , vid), where d < n. Suppose
the following conditions hold: 1) for every i ∈ [n], the τ̄ -th largest element of {|v̄>i v̄j | : j ∈ Cπ(i)}
is greater than α; 2) maxi∈[n] maxj∈[n]\Cπ(i)

|v̄>i v̄j | ≤ β; 3) maxi,j,l |vilvjl| ≤ µ.

Here we consider polynomials because they are easy to analyze and can well approximate smooth
functions provided that p is sufficiently large. Clustering the columns of X given by Definition
C.1 according to the polynomials is actually a manifold clustering problem beyond the setting of
subspace clustering. Similar to the subspace detection property, we define

Definition C.2 (Manifold Detection Property). A symmetric affinity matrixA obtained fromX has
manifold detection property if for all i, the nonzero elements of ai correspond to the columns ofX
lying on the same manifold as xi.

The following theorem verifies the effectiveness of (15) followed by the truncation operation in
manifold detection.
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Theorem C.3. Suppose X and K are given by Definition C.1 and C is given by (15), where the
kernel function is a polynomial kernel of order q, rank(K0) = d (K0 is fromX0), and(

ρ−
√
ρ2−4(2µd−∆)(2µn−2µd−∆)

)
σ2
d

4µd−2∆ < λ <

(
ρ+
√
ρ2−4(2µd−∆)(2µn−2µd−∆)

)
σ2
d

4µd−2∆ (1)

where ρ = 2µnγ2 −∆(1 + γ2). Then d ≤ k
(
r+pq
pq

)
and theC truncated by τ ≤ τ̄ has the manifold

detection property.

In the theorem, σd can be much larger than σd+1 provided that the noise is small enough. Then
we get a wide range for λ. Compared to Theorem 3.7, Theorem C.3 allows a much larger d, which
means the kernel method is able to handle more difficult clustering problems than the linear method.

C.2 Theoretical analysis for NSE

The following proposition shows that a small number of hidden nodes in NSE are sufficient to make
the clustering succeed.
Proposition C.4. Suppose the columns (with unit `2 norm) of X are drawn from a union of k
independent subspaces of dimension r:

∑k
j=1 dim(Sj) = dim(S1 ∪ · · · ∪ Sk) = kr. For j =

1, . . . , k, let U j be the bases of Sj and xi = U jvi, if xi ∈ Sj . Suppose max{‖U i
:l
>
U j‖ : 1 ≤ l ≤

r, 1 ≤ i 6= j ≤ k} ≤ µ. Suppose that for all i = 1, . . . n, max{v1i, . . . , vri} > µ. Then there exist
W1 ∈ Rd×m, W2 ∈ Rk×d, b1 ∈ Rd, and b2 ∈ Rk such that performing k-means on Z given by
(18) identifies the clusters correctly, where d = kr.

D More about the experiments

D.1 Dataset description

The description for the benchmark image datasets considered in this paper are as follows.

• Extended Yale B Face [Kuang-Chih et al., 2005] (Yale B for short): face images
(192×168) of 38 subjects. Each subject has about 64 images under various illumination
conditions. We resize the images into 32× 32.

• ORL Face [Samaria and Harter, 1994]: face images (112×92) of 40 subjects. Each sub-
ject has 10 images with different poses and facial expressions. We resize the images into
32×32.

• COIL20 [Nene et al., 1996]: images (32 × 32) of 20 objects. Each object has 72 images
of different poses.

• AR Face [Martı́nez and Kak, 2001]: face images (165×120) of 50 males and 50 females.
Each subject has 26 images with different facial expressions, illumination conditions, and
occlusions. We resize the images into 42× 30.

• MNIST [LeCun et al., 1998]: 70,000 grey images (28× 28) of handwritten digits 0− 9.
• MNIST-1k(10k): a subset of MNIST containing 1000(10000) samples, 100(1000) ran-

domly selected samples per class.
• Fashion-MNIST [Xiao et al., 2017]: 70,000 gray images (28× 28) of 10 types of fashion

product.
• Fashion-MNIST-1k(10k): a subset of Fashion-MNIST containing 1000(10000) samples,

100(1000) randomly selected samples per class.
• MNIST-feature: following the same procedures of [Chen et al., 2020], we compute a

feature vector of dimension 3,472 using the scattering convolution network [Bruna and
Mallat, 2013] and then reduce the dimension to 500 using PCA.

