
Contents

1 Introduction 1

2 Preliminaries 2

2.1 Model . 2

2.2 Linear Programming Relaxation . 3

2.3 Assumptions . 3

3 MDP Policy with Constant Regret 4

3.1 Special Case: One Resource . 4

3.2 General Case: Multiple Resources . 6

4 Learning Algorithm with Logarithmic Regret 7

4.1 Additional Notation and Preliminaries . 8

4.2 Learning Algorithm and Regret Analysis . 8

4.3 Reduction from BwK . 9

5 Conclusion 9

A Assumptions about the Null Arm 14

B Regret Bounds for One Arm, One Resource, and Zero Drift 14

C Proofs for Section 3.1 16

C.1 Proof of Lemma 3.2 . 16

C.2 Proof of Lemma 3.3 . 17

C.3 Proof of Lemma 3.4 . 18

C.4 Proof of Lemma 3.5 . 18

C.5 Proof of Lemma 3.6 . 20

D Proofs for Section 3.2 21

D.1 Proof of Lemma 3.9 . 21

D.2 Proof of Lemma 3.10 . 22

D.3 Proof of Lemma 3.11 . 22

E Proofs for Section 4 23

E.1 Proof of Lemma 4.1 . 23

E.2 Proof of Lemma 4.2 . 24

E.3 Proof of Theorem 4.1 . 24

E.4 Proof of Theorem 4.2 . 25

F Experiments 26

13

A Assumptions about the Null Arm

In any model in which resources can be consumed and/or replenished over time, one must specify
what happens when the budget of one (or more) resources reaches zero. The original bandits with
knapsacks problem assumes than when this happens, the process of learning and gaining rewards
ceases. The key distinction between that model and ours is that we instead assume the learner is
allowed remain idle until the supply of every resource becomes positive again, at which point the
learning process recommences. The null arm in our paper is intended to represent this option to
remain idle and wait for resource replenishment. In order for these idle periods to have finite length
almost surely, a minimal assumption is that when the null arm is pulled, for each resource there is
a positive probability that the supply of the resource increases. We make the stronger assumption
that for each resource, the expected change in supply is positive when the null arm is pulled. In fact,
our results for the MDP setting hold under the following more general assumption: there exists a
probability distribution over arms, such that when a random arm is sampled from this distribution
and pulled, the expected change in the supply of each resource is positive. In the following, we refer
to this as Assumption PD (for "positive drift").

To see that our results for the MDP setting continue to hold under Assumption PD (i.e., even if
one doesn’t assume that the null arm itself is guaranteed to yield positive expected drift for each
resource) simply modify Algorithms 2 and 3 so that whenever they pull the null arm in a time
step when the supply of each resource is at least 1, the modified algorithms instead pull a random
arm sampled from the probability distribution over arms that guarantees positive expected drift for
every resource. As long as the constant δdrift is less than or equal to this positive expected drift, the
modification to the algorithms does not change their analysis. We believe it’s likely that our learning
algorithm (Algorithm 3) could similarly be adapted to work under Assumption PD, but it would be
less straightforward because the positive-drift distribution over arms would need to be learned.

When Assumption PD is violated, the problem becomes much more similar to the Bandits with
Knapsacks problem. To see why, consider a two-player zero-sum game in which the row player
chooses an arm x, the column player chooses a resource j, and the payoff is the expected drift of that
resource when that arm is pulled, µd,j

x . Assumption PD is equivalent to the assertion that the value of
the game is positive; the negation of Assumption PD means that the value of the game is negative. By
the Minimax Theorem, this means there is a convex combination of resources (i.e., a mixed strategy
for the column player) such that the weighted-average supply of these resources is guaranteed to
experience non-positive expected drift, no matter which arm is pulled. Either the expected drift is
zero — we prove in Appendix A of the supplementary material that regret O(

√
T) is unavoidable in

this case — or the expected drift is strictly negative, in which case the weighted-average resource
supply inevitably dwindles to zero no matter which arms the learner pulls. In either case, the behavior
of the model is qualitatively different when Assumption PD does not hold.

