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Abstract

This work studies operators mapping vector and scalar fields defined over a man-
ifold M, and which commute with its group of diffeomorphisms Diff(M). We
prove that in the case of scalar fields Lpω(M,R), those operators correspond to
point-wise non-linearities, recovering and extending known results on Rd. In
the context of Neural Networks defined over M, it indicates that point-wise non-
linear operators are the only universal family that commutes with any group of
symmetries, and justifies their systematic use in combination with dedicated lin-
ear operators commuting with specific symmetries. In the case of vector fields
Lpω(M, TM), we show that those operators are solely the scalar multiplication. It
indicates that Diff(M) is too rich and that there is no universal class of non-linear
operators to motivate the design of Neural Networks over the symmetries of M.

1 Introduction

Given a physical domain M and measurements f : M → Y observed over it, one is often interested
in processing intrinsic information from f , i.e. consistent with the symmetries of the domain. Let
M denote an operator, it can be seen as a non-linear operator acting on measurements. In words,
if two measurements f , f̃ = g.f are related by a symmetry g of the domain, like a rigid motion
on an observed molecular compound, we would like our processed data M(f) and M(f̃) to be
related by the same symmetry — thus that M(g.f) = g.M(f) or equivalently that M commutes
with the symmetry transformation of the domain. The study of operators that satisfy such symmetry
constraints has played a long and central role in the history of physics and mathematics, motivated
by the inherent symmetries of physical laws. More recently, such importance has also extended to
the design of machine learning systems, where symmetries improve the sample complexity [25, 3].
For instance, Convolutional Neural Networks build translation symmetry, whereas Graph Neural
Networks build permutation symmetry, amongst other examples coined under the ‘Geometric Deep
Learning’ umbrella [5, 4].
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Lie groups of transformations are of particular interest, because there exists a precise and systematic
framework to build such intrinsic operators. Indeed, for a locally compact group G, it is possible to
define a Haar measure which is invariant to the action of G [2]; then a simple filtering along the orbit
of G allows to define a class of linear operators that commute with the group action. Examples of
locally compact groups are given by specific Lie groups acting on Rd, such as the translations or the
rotations Od(R). Often these Lie groups G only act on a manifold M, and one tries to average along
the orbit induced by G. Note that it is possible, beyond invariance, to linearize more complex groups
of variability like diffeomorphisms Diff(M) [7].

While the description of such linear intrinsic structures is of central mathematical importance and
forms the basis of Representation theory [30], in itself is not sufficient to bear fruit in the context
of Representation learning using Neural Networks [12]. Indeed, linear operators do not have the
capacity to extract rich information needed to solve challenging high-dimensional learning problems.
It is therefore necessary to extend the systematic construction and classification of intrinsic operators
to the non-linear case.

With that purpose in mind, our work aims at studying the class of (non-linear) operators M which
commute with the action of the group Diff(M), the diffeomorphisms over M. This approach will
lead to a natural class of non-linear intrinsic operators. Indeed, any group G of symmetries is, by
definition, a subgroup of Diff(M), and thus commutes with such M [24]. Consequently, obtaining a
non-linear invariant to a symmetry groupG could be done by using a cascade of interlacing non-linear
operators which commute with Diff(M) and linear operators which commute with G.
A notable example of linear operators that are covariant to the Lie group of translations is a given by
the convolutions along the orbit of the group. These can be constructed thanks to the canonical Haar
measure [32]. However, such an approach fails for infinite dimensional groups, like our object of
interest: contrary to Lie groups, Diff(M) is not locally compact and it is thus not possible to define a
Haar measure on this group.

Our first contribution is to demonstrate that the non-linear operators which act on vector fields
(elements of Lpω(M, TM)) and which commute with the group of diffeomorphisms, are actually
just scalar multiplications. This implies that Diff(M) is too rich to obtain non-trivial operators.
Our second contribution is to demonstrate that non-linear operators acting on signals in Lpω(M,R)
are pointwise non-linearities. This fills a gap in the results of [7], and a fortiori justifies the use of
point-wise non-linearities in geometric Deep Learning [4].