• Fashion-MNIST-feature: similar to MNIST-feature.
• GTSRB [Stallkamp et al., 2012]: consisting of 12,390 images of street signs in 14 cate-

gories. Following [Chen et al., 2020], we extract a 1568-dimensional HOG feature, and
reduce the dimension to 500 by PCA.
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All experiments are conducted in MATLAB on a MacBook Pro with 2.3 GHz Intel i5 Core and 8GB
RAM.

D.2 Hyperparameter settings for the small datasets

We select λ from {0.01, 0.02, 0.05, 0.1, 0.2, . . . , 0.5} for SSC, LRR, and KSSC. The λ in BDR is
chosen from {5, 10, 20, . . . , 80}. The γ in BDR-B and BDR-Z is chosen from {0.01, 0.1, 1}. The
parameter s in SSC-OMP is chosen from {3, 4, . . . , 15}. We report the results of these methods
with their best hyperparameters. In AutoSC, we set Λ = {0.01, 0.1, 1} and T = {5, 6, . . . , 15}.
In AutoSC-BO, we consider two models: 1) Gaussian kernel similarity; 2) KLSR with polyno-
mial kernel; 3) KLSR with Gaussian kernel, in which the hyperparameters of kernels are optimized
adaptively. Then we needn’t to consider LSR explicitly because it is a special case of KLSR with
polynomial kernel. See Appendix D.5.

D.3 Clustering results in terms of NMI

In addition to the clustering accuracy reported in Table 4, here we also compare the normalized
mutual information (NMI) in Table 1. We see that the comparative performance of all methods are
similar to the results in Table 4 and our methods AutoSC-GD and AutoSC-BO outperformed other
methods in almost all cases.

Table 1: Normalized Mutual Information on the six small datasets

SSC LRR EDSC KSSC SSC-OMP BDR-Z BDR-B AutoSC-GD AutoSC-BO
Yale B 0.817 0.703 0.835 0.730 0.841 0.666 0.743 0.919 0.928
ORL 0.849 0.872 0.856 0.872 0.815 0.875 0.865 0.907 0.903

COIL20 0.954 0.706 0.843 0.983 0.671 0.843 0.873 0.897 0.963
AR 0.818 0.872 0.825 0.809 0.691 0.865 0.861 0.887 0.904

MNIST-1k 0.612 0.538 0.631 0.626 0.546 0.634 0.580 0.667 0.652
Fashion-MNIST-1k 0.616 0.601 0.621 0.621 0.559 0.614 0.605 0.633 0.629

D.4 The stability of AutoSC

Though we have used a relatively compact search space in AutoSC to reduce the highly unnecessary
computational cost, the search space can be arbitrarily large. Figure 1 shows the clustering accuracy
and the corresponding relative-eigen-gap. We can see that the region with highest relative-eigen-gap
is in accordance with the region with highest clustering accuracy.

Figure 1: Visualization of the clustering accuracy and the corresponding relative-eigen-gap when a
large search space is used.
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D.5 More about AutoSC-BO in the experiments

For SSC, we consider the following problem

minimize
C

1
2 Tr

(
K − 2KC +C>KC

)
+ λ‖C‖1, (2)

where K is an n× n kernel matrix with [K]ij = k(xi,xj). Note that when we use a linear kernel
function, (2) reduces to the vanilla SSC. We solve the optimization via alternating direction method
of multipliers (ADMM) [Boyd et al., 2011], where the Lagrange parameter is 0.1 and the maximum
number of iterations is 500. In this study, we consider polynomial kernel and Gaussian kernel, and
optimize all hyperparameters including the order of the polynomial kernel. Particularly, for Gaussian
kernel, we set ς = ξ

n2

∑
ij ‖xi −xj‖ and optimize ξ. The search space for the hyperparameters are

as follows: 10−3 ≤ λ ≤ 1, 5 ≤ τ ≤ 50, 0 ≤ b ≤ 103, 1 ≤ q ≤ 5, 0.5 ≤ ξ ≤ 5.