B Regret Bounds for One Arm, One Resource, and Zero Drift

In this section we will consider the case when X = {x0, x}, J = {1}, and x has zero drift, i.e.,
µd
x = 0. Since x is the only arm besides the null arm, we assume without loss of generality that

its reward is equal to 1 deterministically. The optimal policy is to pull x0 when Bt−1 < 1 and x

otherwise. We will show that the regret of this policy is Θ(
√
T).

Theorem B.1. The regret of the MDP policy is O(
√
T).

Proof. The optimal solution of the LP relaxation (Eq. (1)) is px = 1 and px0 = 0. Since x0 and x
have reward equal to 0 and 1 deterministically, OPTLP = 1.Therefore, the regret of the MDP policy
is equal to the expected number rounds in which the budget is less than 1. That is,

RT = E

[
T∑

t=1

1[Bt−1 < 1]

]
.

14

Since E[dt] = 0 when Bt−1 ≥ 1 and E[dt] = µd
x0 when Bt−1 < 1, we can write

RT = E

[
T∑

t=1

1[Bt−1 < 1]

]

=
1

µd
x0

µd
x0E

[
T∑

t=1

1[Bt−1 < 1]

]

=
1

µd
x0

E

[
T∑

t=1

µd
x01[Bt−1 < 1] + 01[Bt−1 ≥ 1]

]

=
1

µd
x0

E

[
T∑

t=1

dt

]

=
1

µd
x0

(E [BT]−B) .

Since B0 = B, the budget is updated as Bt = Bt−1 + dt and dt ∈ [−1, 1], we have

E
[
B2

t |Bt−1

]
= E

[
B2

t−1 + 2Bt−1dt + d2t |Bt−1

]
= E

[
B2

t−1|Bt−1

]
+ E [2Bt−1dt|Bt−1] + E

[
d2t |Bt−1

]
≤ B2

t−1 + E [2Bt−1dt|Bt−1] + 12

= B2
t−1 + 2Bt−1µ

d
x01[Bt−1 < 1] + 1

≤ B2
t−1 + 2µd

x0 + 1

⇒ E
[
B2

T

]
= O(T).

Using Jensen’s inequality, we have

E [BT] ≤
√
E [B2

T] = O(
√
T).

This completes the proof.

Theorem B.2. If E
[
d2t |Bt−1

]
≥ σ2 > 0, then the regret of the MDP policy is Ω(

√
T).

Proof. Using the proof of Theorem B.1, it suffices to provide a lower bound on E [BT]. Since the
budget is updated as Bt = Bt−1 + dt, E [dt|Bt−1] ≥ 0, and E

[
d2t |Bt−1

]
≥ σ2, we have

E
[
B2

t |Bt−1

]
= E

[
B2

t−1 + 2Bt−1dt + d2t |Bt−1

]
= E

[
B2

t−1|Bt−1

]
+ E [2Bt−1dt|Bt−1] + E

[
d2t |Bt−1

]
≥ B2

t−1 + E [2Bt−1dt|Bt−1] + σ2

= B2
t−1 + 2Bt−1E [dt|Bt−1] + σ2

≥ B2
t−1 + σ2

⇒ E
[
B2

T

]
≥ Ω(T).

The Cauchy-Schwarz inequality yields that

E
[(

B
1/2
T

)2]1/2

E
[(

B
3/2
T

)2]1/2

≥ E
[
B2

T

]
≥ Ω(T).

Squaring both sides yields that

E [BT]E
[
B3

T

]
≥ E

[
B2

T

]2 ≥ Ω(T 2).

15

It suffices to show that E
[
B3

T

]
= O(T 3/2) because this will imply that E [BT] = Ω(T 1/2). Since

dt ∈ [−1, 1], we have

E
[
B3

t |Bt−1

]
= E

[
B3

t−1 + 3B2
t−1dt + 3Bt−1d

2
t + d3t |Bt−1

]
= B3

t−1 + 3B2
t−1E [dt|Bt−1] + 3Bt−1E

[
d2t |Bt−1

]
+ E

[
d3t |Bt−1

]
= B3

t−1 + 3B2
t−1µ

d
x01[Bt−1 < 1] + 3Bt−1E

[
d2t |Bt−1

]
+ E

[
d3t |Bt−1

]
≤ B3

t−1 + 3µd
x0 + 3Bt−1 + 1.