Let us remark that the study of equivariant operators that take as input vector fields is motivated by
the use of Neural Networks in physics, in particular for dynamical systems such as fluid dynamics [8].
For example, one subject of interest in hydrodynamics is how a vector field of velocities evolves; the
time evolution of such field is described by a partial differential equation (PDE), the Navier-Stokes
equations, in which Neural Networks found recent applications and it is more generally the case of
other PDE [31].

Our paper is structured as follows: Sec. 2 introduces the necessary formalism, that we use through
this paper: in particular, we formally define the action of diffeomorphism. Then, we state and discuss
our theorems in Sec. 3.1 and sketch their proofs in Sec. 3.2. Rigorous proofs of each statement can
be found in the Appendix.

2 Problem Setup

2.1 Related work and motivation

In this section, we discuss the notion of intrinsic operators, invariant and covariant non-linear operators
and linear representation over standard symetry groups. Then, we formally state our objective.

Intrinsic Operators As discussed above, in this work we are interested in intrinsic operators
M : Lp(M, E) → Lp(M, E), where M is a Riemannian manifold, and E = R or E = TM,
capturing respectively the setting of scalar signals and vector fields over M. Lp(M,R) is the space
of scalar function f : M → R which p-th power is integrable, similarly Lp(M, TM) is the space of
sections of the tangent bundle of M (denoted TM), f : M → TM, which norm ∥f∥ : M → R is
in Lp(M,R). Here the notion of ‘intrinsic’ means that M is consistent with an equivalence class
induced by a symmetry group G in Lp(M, E): if f, f̃ ∈ Lp(M, E) are related by a transformation
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g ∈ G (in which case we write f = g.f̃ ), then M(f) = g.M(f̃). Naturally, a stronger equivalence
class imposes a stronger requirement towards M , and consequently restrains the complexity of M .
We now describe the plausible techniques used to design such operators M .

GM-Convolutions The notion ofGM -convolutions [34] is an example of linear covariant operators
which commute with the reparametrization of a manifold. In practice, this implies that the weights
of a GM -convolution are shared and the action of GM -convolutions is local – two properties that
facilitate implementation and point out the similarity with Lie groups. Another example of symmetry
group corresponds to the isometry group of a Riemaniann manifold, whose pushforward preserves the
tensor metric. In this case, it is well known that isometries [33] are the only diffeomomorphism which
commute with a manifold Laplacian. Thus, any linear operators which commute with isometries is
stabilized by Laplacian’s eigenspaces. However, little is known on the non-linear counterpart of the
symmetry-covariant operators. In this work, we characterize non-linear operators which commute
with Diff(M). We will see that such operators are intrinsically defined by Diff(M) and could be
combined with any linear operators covariant with a symmetry group G.

Non-linear operators It has been shown that Convolutional Neural Networks are dense in the
set of non-linear covariant operators [35]. The recipe of the corresponding proof is an extension
of the proof of the universal approximation theorem [14]. The Scattering Transform [6, 23] is also
an example of a well-understood non-linear operator which corresponds to a cascade of complex
wavelet transforms followed by a point-wise modulus non-linearity. This representation provably
linearizes small deformations.

Compact Lie Groups In the context of geometric Machine Learning [5], there are several relevant
notions of equivalence. For instance, we can consider a compact Lie Group G acting on M, and an
associated representation in F = {f : M → R}: Given g ∈ G and f ∈ F , then g.f(x) ≜ f(g−1.x)

for x ∈ M. We then consider f ∼ f̃ , related by this group action: f̃ = g.f for some g ∈ G. The
operators M which are compatible with such group action are referred as being G-equivariant (or
covariant to the action of G) in the ML literature [13, 4]. Such groups are typically of finite and
small dimension, e.g. the Euclidean transformations of M = Rd, with d = 2 for computer vision
applications, or d = 3 for computational biology/chemistry applications. In this case, it is possible to
characterize all linear intrinsic operators M as group convolutions [20], leading to a rich family of
non-linear intrinsic operators by composing such group convolutions with element-wise non-linear
operators, as implemented in modern Neural Networks. We highlight that stability to symetries via
non-linear operators finds useful application, in particular for flat manifolds [7].