In addition to Figure 2 of the main paper, here we report the best hyperparameters of the four models
found by AutoSC-BO in Table 2. It can be found that the accuracy of KLSR with a linear kernel is
higher than other models, which is consistent with its highest reg.

Table 2: The best hyperparameters and the corresponding clustering accuracy given by AutoSCBO
on the first 10 subjects of YaleB Face dataset.

method hyperparameters reg accuracy
KLSR

(Polynomial)
λ = 0.207, b = 19.09,

q = 1, τ = 5
2.379 0.966

KLSR
(Gaussian)

λ = 0.013,
ξ = 4.92, τ = 5

2.217 0.963

KSSC
(Polynomial)

λ = 0.519, b = 44.57,
q = 2, τ = 5

1.388 0.859

KSSC
(Gaussian)

λ = 0.0011,
ξ = 4.97, τ = 6

0.892 0.584

D.6 Hyperparameter settings of large-scale clustering

On MNIST-10k, MNIST, Fashion-MNIST-10k, and Fashion-MNIST, the parameter settings of
[Chen and Cai, 2011], SSSC [Peng et al., 2013], SSC-OMP [You et al., 2016], and S5C [Mat-
sushima and Brbic, 2019], and S3COMP-C [Chen et al., 2020], and AutoSC+NSE are shown in
Table 3. These hyper parameters have been determined via grid search and the best (as possible)
values are used.

Table 3: Hyper-parameter settings of the compared methods on MNIST-10k, MNIST, Fashion-
MNIST-10k, and Fashion-MNIST. s denotes the number of landmark data points. In the optimiza-
tion (mini-batch Adam) of AutoSC+NSE, the epoch number, batch size, and step size are 200, 128,
and 10−3 respectively.

LSC-K s = 1000, r = 3
SSSC s = 1000, λ = 0.01
SSC-OMP K = 10 (sparsity)
S5C s = 1000, λ = 0.1 or 0.2
S3COMP-C T = 20, λ = 0.4, δ = 0.9
AutoSC+NSE s = 1000, d = 200, γ = 10−5

AutoSCBO+NSE s = 1000, d = 200, γ = 10−5

D.7 Influence of hyper-parameters in AutoSC+NSE

We investigate the effects of the type of activation function and the number (d) of nodes in the
hidden layer of NSE. For convenience, we used a fixed random seed of MATLAB (rng(1)). Figure 2
shows the clustering accuracy on MNIST given by AutoSC+NSE with different activation function
and different d. We see that ReLU outperformed tanh consistently. The reason is that the nonlinear
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mapping g from the data space to the eigenspace of the Laplacian matrix is nonsmooth and ReLU
is more effective than tanh in approximating nonsmooth functions. In addition, when d increases,
the clustering accuracy of AutoSC+NSE with ReLU often becomes higher because a wider network
often has a higher ability of function approximation.

Figure 2: ReLU v.s. tanh (hyperbolic tangent) in the hidden layer of AutoSC+NSE on MNIST.
When using ReLU, we set γ = 10−5 and α = 10−3 (the step size in Adam). When using tanh, we
set γ = 10−3 and α = 10−2, which perform best in this case. Notice that the clustering accuracy
when using ReLU is higher than 0.78 in almost all cases, which is higher than the value (say 0.755)
we reported in the main paper. The reason is that in the main paper, we reported the mean value of
10 repeated trials but here we report the value of a single trial.

Figure 3 shows the clustering accuracy on MNIST given by AutoSC+NSE with different γ and
α. When α is too small (say 10−4, the clustering accuracy is low, because the training error is
quite large in 200 epochs. In fact, by increasing the training epochs, the clustering accuracy can
be improved, which however will increase the time cost. When α is relatively large, the clustering
accuracy is often higher than 0.755. On the other hand, AutoSC+NSE is not sensitive to γ provided
that it is not too large.

Figure 3: Influence of γ and α in AutoSC+NSE on MNIST. We set d = 200 and use ReLU.

Figure 4 shows the mean value and standard deviation (10 repeated trials) of the clustering accuracy
on MNIST given by AutoSC+NSE with different number (denoted by s) of landmark points. It
can be found that when the s increases, the clustering accuracy increases and its standard deviation
becomes smaller. When s is large enough, the improvement is not significant.
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Figure 4: Influence of the number of landmark points in AutoSC+NSE on MNIST. We set d = 200,
γ = 10−5, and α = 10−3. The shadow denotes the standard deviation of 10 trials.