Taking expectation on both sides yields

E
[
B3

t

]
≤ E

[
B3

t−1

]
+ 3E [Bt−1] +O(1)

≤ E
[
B3

t−1

]
+O(

√
t),

where the last inequality follows from the proof of Theorem B.1 where we show that E [Bt] ≤ O(
√
t).

Summing both sides over all rounds yields that

E
[
B3

T

]
= O(T

3/2)

and this completes the proof.

C Proofs for Section 3.1

C.1 Proof of Lemma 3.2

When the LP solution is supported on a positive drift arm xp, OPTLP = 1 because the LP plays it with
probability 1. Therefore, the regret is equal to the expected number of times ControlBudget (Al-
gorithm 1) pulls the null arm. This, in turn, is equal to the expected number of rounds in which the
budget is less than 1.

Define

b0 = 8δ−2
drift ln

 2

1− exp
(
− δ2drift

8

)
 . (22)

Then, we have that for all b ≥ b0,
∞∑
k=b

Pr [Bs+k ∈ [0, 1)|Bs = b] ≤
∞∑
k=b

exp

(
−δ2driftk

8

)
(23)

= exp

(
−δ2driftb

8

)(
1− exp

(
−δ2drift

8

))−1

. (24)

where the first inequality follows from Azuma-Hoeffding’s inequality. By our choice of b0, we have
that

∞∑
k=b

Pr [Bs+k ∈ [0, 1)|Bs = b] ≤ 1

2
. (25)

In words, the probability that the budget ever drops below 1 once it exceeds b0 is at most 1
2 . Now,

consider the following recursive definition for two disjoint sequence of indices si and s′i. Let
s0 = min{t ≥ 1 : Bt−1 ∈ [0, 1)}, and define

s′i = min{t > si : Bt−1 ≥ b0 or t− 1 = T} (26)

si+1 = min{t > s′i : Bt−1 ∈ [0, 1)}. (27)

In words, s′i denotes the first round after si in which the budget is at least b0 and si+1 denotes the
first round after s′i in which the budget is less than 1. Note that Eq. (25) implies that

Pr
[
si is defined |s′i−1 is defined

]
≤ 1

2
. (28)

16

Therefore,

Pr [si is defined] ≤
i∏

j=1

Pr
[
sj is defined |s′j−1 is defined

]
≤ 1

2i
. (29)

Now, we can upper bound the expected number of rounds in which the budget is below 1 as

E

[
T∑

t=1

1[Bt−1 < 1]

]
=

T−1∑
i=0

Pr [si is defined]E

 s′i∑
t=si

1[Bt−1 < 1]

 (30)

≤
T−1∑
t=0

2−iE

 s′i∑
t=si

1[Bt−1 < 1]

 (31)

≤
T−1∑
t=0

2−iE [s′i − si] (32)

≤
T−1∑
t=0

2−i 1

δdrift
E
[
Bs′i

−Bsi

]
(33)

≤
T−1∑
t=0

2−i 1

δdrift
(b0 + 1) (34)

≤ 2
b0 + 1

δdrift
, (35)

where Eq. (33) follows because both the null arm and the positive drift arm have drift at least δdrift.
Therefore, we have that

E

[
T∑

t=1

1[Bt−1 < 1]

]
≤ C̃, (36)

where

C̃ = O

δ−3
drift ln

 2

1− exp
(
− δ2drift

8

)
 . (37)

C.2 Proof of Lemma 3.3

Let p∗ denote the optimal solution to the LP relaxation and note that Tp∗x denotes the expected
number of times the LP plays arm x. Since the LP solution is supported on two arms, both the budget
and sum-to-one constraints are tight. Therefore, we have

D(Tp∗) = bLP, (38)

where

D =

[
µd
x0 µd

xn

1 1

]
, p∗ =

[
p∗x0

p∗xn

]
, bLP =

[
−B
T

]
. (39)

Let Nx denote the number of times ControlBudget (Algorithm 1) plays arm x. Since it plays the
null arm x0 and the negative drift arm xn, the sum-to-one constraint is tight. However, the budget
constraint may not be tight because there may be leftover budget. Therefore, we have