Isometries Riemanian manifolds M come with a default equivalence class, which is given by
isometries. TuM denotes the tangent vector space of M at point u ∈ M. Ifmu : TuM×TuM → R
denotes the Riemannian metric tensor at point u ∈ M, a diffeomorphism ψ : M → M is an isometry
if gu(v, w) = gψ(u)(dψu(v), dψu(w)) for any u ∈ M and v, w ∈ TuM. In words, isometries are
changes of variables that preserve the local distances in the domain. The ensemble of all isometries
forms a Lie Group which is locally compact [27]. In this case, one can also build a rich class
of intrinsic operators by following the previously explained ‘blueprint’, namely composing linear
intrinsic operators with element-wise non-linearities. As a representative example, the Laplace-
Beltrami operator of M only depends on intrinsic metric properties [33]: as said above, isometries
preserve the invariant subspaces of a Laplacian.

Beyond Isometries While isometries are the ‘natural’ transformations of the geometric domain,
they cannot express high-dimensional sources of variability; indeed, if M is a d-dimensional complete
connected Riemannian manifold, its isometry group has dimension at most d(d+ 1)/2 [10]. This
raises the question whether one can characterize intrinsic operators relative to a broader class of
transformations. Another class of important symmetries corresponds to the ones which are gauge
invariant, i.e. which leads to transformations which preserve the change of parametrization and which
are used in [11, 34] through the notion of G-structure.

In this work, we consider the class of transformations given by Diff(M), the diffeomorphisms
over M. As shown in the Appendix, compactly supported deformations ψ : M → M define
bounded linear operators Lψ acting on Lp(M, E) → Lp(M, E), and constitute a far broader class
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of transformations than isometries. Our proof is mainly based on the use of compactly supported
diffeomorphisms.

Our objective is to characterize the (non-linear) operators M such that

∀ϕ ∈ Diff(M), LϕM =MLϕ .

In other words, we aim to understand continuous operators M that commute with deformations. We
will show that such operators are act locally and that they can be descriped explicitly, with simple
formula. The commutation condition is visualized in the following diagram:

f
Lϕ //

M

��
⟲

g

M

��
Mf

Lϕ // Mg

2.2 Notations

We will now formally introduce the mathematical objects of interest in this document. Let (M, g)
be an orientable, connected, Riemannian manifold, of finite dimension d ∈ N∗. Let TM denote
the tangent bundle of M, i.e. the union of tangent spaces at points u ∈ M. T ∗M is the cotangent
bundle of M. g ∈ Γ(T ∗M ⊗ T ∗M) is a section of symmetric definite positive bilinear forms on the
tangent bundle of M . It is common to denote ΓB the collection of sections of a bundle B;

∧n
T ∗M

for n ≤ d is the bundle of n-linear alternated forms of M, and Γ(
∧n

T ∗M) is the space of section
of this vector bundle over M.

For A ⊆ M, we denote A its closure; 1A is the indicator function of A, i.e. which takes value 1
if x ∈ A and 0 otherwise. B(u, r) denotes the ball of radius r around u ∈ M. Any two vectors
v, v1 ∈ V in a pre-Hilbert space (with a scalar product ⟨, ⟩) are orthogonal, denoted v ⊥ v1, when
⟨v, v1⟩ = 0.