E Proof for the theoretical results

E.1 Proof for Claim 3.2

Proof. The stochastic transition matrix of G is defined as
P = D−1A. (3)

In [Meila, 2001], it was showed that

MNCut(C) ≥ k −
k∑
i=1

%i(P ), (4)

where %i(P ) denotes the i-th largest eigenvalue of P and 1 = %1(P ) ≥ %2(P ) ≥ · · · %k(P ).
According to Lemma 3 of [Meila, 2001], we have

σi(L) = 1− %i(P ), ∀i = 1, . . . , n. (5)
Substituting (5) into (4), we have

MNCut(C) ≥
k∑
i=1

σi(L). (6)

Remark E.1. C can be any partition of the nodes of G. Let C∗ be the optimal partition. Then
MNCut(C∗) =

∑k
i=1 σi(L). If

∑k
i=1 σi(L) = 0, there are no connections (edges) among

C∗1 , . . . , C
∗
k .

E.2 Proof for Claim 3.3

Proof. For i = 1, . . . , k, we aim to partition Ci into two subsets, denoted by C1
i and C2

i . Then we
define

MNCut(Ci) =
Cut(C1

i , C
2
i )

V ol(C1
i )

+
Cut(C2

i , C
1
i )

V ol(C2
i )

. (7)

It follows that

MNCut(Ci) ≥
2∑
j=1

σj(LCi) ≥ σ2(LCi) = ac(Ci), (8)

where LCi denotes the Laplacian matrix of Ci an i = 1, . . . , k. Since σk+1(L) =
min{ac(C1), . . . , ac(Ck)}, we have

min
1≤i≤k

MNCut(Ci) ≥ σk+1(L). (9)

Therefore, σk+1(L) measures the least connectivity of C1, . . . , Ck. This finished the proof.
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Remark E.2. When σk+1(L) is large, the connectivity in each of C1, . . . , Ck is strong. Otherwise,
the connectivity in each of C1, . . . , Ck is weak. When σk+1(L) = 0, at least one of C1, . . . , Ck
contains at least two components, which means the nodes of G can be partitioned into k+ 1 or more
clusters.

E.3 Proof for Theorem 3.4

Proof. According to Theorem 1 of [Meila et al., 2005], we have

dist(C, C′) < 3δ

σk+1(L)− σk(L)
. (10)

Since reg(L) =
σk+1(L)− 1

k

∑k
i=1 σi(L)

1
k

∑k
i=1 σi(L) + ε

, we have

σk+1(L)− σk(L) = reg(L)(σ̄ + ε) + σ̄ − σk(L), (11)

where σ̄ = 1
k

∑k
i=1 σi(L) ≥ ε. Invoking (11) into (10), we arrive at

dist(C, C′) < 3δ

reg(L)(σ̄ + ε) + σ̄ − σk(L)

≤ 3δ

2εreg(L) + σ̄ − kσ̄

≤ 3δ

2εreg(L) + (1− k)ηε

≤ 1.5δε−1

reg(L) + (1− k)η/2
.

This finished the proof.

E.4 Proof for Proposition A.1

Proof. Since ĉ is the optimal solution, we have

φ(xi)
> (φ(y)− φ(X)ĉ) + λĉi = 0,

φ(xj)
> (φ(y)− φ(X)ĉ) + λĉj = 0.

It follows that
‖ĉi − ĉj‖ = ‖ (φ(xi)− φ(xj))

>
(φ(y)− φ(X)ĉ) ‖

≤ ‖φ(xi)− φ(xj)‖‖φ(y)− φ(X)ĉ‖

=
√
k(xi,xi)− 2k(xi,xj) + k(xj ,xj)

× ‖φ(y)− φ(X)ĉ‖

=
√

2− 2k(xi,xj)‖φ(y)− φ(X)ĉ‖

≤
√

2− 2k(xi,xj)‖φ(y)‖

=

√
2− 2 exp

(
−‖xi − xj‖

2

2ς2

)
.