DN = bLP − b, (40)

where

N =

[
E[Nx0]
E[Nxn]

]
, b =

[
−E[BT]

0

]
. (41)

Define

ξ =

[
ξx0

ξxn

]
=

[
Tp∗x0 − E[Nx0]
Tp∗xn − E[Nxn]

]
. (42)

17

Subtracting Eq. (40) from Eq. (38) we have ξ = D−1b, where the LP constraint matrix D is invertible
by our assumption that the drifts are nonzero. Finally, letting µr denote the vector of expected
rewards, the regret can be expressed as

RT (ControlBudget) = ξTµr (43)

≤ |ξTµr| (44)
≤ ∥ξ∥1∥µr∥∞ (45)

≤ ∥D−1∥1∥b∥1 (46)
≤ CδdriftE[BT], (47)

where Cδdrift = O(δ−1
drift) is a constant. This completes the proof.

C.3 Proof of Lemma 3.4

Let p∗ denote the optimal solution to the LP relaxation and note that Tp∗x denotes the expected
number of times the LP plays arm x. Since the LP solution is supported on two arms, both the budget
and sum-to-one constraints are tight. Therefore, we have

D(Tp∗) = bLP, (48)
where

D =

[
µd
xp µd

xn

1 1

]
, p∗ =

[
p∗xp

p∗xn

]
, bLP =

[
−B
T

]
. (49)

Let Nx denote the number of times ControlBudget (Algorithm 1) plays arm x. Since it plays the
null arm x0 when the budget is less than 1 and may have leftover budget, neither the budget nor the
sum-to-one constraint are tight. Therefore, we have

DN = bLP − b, (50)
where

N =

[
E[Nxp]
E[Nxn]

]
, b =

[
−E[BT]
E[Nx0]

]
. (51)

Define

ξ =

[
ξxp

ξxn

]
=

[
Tp∗xp − E[Nxp]
Tp∗xn − E[Nxn]

]
. (52)

Subtracting Eq. (50) from Eq. (48) we have ξ = D−1b, where the LP constraint matrix D is invertible
by our assumption that the drifts are nonzero. Finally, letting µr denote the vector of expected
rewards, the regret can be expressed as

RT (ControlBudget) = ξTµr (53)

≤ |ξTµr| (54)
≤ ∥ξ∥1∥µr∥∞ (55)

≤ ∥D−1∥1∥b∥1 (56)
≤ Cδdrift (E[BT] + E[Nx0]) , (57)

where Cδdrift = O(δ−1
drift) is a constant. This completes the proof.

C.4 Proof of Lemma 3.5

Divide the T rounds into two phases: P1 = {1, . . . , T − exp(3/c)} and P2 = {1, . . . , T} \ P1. Note
that P2 consists of exp(3/c) = O(exp(δdrift)) = O(1) rounds, where the last equality follows because
drifts are bounded by 1. Therefore, the expected number of null arm pulls in this phase is O(1) and it
suffices to bound the expected number of null arm pulls in P1.

Consider the following recursive definition for three disjoint sequences of indices ti, t′i and t′′i . Let
t0 = 0, and define

t′i = min{t > ti : Bt−1 ≥ τt or t− 1 = T}, (58)

t′′i = min{t > t′i : Bt−1 < τt}, (59)

ti+1 = min{t > t′′i : Bt < 1}. (60)

18

We can bound the expected number of rounds in which the budget is less than 1 as

E

[
T∑

t=1

1[Bt−1 < 1]

]
(61)

=

T−1∑
i=0

Pr [ti exists]E

 t′i∑
t=ti

1[Bt−1 < 1]

 (62)

≤ E

t′0−1∑
t=t0

1[Bt−1 < 1]


︸ ︷︷ ︸

(a)

+

T−1∑
i=0

Pr [ti+1 exists |t′i, t′′i exist]E

t′i−1∑
t=ti

1[Bt−1 < 1]


︸ ︷︷ ︸

(a)

. (63)

In rounds {ti, . . . , t′i−1}, the algorithm pulls the null and positive drift arms. The proof of Lemma 3.2
shows that the expected number of null arm pulls in these rounds is at most C̃, where C̃ is defined
in Eq. (37). Therefore, we can bound the term (a) in the above inequality by C̃ and we have that