Fix p ∈ [1,+∞[. Any volume form ω ∈ Γ(
∧d

T ∗M) defines a (positive) measure on the orientable
Riemannian manifold M; the total volume of M is ω(M) :=

∫
M 1dω. Let us define Lpω(M, TM),

the space of Lp vector fields, defined as the subspace of measurable functions f : M → TM such
that f(u) ∈ TuM almost everywhere and

∥f∥pp ≜
∫
u∈M

gu(f(u), f(u))
p
2 dω(x) < +∞ . (1)

We will also consider Lpω(M,R) the space of measurable scalar functions (fields) f : M → R that
fulfill

∥f∥pp ≜
∫
u∈M

|f(u)|p dω(u) < +∞ . (2)

We may write ∥ · ∥ instead of ∥ · ∥p when there is no ambiguity. For a C∞ diffeomorphism
ϕ ∈ Diff(M), we will consider the action of Lϕ : Lpω(M, TM) → Lpω(M, TM) which we define
for for any f ∈ Lpω(M,R) as

Lϕf(u) ≜ dϕ(u)−1.f(ϕ(u)) .

Note that this action is contravariant:

Lψ◦ϕf(u) = d(ψ ◦ ϕ)−1.f(ψ ◦ ϕ(u)) = LϕLψf(u)

For scalar function f ∈ Lpω(M,R), we define the action of ϕ via

Lϕf(u) ≜ f(ϕ(u)) .

Let A be a measurable set of M and f ∈ Lp(M, E), f1A is the product of f with 1A, i.e. f1A is
equal to f on A and 0 elsewhere. In what follows we introduce ’constant’ fields over an open set,
they are denoted c1U with U an open subset of M. For scalar fields, a ’constant’ scalar field f(u)
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is equal to the same constant c ∈ R for any u ∈ U . On the other hand, ’constant’ vector fields f1U
are vector fields over U for which there is a chart from U to an open subset of Rd, in which for any
u ∈ U f(u) is equal to a constant vector c ∈ Rd; in the vector case we say that the vector field f1U
can be straightened.

This latter operator is also contravariant. If there is no ambiguity, we will use the same notation
Lϕ, whether we apply it to Lpω(M,R) or Lpω(M, TM). We might sometimes refer to Lpω(M,R)
or Lpω(M, TM) as Lp(M,R) or Lp(M, TM). Throughout the article we restrict ourselves to ϕ
such that Lϕ is a bounded operator. Write supp(ϕ) = {u, ϕ(u) ̸= u} for the support of ϕ and say
that ϕ has a compact support if supp(ϕ) is compact. We denote by Diffc(M) ⊂ Diff(M) the set of
compactly supported diffeomorphisms. Recall that since M is second-countable, C∞

c (M) is dense in
Lpω(M,R) and C∞

c (M, TM) is dense in Lpω(M, TM). Finally, denote by Od(R) the set of unitary
operators on Rd. Throughout the article, we might not write explicitly that equalities hold almost
everywhere, since this is the default in Lp spaces.
As mentioned earlier, compactly supported diffeomorphisms lead to continuous operators, which is
made rigorous by the following lemma whose proof is in the appendix.
Lemma 1. If supp(ϕ) is compact, then Lϕ is bounded.

3 Main theorems

In this section we present our main results. We first show that any (non-linear) deformation-
equivariant operator acting on scalar fields must be point-wise (Theorem 1), and then establish
that any deformation-equivariant operator acting on vector fields corresponds to a multiplication by a
scalar (Theorem 2).

3.1 Theorem statements

Now, we are ready to state our two main theorems:
Theorem 1 (Scalar case). Let M be a connected and orientable manifold of dimension d ≥ 1. We
consider a Lipschitz continuous operator M : Lpω(M,R) → Lpω(M,R), where 1 ≤ p <∞. Then,

∀ϕ ∈ Diff(M) : MLϕ = LϕM

is equivalent to the existence of a Lipschitz continuous function ρ : R → R that fulfills

M [f ](m) = ρ(f(m)) a.e.

In that case, we have ρ(0) = 0 if ω(M) = ∞.
Theorem 2 (Vector case). Let M be a connected and orientable manifold of dimension d ≥ 1. We
consider a continuous operator M : Lpω(M, TM) → Lpω(M, TM), where 1 ≤ p <∞. Then,

∀ϕ ∈ Diff(M) : MLϕ = LϕM

is equivalent to the existence of a scalar λ ∈ R such that

∀f ∈ Lpω(M, TM) : M [f ](m) = λf(m) a.e.