(12)

In the second and last equalities, we used the fact that ‖φ(y)‖ = ‖φ(x)‖ = 1. In the second

inequality, we used the fact that
1

2
‖φ(y)− φ(X)ĉ‖2 +

λ

2
‖ĉ‖2 ≤ 1

2
‖φ(y)− φ(X)0‖2 +

λ

2
‖0‖2 =

1

2
‖φ(y)‖2 because ĉ is the optimal solution.
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E.5 Proof for Theorem 3.7

Proof. Invoking the SVD ofX into the closed-form solution of LSR, we get

C = V diag
(

σ2
1

σ2
1 + λ

, . . . ,
σ2
n

σ2
n + λ

)
V >. (13)

It means

cit =

n∑
l=1

vilvjlσ
2
l

σ2
l + λ

=v̄>i v̄t −
d∑
l=1

vilvtlλ

σ2
l + λ

+

n∑
l=d+1

vilvtlσ
2
l

σ2
l + λ

.

(14)

Suppose j ∈ Cπ(i) and k ∈ [n] \ Cπ(i). We have

|cij | − |cik|

=

∣∣∣∣∣v̄>i v̄j −
d∑
l=1

vilvjlλ

σ2
l + λ

+

n∑
l=d+1

vilvjlσ
2
l

σ2
l + λ

∣∣∣∣∣
−

∣∣∣∣∣v̄>i v̄k −
d∑
l=1

vilvklλ

σ2
l + λ

+

n∑
l=d+1

vilvklσ
2
l

σ2
l + λ

∣∣∣∣∣
≥
∣∣v̄>i v̄j∣∣− ∣∣v̄>i v̄k∣∣−

∣∣∣∣∣
d∑
l=1

vilvjlλ

σ2
l + λ

∣∣∣∣∣−
∣∣∣∣∣
d∑
l=1

vilvklλ

σ2
l + λ

∣∣∣∣∣
−

∣∣∣∣∣
n∑

l=d+1

vilvjlσ
2
l

σ2
l + λ

∣∣∣∣∣−
∣∣∣∣∣

n∑
l=d+1

vilvklσ
2
l

σ2
l + λ

∣∣∣∣∣
≥
∣∣v̄>i v̄j∣∣− ∣∣v̄>i v̄k∣∣− 2µ

d∑
l=1

λ

σ2
l + λ

− 2µ

n∑
l=d+1

σ2
l

σ2
l + λ

≥
∣∣v̄>i v̄j∣∣− β − 2µdλ

σ2
d + λ

−
2µaσ2

d+1

σ2
d+1 + λ

,

(15)

where a = min(m,n)− d = m− d.

To ensure that there exist at least τ̄ elements of {|cij | : j ∈ Cπ(i)} greater than |cik| for all k ∈
[n]\Cπ(i), we need ∣∣v̄>i v̄j∣∣− β − 2µdλ

σ2
d + λ

−
2µaσ2

d+1

σ2
d+1 + λ

> 0 (16)

holds at least for τ̄ different j, where j ∈ Cπ(i). It is equivalent to ensure that

α− β − 2µdλ

σ2
d + λ

−
2µaσ2

d+1

σ2
d+1 + λ

> 0. (17)

We rewrite (17) as
u1λ

2 + u2λ+ u3 > 0, (18)
where u1 = α−β−2µd, u2 = (α−β)(σ2

d+σ2
d+1)−2µ(d+a)σ2

d+1, and u3 = (α−β−2µa)σ2
dσ

2
d+1.

The definition of µ, α, and β imply u1 < 0. Then we solve (18) and obtainλ >
2µmσ2

d+1−(α−β)(σ2
d+σ2

d+1)−
√
w

2(2µd−(α−β))

λ <
2µmσ2

d+1−(α−β)(σ2
d+σ2

d+1)+
√
w

2(2µd−(α−β))

(19)

where w = u2
2 − 4u1u3. To simplify the notations, we let ∆ = α− β, σd+1 = γσd and getλ >

(
2µmγ2−∆(1+γ2)−

√
(∆(1+γ2)−2µmγ2)2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

λ <

(
2µmγ2−∆(1+γ2)+

√
(∆(1+γ2)−2µmγ2)2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

(20)

9



Further, let ρ = 2µmγ2 −∆(1 + γ2), we arrive atλ >
(
ρ−
√
ρ2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

λ <

(
ρ+
√
ρ2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

(21)

That means, if (21) holds, for every i, the indices of the largest τ̄ absolute elements in the i-th
column of C are in Cπ(i). Therefore, the truncation operation with parameter τ ≤ τ̄ ensures the
subspace detection property. This finished the proof.