E

[
T∑

t=1

1[Bt−1 < 1]

]
≤ C̃

(
1 +

T−1∑
i=0

Pr [ti+1 exists |t′i, t′′i exist]

)
. (64)

If t′i exists, then Bt′i−1 ≥ τt′i . If t′′i exists, then τt′′i −1 ≤ Bt′′i −1 < τt′′i because (i) t′′i is the first round
after t′i in which the budget is below the threshold; and (ii) the drifts are bounded by 1, so it cannot
be lower than τt′′i − 1. The algorithm pulls the negative drift arm xn in the rounds {t′i, . . . , t′′i − 1}
and the positive drift arm xp in the rounds {t′′i , . . . , ti+1 − 1}. Since the drifts are bounded by 1, it
takes at least τt′′i − 2 rounds for the budget to drop below 1 after repeated pulls of xp. Using this and
the observation that the budget dropping below 1 is contained in the event that the total drift in those
rounds is nonpositive, we can bound (a) as

Pr [ti+1 exists |t′′i , t′i exist] ≤
T∑

q=t′′i +τt′′
i
−2

Pr

 q∑
t=t′′i +1

dt ≤ 0

 (65)

≤
T∑

q=t′′i +τt′′
i
−2

exp

(
−1

2
δ2drift(τt′′i − 2)

)
(66)

≤
T∑

q=t′′i +τt′′
i
−2

exp

(
−1

2
δ2driftτt′′i

)
(67)

=

T∑
q=t′′i +τt′′

i
−2

exp

(
−1

2
δ2driftc log(T − t′′i)

)
(68)

≤
T∑

q=t′′i +τt′′
i
−2

(T − t′′i)
−3, (69)

where the second inequality follows from the Azuma-Hoeffding inequality applied to the sequence of
drifts sampled from xp and the last inequality follows because c ≥ 6

δ2drift
. The summation is over at

most T − t′′i terms because there are at most T − t′′i rounds left after round t′′i . Therefore, we have
that

Pr [ti+1 exists |t′′i , t′i exist] ≤ (T − t′′i)
−2. (70)

19

Substituting this in Eq. (64), we have that

E

[
T∑

t=1

1[Bt−1 < 1]

]
≤ C̃

(
1 +

T−1∑
i=0

Pr [ti+1 exists |t′i, t′′i exist]

)
(71)

≤ C̃

(
1 +

T−1∑
i=0

(T − t′′i)
−2

)
(72)

≤ C̃

(
1 +

∞∑
i=0

(T − t′′i)
−2

)
(73)

≤ C̃

(
1 +

π2

6

)
. (74)

This completes the proof.

C.5 Proof of Lemma 3.6

Let Eq denote the event that the negative drift arm xn is pulled consecutively in exactly the last q
rounds, i.e., xt = xn for all t ≥ T − q + 1 and xt ∈ {x0, xp} for t = T − q (if q ̸= T). Note that
the events (Eq : q = 0, . . . , T) are disjoint. Let Sq denote the event that the total drift in the last q
pulls of xn is greater than 1

2µ
d
xnq, i.e.,

∑
t≥T−q+1 dt >

1
2µ

d
xnq. We can upper bound the expected

leftover budget by conditioning on these events as follows.

E[BT] =

T∑
q=0

Pr[Eq] E[BT |Eq] (75)

≤
T∑

q=0

E[BT |Eq] (76)

=

T∑
q=0

E[BT |Eq, Sq]︸ ︷︷ ︸
(a)

Pr[Sq|Eq]︸ ︷︷ ︸
(b)

+E[BT |Eq, S
c
q]︸ ︷︷ ︸

(c)

Pr[Sc
q |Eq]︸ ︷︷ ︸

(d)

. (77)

If q = 0, then the expected leftover budget is trivially at most a constant. We can bound the four
terms for q ≥ 1 as follows:

(a) We have
E[BT |Eq, Sq] ≤ c log q + q (78)

because (i) ControlBudget (Algorithm 1) pulls x0 or xp in round T − q if BT−q−1 <
τT−q = c log q; and (ii) conditioned on the event Sq, the total drift in the last q rounds can
be at most q as the drifts are bounded by 1.