We highlight that our theorems are quite generic in the sense that they apply to the manifolds usually
used in applications or theory, Rd in particular.
Remark 1. The scalar case allows to recover standard operators which are exploited for Deep
Neural Networks architectures. However, Theorem 2 indicates that the group of diffeomorphism is
too rich to obtain non-trivial non-linear operators.
Remark 2. The case p = ∞ leads to different results. For instance, in the scalar case we may
consider the operator Mf(x) = supy |f(y)| which fulfills LϕMf =MLϕf but is not pointwise.

Remark 3. The condition “ω(M) = ∞ =⇒ ρ(0) = 0” in Theorem 1 is necessary, since in the
case M = R, the operator Mf(x) ≜ eif(x) is not in Lpω(M,R).
Remark 4. The Lipschitz condition in Theorem 1 is crucial, otherwise, Mf(x) = ρ(f(x)) might not
be an operator of Lpω(M,R). For instance, if p = 2, M = [0, 1] and Mf(x) =

√
f(x), we see that

in this case, let f(x) = x, then f ∈ Lpω(M,R) and Mf ̸∈ Lpω(M,R)
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Remark 5. IfM is not Lipschitz, we can find an example which is not even continuous. The following
example holds in both cases, the scalar case and the vector case. In both cases f ∈ Lp(M,R), the
only thing that changes is the action of Lϕ on f . M = R, let for all f ∈ Lp(M,R):

Mf(x) = 1{z,limy→z f(y)=f(z)}(x)f(x).

It is a measurable function. Let us show that this M is a counterexample to the vector case: for any
ϕ ∈ Diff(M) and x ∈ R, one has

MLϕf(x) = 1{z,limy→z f(ϕ(y))=f(ϕ(z))}(x) dϕ(x)−1f(ϕ(x)) (3)

= 1{z,limy→ϕ(z) f(y)=f(ϕ(z))}(x) dϕ(x)−1f(ϕ(x)) (4)

= 1{z,limy→z f(y)=f(z)}(ϕ(x)) dϕ(x)−1f(ϕ(x)) (5)

= LϕMf(x) . (6)

However, M is not continuous as changing any function to 0 on Q does not change its norm but
changes the set where the limits exists. More precisely let c > 0 be a strictly positive scalar,M [c] = c;
let f = c1[x /∈ Q], M [f ] = 0 as {z,∃ limy→z f(ϕ(y))} = ∅. However c = f almost everywhere
but M [c] ̸=M [f ] therefore M is not continuous.

3.2 Proof Sketch

We now describe the main ideas for proving the Theorems 1 and 2. The appendix contains complete
formal arguments and technical lemmata which we omit here due to lack of space. The two proofs
share quite some similarities despite substantially different final results. Three ideas guide our proofs:
First, we prove that it is possible to localize M on a certain class of open sets which behaves nicely
with the manifold structure, the strongly convex sets which we denote as O1. This is closely related
to the notion of pre-sheaf [15]. Secondly, we characterize M on small open-sets. In the scalar case,
we will study the representation of locally constant functions. In the vector case, we will show that
locally, the image M(1Uc) of a vector field c is co-linear to c provided that U is small enough. We
will also show that those local properties are independent of the position on the manifold M via a
connectedness argument. Thirdly and finally, we combine a compacity and a density argument to
extend this characterization to M, which is developed in Sec. 3.3. Throughout the presentation, we
will use the following definitions and theorems obtained from other works:
Definition 1 (Strong convexity, from [18]). Let O1 be the collection of open sets which are bounded
and strongly convex, i.e. such that any points p, q in such a set can be joined by a geodesic contained
in the set. Furthermore let Ȯ1 = {A ∈ O1 : ∃B ∈ O1, Ā ⊂ B and ω(Ā\A) = 0}.