E.6 Proof for Proposition 3.8

Proof. The condition of reg means

σk+1(L)− 1
k

∑k
i=1 σi(L)

1
k

∑k
i=1 σi(L) + ε

=
σk+1(L)

ε
> 0.

For convenience, denote ϑ = 1
k

∑k
i=1 σi(L). We have

−ϑε = ϑσk+1.

It indicates ϑ = 0 and σk+1 6= 0. Therefore the graph has exactly k connected components. Since
the subspace or manifold detection property hold for A, each component of G is composed of the
columns of X in the same subspace or manifold. Thus, all the columns of X in the same subspace
or manifold must be in the same component. Otherwise, the number of connected components is
larger than k.

E.7 Proof for Theorem C.3

The proof is nearly the same as that for Theorem 3.7, except that d < n and rank(K0) ≤ k
(
r+pq
pq

)
,

where K0 = φ(X0)>φ(X0). In this case, K can be well approximately by a low-rank matrix of
rank at most k

(
r+pq
pq

)
provided that the noise is small enough. More details about K0 can be found

in [Fan et al., 2020].

E.8 Proof for Proposition C.4

Proof. We only need to provide an example of W1 ∈ Rd×m, W2 ∈ Rk×d, b1 ∈ Rd, and b2 ∈ Rk,
where d = kr, such that the clusters can be recognized by k-means.

We organize the rows of W1 into k groups: W j
1 ∈ Rr×m, j = 1, . . . , k. Let W j

1 = U j>,
j = 1, . . . , k. LetW1xi = αi = (α1

i , . . . ,α
r
i ). When xi ∈ Sj , we have

αji = U j>xi = U j>U jvi = vi. (22)

It follows from the assumption that
max
p

αjpi > µ. (23)

Let b1 = [b1
1; . . . ; bk1 ] = −µ1. Then hji = ReLU(αji + bj1) has at least one positive element. On

the other hand, since
αli = U l>xi = U l>U jvi l 6= j, (24)

using the assumption of µ, we have

|αlpi| = |U l
:p

>
U jvi| ≤ ‖U l

:p

>
U j‖‖vi‖ ≤ µ, (25)

where we have used the fact ‖vi‖ = 1 because ‖xi‖ = 1. It follows that

hli = ReLU(αli + bl1) = 0, l 6= j.
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Now we formulateW2 as

W2 =


q11 q12 . . . q1k

q21 q22 . . . q2k

...
...

. . .
...

qk1 qk2 . . . qkk

 , (26)

where qlj ∈ R1×r, l, j = 1, . . . , k. We have

zji = qj1h
1
i + qj2h

2
i · · ·+ qjkhki = qjjh

j
i .

and
zli = ql1h

1
i + ql2h

2
i · · ·+ qlkhki = qljh

j
i .

Here we have let b2 = 0. Let qjj ≥ 0 and qlj = 0, we have

zji > zli = 0.

Therefore, if xi ∈ Sj , we have zji > 0 and zli = 0 ∀1 ≤ j 6= l ≤ k. Now performing k-means on
Z = [z1, . . . ,zn] can identify the clusters trivially.
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Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Xinlei Chen and Deng Cai. Large scale spectral clustering with landmark-based representation. In
Twenty-fifth AAAI conference on artificial intelligence. Citeseer, 2011.

Ying Chen, Chun-Guang Li, and Chong You. Stochastic sparse subspace clustering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4155–4164,
2020.

Jicong Fan, Yuqian Zhang, and Madeleine Udell. Polynomial matrix completion for missing data
imputation and transductive learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 3842–3849, 2020.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288,
2011.

Harold V Henderson and Shayle R Searle. On deriving the inverse of a sum of matrices. Siam
Review, 23(1):53–60, 1981.

Lee Kuang-Chih, J. Ho, and D. J. Kriegman. Acquiring linear subspaces for face recognition under
variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):684–
698, 2005.
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