(b) We have

Pr[Sq|Eq] ≤ exp

(
− 1

16
(µd

xn)2q

)
(79)

because (i) the sequence of drifts observed from q pulls of the negative drift arm xn is
a supermartingale difference sequence; and (ii) by the Azuma-Hoeffding inequality, the
probability the sum Sq is greater than half its expected value is at most exp

(
− 1

16 (µ
d
xn)2q

)
.

(c) We have

E[BT |Eq, S
c
q] ≤

(
c log q +

1

2
µd
xnq

)
(80)

because (i) ControlBudget (Algorithm 1) pulls x0 or xp in round T − q if BT−q−1 <
τT−q = c log q; and (ii) conditioned on the event Sc

q , the total drift in the last q rounds can
be at most 1

2µ
d
xnq.

20

(d) We have
Pr[Sc

q |Eq] ≤ 1 (81)

trivially.

Therefore,

E[BT] ≤
T∑

q=0

(c log q + q) exp

(
− 1

16
(µd

xn)2q

)
︸ ︷︷ ︸

(e)

+

(
c log q +

1

2
µd
xnq

)
︸ ︷︷ ︸

(f)

. (82)

This summation is a constant in terms of T :

1. Term (e) is a constant because c log q < q for q large enough and
∑∞

q=1 q exp(−aq)

converges to exp(a)(1− exp(a))−2.

2. Term (f) is a constant because this term is negative for q large enough as µd
xn < 0 and is

maximized at q = 2c

|µd
xn | .

Finally, we can bound the expected leftover budget as

E[BT] ≤ C̃ = Õ

((
1− exp

(
δ2drift

16

))−2

+
1

δ2drift

)
, (83)

where the last equality follows when c ≥ 6
δ2drift

. This completes the proof.

D Proofs for Section 3.2

D.1 Proof of Lemma 3.9

It suffices to show that γ =
σmin min{δsupport,δslack}

4m is a feasible solution the Eq. (8).

First, we show that p = D−1(b+ γst) ≥ 0. For each x ∈ X ,

eTxD
−1(b+ γst) = eTxD

−1b+ γeTxD
−1st

= p∗x + γeTxD
−1st

≥ δsupport − γ∥D−1st∥2

≥ δsupport − γ
1

σmin

√
m

≥ 0.

Second, we show that for any non-binding resource j, dTj D
−1(b+ γst) ≥ δslack

2 :

dTj D
−1(b+ γst) =

∑
x∈X

dj(x, µ)p
∗
x + γdTj D

−1st

≥ δslack − γ|dTj D−1st|
≥ δslack − γ∥dTj ∥2∥D−1∥2∥st∥2

≥ δslack − γ
1

σmin
m

≥ δslack

2

≥ γ

2
,

where the last inequality follows because σmin, δslack, δsupport < 1.

21

D.2 Proof of Lemma 3.10

Divide the T rounds into two phases: P1 = {1, . . . , T − exp(3/c) and P2 = {1, . . . , T} \ P1. Note
that P2 consists of exp(3/c) = O(exp(γ∗)) = O(1) rounds, where the last equality follows because
γ∗ is bounded by 1. Therefore, the expected number of null arm pulls in this phase is O(1) and it
suffices to bound the expected number of null arm pulls in P1.

We can write the expected number of rounds in which there exists a resource whose budget is less
than 1 as

E

 T∑
t=1

∑
j∈J

1[Bt−1,j < 1]

 =
∑
j∈J

E

[
T∑

t=1

1[Bt−1,j < 1]

]
︸ ︷︷ ︸

(a)

. (84)

We can bound term (a) above the same way as in the proof of Lemma 3.5 (Appendix C.4) with δdrift
replaced by γ∗.. Therefore,

E

 T∑
t=1

∑
j∈J

1[Bt−1,j < 1]

 ≤ mC̃

(
1 +

π2

6

)
, (85)

where C̃ is defined in Eq. (37).

D.3 Proof of Lemma 3.11

Consider an arbitrary resource j ∈ J∗. Recall the vector st defined in ControlBudget (Algorithm 2).
If i denote the row corresponding to resource j, then the ith entry of st, denoted by st(i), is −1 if
Bt−1,j < τt and +1 otherwise.