The intuition behind the definition of Ȯ1 is that all of its elements are contained in a ‘security’ open
set,which avoids degenerated effects on the manifold. In particular, this allows to control the boundary
of a given open set.

Theorem 3 (theorem adapted from [17, 18]). (1) Ȯ1 is a system of neighborhoods. (2) Any element
of O1 is diffeomorph to Rd. (3) Both O1 and Ȯ1 are stable by intersection.
Theorem 4 (Flowbox theorem, as stated in [9]). Let f, g ∈ C∞

c (M, TM). For any m ∈ M with
f(m) ̸= 0 and g(m) ̸= 0, there exists an open set U ⊂ M and ϕ ∈ Diff(M) such that ϕ(m) = m
and Lϕ(1Uf) = 1ϕ(U)g.

We will now present some lemmata that are necessary for the proofs of theorems 1 and 2. As a first
step, we argue that one may assume M(0) = 0 where 0 denotes the constant 0-function. This is
because in the appendix we show that M(0) is a constant function C, with C = 0 if ω(M) = ∞.
Therefore, we may substract C from ρ and λ, leaving us with having to show the theorems only for
M(0) = 0.
Next, a key idea of the proof is to exploit the flexibility of the deformation equivariance to localise
the input, i.e. to show that the image of compactly supported functions is also compactly supported.
To do so, the following lemma provides a way of collapsing an open ball into a singleton while
maintaining a good control on the support of the diffeomorphism.
Lemma 2 (Key lemma). Let ϵ > 0. There exists a sequence of diffeomorphisms ϕn : Rd → Rd,
compactly supported in B(0, 1 + ϵ) such that:

ϕn(B(0, 1)) = B(0, 1
n
) ,
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and

sup
u∈B(0,1)

∥dϕn(u)∥ ≤ 1

n
.

Proof. Set ϕn(u) = fn(∥u∥)u, where

fn(r) =

{
1
n , if |r| ≤ 1

1 , if |r| ≥ 1 + ϵ ,

and fn is smoothly interpolated for |r| ∈ [1, 1 + ϵ] in a way that it remains nondecreasing. It is then
clear that ϕn fulfills the desired properties.

We will often use that if the support of ϕ ∈ Diff(M) is such that supp(ϕ) ∩ U = ∅, then for any
f ∈ Lpω(M,R) one has 1Uf = Lϕ(1Uf). This implies the following important lemma, for which a
rigorous proof can be found in the appendix:

Lemma 3. Let U ∈ Ȯ1 and M as in Theorem 1 or Theorem 2. Then, for any f ∈ E, where
E = Lpω(M,R) or E = Lpω(M, TM) respectively, we have:

M [f1U ] = 1UM [f ] .

Furthermore, if U is any closed set, the same conclusion applies.

Equipped with this result, our proof will characterize the image of functions of the type c1U where
either c ∈ R, or c is a vector field which can be straightened (isomorphic to a constant vector), via
the following Lemma. In the Vector case:

Lemma 4 (Image of localized vector field). For M as in Theorem 2 there is U ∈ Ȯ1, and λ(U) such
that for any f ∈ Lpω(M,TM):

M [f1U ] = 1Uλ(U)f . (7)

Here is the scalar case:

Lemma 5 (Image of constant functions, scalar case). Let M as in Theorem 1. For any U ∈ Ȯ1 and
c ∈ R, then: M(c1U ) = h(c, U)1U . Furthermore, c→ h(c, U) is Lipschitz for any U ∈ Ȯ1.

At this stage, we note that both representations are point-wise, and the next steps of the proofs will be
identical both for the scalar and vector cases. The extension to Lpω(M,R) or Lpω(M, TM) will be
done thanks to:

Lemma 6 (Image of a disjoint union of opensets). Let U1, ..., Un ∈ O1 and M as in Theorem 2 or
Theorem 1, s.t. ∀i ̸= j, Ui ∩ Uj = ∅. Then for any f ∈ Lpω(M, TM):

M [

n∑
i=1

1Uif ] =

n∑
i=1

M [1Uif ] .

This lemma states that we can completely characterize M on disjoint union of simple sets. We will
then need an argument similar to Vitali covering Lemma in order to "glue" those open sets together,
which shows that simple functions with disjoint support can approximate any elements of Lpω(M,R)
or Lpω(M, TM) (we only state the lemma for Lpω(M,R) as our proof on Lpω(M, TM) does not
necessarily need this result):

Lemma 7 (Local Vitali). For f ∈ C∞
c (M) and m ∈ M, there exists U ∈ Ȯ1 with m ∈ U , such that

for any ϵ > 0, there exist subsets U1, ..., Un ∈ Ȯ1 with Ui ⊂ U and numbers c1, ..., cn ∈ R such
that:

∥
∑
n

1Uncn − 1Uf∥ < ϵ .

Note that this type of covering is not possible on any open set without further assumptions on the
manifold, such as bounds on its Ricci curvature [22]. Fortunately, we will only need a local version
which is true because charts are locally bi-Lipschitz. Both Lemma 6 and Lemma 7 imply that:
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Proposition 1. Consider M from either Theorem 1 or 2. Assume that there exists U ∈ Ȯ1 such
that M(c1V ) = h(c, V )1V for any V ⊂ U , with V ∈ Ȯ1, where c is either a vector field in the
case E = Lpω(M, TM) or a constant scalar in the case E = Lpω(M,R). If we further assume that
c→ h(c, U) is L-Lipschitz, then

∀f ∈ E,∀m ∈ M,M [1Uf ](m) = 1Uh(f(m), U) .

Furthermore, it does not depend on U , meaning that for any other such Ũ , we have:

∀f ∈ E,∀m ∈ U ∩ Ũ ,M [1Ũf ](m) = 1Uh(f(m), U) .

We briefly discuss the intuition behind Theorem 2. It is linked to the idea that the operators M at
hand have to commute with local rotations, and this even for locally constant vector fields. We reduce
the characterisation of deformation-equivariant vector operators using an invariance to symmetry
argument: functions which are invariant to rotations are multiples of a scalar. The intuition is
contained in the following lemma, which is commonly used in physics:
Lemma 8 (Invariance to rotation). Let f : Rd → Rd such that for any W ∈ Od(R) and x ∈ Rd, one
has f(Wx) =Wf(x). Then, there is λ : Rd → R, f(x) = λ(∥x∥)x.

Proof. We write f(x) = λ(x)x+x⊥, with x⊥(m) ̸= 0 and x⊥ ⊥ x. Then, we introduceW ∈ Od(R)
such that Wx⊥(m) = −x⊥(m) and Wx(m) = x(m). From f(x) = f(Wx) =Wf(x) we deduce
that x⊥ = 0. Next, λ(Wx) = λ(x) thus λ(x) = λ(x′) for any ∥x∥ = ∥x′∥.

Distinction between scalar and vector case The scalar case is simpler to handle than the vector
case: there are several more steps for the proof of Theorem 2, one needs to show that the point-wise
non-linearity is actually a scalar multiplication. We also highlight that the non-linearity is fully
defined by its image on locally constant functions.

Finally, we conclude the proof of the theorem by appealing to a common density argument of the
functions smooth with compact support, combing all the lemmata we have just presented in Sec. 3.3.

3.3 Proofs conclusions (common to the scalar and vector case)

In this section, we prove that the local properties of M can be extended globally on M. The main
idea is to exploit the well-known Poincaré’s formula, which states that:

1∪iUi =

n∑
k=1

(−1)k
∑

i1<...<ik

1Ui1∩Ui2∩...∩Uik ,

and to localize the action of M on each Ui1 ∩ Ui2 ∩ ... ∩ Uik ∈ Ȯ1 thanks to Lemma 3.