Let Eq denote the event that the st(i) is equal to −1 consecutively in exactly the last q rounds, i.e.,
st(i) = −1 for all t ≥ T − q + 1 and st(i) = +1 for t = T − q (if q ̸= T). Note that the events
(Eq : q = 0, . . . , T) are disjoint. Let Sq denote the event that the total drift for j in the last q rounds
is greater than 1

2 (−γ∗)q, i.e.,
∑

t≥T−q+1 dt >
1
2 (−γ∗)q. We can upper bound the expected leftover

budget of resource j by conditioning on these events as follows.

E[BT,j] =

T∑
q=0

Pr[Eq] E[BT,j |Eq] (86)

≤
T∑

q=0

E[BT,j |Eq] (87)

=

T∑
q=0

E[BT,j |Eq, Sq]︸ ︷︷ ︸
(a)

Pr[Sq|Eq]︸ ︷︷ ︸
(b)

+E[BT,j |Eq, S
c
q]︸ ︷︷ ︸

(c)

Pr[Sc
q |Eq]︸ ︷︷ ︸

(d)

. (88)

If q = 0, then the expected leftover budget is trivially at most a constant. We can bound the four
terms for q ≥ 1 as follows:

(a) We have
E[BT,j |Eq, Sq] ≤ c log q + q (89)

because (i) ControlBudget (Algorithm 2) sets st(i) = +1 in round T − q if BT−q−1,j <
τT−q = c log q; and (ii) conditioned on the event Sq, the total drift in the last q rounds can
be at most q as the drifts are bounded by 1.

(b) We have

Pr[Sq|Eq] ≤ exp

(
− 1

16
(γ∗)2q

)
(90)

because (i) the sequence of drifts observed in rounds t ≥ T − q + 1 is a supermartingale
difference sequence with E[ds,j |dT−q+1,j , . . . , ds−1,j] ≤ −γ∗; and (ii) by the Azuma-
Hoeffding inequality, the probability the sum Sq is greater than half its expected value is at
most exp

(
− 1

16 (γ
∗)2q

)
.

22

(c) We have

E[BT,j |Eq, S
c
q] ≤

(
c log q +

1

2
(−γ∗)q

)
(91)

because (i) ControlBudget (Algorithm 2) sets st(i) = +1 in round T − q if BT−q−1,j <
τT−q = c log q; and (ii) conditioned on the event Sc

q , the total drift in the last q rounds can
be at most 1

2 (−γ∗)q.

(d) We have

Pr[Sc
q |Eq] ≤ 1 (92)

trivially.

Therefore,

E[BT,j] ≤
T∑

q=0

(c log q + q) exp

(
− 1

16
(γ∗)2q

)
︸ ︷︷ ︸

(e)

+

(
c log q +

1

2
(−γ∗)q

)
︸ ︷︷ ︸

(f)

. (93)

This summation is a constant in terms of T :

1. Term (e) is a constant because c log q < q for q large enough and
∑∞

q=1 q exp(−aq)

converges to exp(a)(1− exp(a))−2.

2. Term (f) is a constant because this term is negative for q large enough and is maximized at
q = 2c

γ∗ .

Finally, we can bound the expected leftover budget as

E[BT,j] ≤ C̃ = Õ

((
1− exp

(
γ∗2

16

))−2

+
1

γ∗2

)
, (94)

where the last equality follows when c ≥ 6
γ∗2 . This completes the proof.

E Proofs for Section 4

E.1 Proof of Lemma 4.1

It suffices to show that the complement of the clean event occurs with probability at most 5mT−2.