Proof of Theorem 1 and Theorem 2. Let f be a smooth and compactly supported function. Further
consider ∪i≤nUi a finite covering of its support with Ui ∈ Ȯ1. Using an inclusion-exclusion formula
together with Lemma 3, we obtain

1∪iUiM [f ] =

n∑
k=1

(−1)k
∑

i1<...<ik

1Ui1∩Ui2∩...∩UikM [f ]

=

n∑
k=1

(−1)k
∑

i1<...<ik

M [f1Ui1∩Ui2∩...∩Uik ] ,

where we used that Ui1 ∩Ui2 ∩ ...∩Uik ∈ Ȯ1. Now, the support of f is closed and included in ∪iUi.
Thus using Lemma 3:

M [f ] =

n∑
k=1

(−1)k
∑

i1<...<ik

M [f1Ui1∩Ui2∩...∩Uik ],

Note that if ρ is a pointwise operator with ρ(0) = 0, then ρ(1Uf) = 1Uρ(f) and
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n∑
k=1

(−1)k
∑

i1<...<ik

ρ(f1Ui1∩Ui2∩...∩Uik ) =

n∑
k=1

(−1)k
∑

i1<...<ik

1Ui1∩Ui2∩...∩Uik ρ(f) (8)

= 1∪iUiρ(f) = ρ(f) . (9)

Thus, Mf = ρ(f) where ρ is obtained from Lemma 4 or 5 combined with Prop 1. We conclude by
density in Lpω(M,R) or Lpω(M, TM) respectively. This ends the proof.

4 Remarks and conclusion

In this work, we have fully characterized non-linear operators which commute under the action of
smooth deformations. In some sense, it settles the intuitive fact that commutation with the whole
diffeomorphism group is too strong a property, leading to a small, nearly trivial family of non-linear
intrinsic operators. While on their own they have limited interest for geometric deep representation
learning, they can ‘upgrade’ any family of linear operators associated with any group G ⊂ Diff(M)
into a powerful non-linear class — the so-called GDL Blueprint in [4]. Also, this result is a first step
towards characterizing the non-linear operators which commute with Gauge transformations and
could give useful insights for specifying novel Gauge invariant architectures. We now state a couple
of unsolved questions and future work.

On the commutativity assumption: Several examples and approximation results [21][35] exist
for operators that commute with Lie groups and discrete groups [19]. In this case, it is possible to
define a measure on the group that is invariant by the group action (called the Haar measure), which
makes it possible to define convolutions. Roughly, non-linear operators covariant with some actions
of those groups can be thought of as an approximation by a Group Convolution Neural Networks.
It is important to note that the inputs of the operators described in these articles are functions that
take real values; the much more general class of inputs that take values in vector bundles is, to our
knowledge, not covered in the literature. To our knowledge, we are the first work to study the design
of equivariant Neural Networks that process vector fields defined over a manifold. In this setting
even for M = Rd, it is unclear which type of non-linear operators commute with smaller groups of
symmetry such as the Euclidean group. In fact, a generic question holds for manifolds: for a given
symmetry group G, what is elementary non-linear building block of a Neural Network? This could
be, for instance, useful to design Neural Networks which are Gauge invariant. It is an open question
for future work which would be relevant many applications in physics [16]. Furthermore, the fact
that the characterization of diffeomorphism invariant operators we exhibited in this paper is very
restrictive opens the way for the study of other non-locally ’smaller’ compact groups; we believe that
any results in that direction are completely novel.

Example of vector operators for L∞ It is slightly unclear how the vector case p = ∞ can be
handled in our framework, yet [1] seems to have interesting insights toward this direction.

Linearization of Diff(M) In this work, we considered an exact commutation between operators
and a symmetries: however, it is unclear which operators approximatively commute with a given
symmetry group. Such operators would be better to linearize a high-dimensional symmetry group
like Diff(M). An important instance of non-linear operators that are non-local and that ‘nearly’
commute with diffeomorphisms is the Wavelet Scattering representation [23, 7, 28].
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