For (i) in the definition of the clean event (Definition 4.2), by taking a union bound over the
components of the outcome vector and using Azuma-Hoeffding inequality, we have

µo
x /∈ [LCBt(x),UCBt(x)] ≤ 2(m+ 1) exp

(
−2nt(x)radt(x)

2
)

(95)

≤ 4m exp

(
−2nt(x)

8 log T

nt(x)

)
(96)

≤ 4mT−2. (97)

For (ii) in the definition of the clean event (Definition 4.2), a similar approach works. Let Sn,j denote
the sum of the drifts for resource j ∈ J after n pulls of the null arm x0. By the union bound and

23

Azuma-Hoeffding inequality,

Pr [∃j ∈ J s.t. Sn,j < w] ≤ m exp

(
−1

4
wµd

x0

)
(98)

≤ m exp

(
−1

4
wδdrift

)
(99)

≤ m exp

(
−1

4

1024km2 log T

δ2driftσ
2
min

δdrift

)
(100)

= m exp

(
−256km2 log T

δdriftσ2
min

)
(101)

≤ m exp
(
−256km2 log T

)
(102)

≤ m exp (−256 log T) (103)

≤ mT−2, (104)

where Eq. (102) follows because δdrift ∈ (0, 1] and σmin ∈ (0, 1). This shows that the probability of
the complement of the clean event is at most 5mT−2 and completes the proof.

E.2 Proof of Lemma 4.2

We will prove the lemma for OPTLP because the other cases are similar. Simplifying and overloading
notation for this proof, we denote the probability simplex over k dimensions as ∆k, and the vector of
expected rewards, the matrix of expected drifts and the right-hand side of the budget constraints as

r =

µ
r
1
...
µr
k

 , D =

µ
d,1
1 . . . µd,1

k
. . .

µd,m
1 . . . µd,m

k

 , b = −B

T
1. (105)

We will use r̄ and D̄ to denote the empirical versions of the rewards and drifts. We can write

OPTLP = max
p∈∆k

rT p s.t. Dp ≥ b,

UCBt(OPTLP) = max
q∈∆k

(r̄ + radt)
T q s.t. (D̄ + radt)q ≥ b

≤ max
q∈∆k

(r + 2radt)
T q s.t. (D + 2radt)q ≥ b

≤ 2radt + max
q∈∆k

rT q s.t. Dq ≥ b− 2radt,

where the second-last inequality follows because we are conditioning on the clean event. Therefore,
using D′ and b′ to denote the submatrix and subvector corresponding to the binding constraints, we
have

UCBt(OPTLP)− OPTLP ≤ 2radt + |rT p− rT q|
≤ 2radt + |rT (D′)−1b′ − rT (D′)−1(b′ − 2radt)|
≤ 2radt + ∥r∥2∥(D′)−1∥2∥2radt∥2

≤ 2radt + 2mradt
1

σmin

≤ 4m

σmin
radt,

where last inequality follows because σmin < 1 ≤ m. Since the LCB is defined by subtracting radt
from the empirical means, we obtain the same upper bound on OPTLP − LCBt(OPTLP) and using
the triangle inequailty completes the proof.

E.3 Proof of Theorem 4.1

Since the complement of the clean event occurs with probability at most O(mT−2) and contributes
O(T) to the regret, it suffices to bound the regret conditioned on the clean event. So, condition on the

24

clean event for the rest of the proof. Phase one contributes at most

O

(
km2

min{δ2drift, σ
2
min}∆2

)
· log T (106)

to the regret by Corollary 4.2. Phase two contributes at most

O

(
k

γ∗2

)
log T (107)

to the regret.

Observe that after phase two, radt(x) ≤ γ∗2

2 for all x ∈ X∗. Combining this with Eqs. (8)
and (15) to (17), we have that (γ∗, D−1(b+ γ∗st)) is a feasible solution to the optimization problem
solved by ExploreThenControlBudget (Algorithm 3). Therefore, (γt, pt) ensure that there is
drift of magnitude at least γ∗

8 in the “correct directions”. As noted in the end of Section 3.2, the
regret analysis of ControlBudget (Algorithm 2) requires the algorithm to know X∗, J∗, and
find a probability vector pt that ensures drifts bounded away from zero in the “correct directions”.
Therefore, by Theorem 3.2, phase three contributes at most C̃ ′ to the regret, where C̃ is the constant
in Theorem 3.2. Combining the contribution from the three phases, we have that

RT (ExploreThenControlBudget) ≤ C̃ · log T, (108)

where γ∗ (defined in Lemma 3.9) and C̃ are constants with

C̃ = O

(
km2

min{δ2drift, σ
2
min}∆2

+ k(γ∗)−2 + C̃ ′
)
. (109)

E.4 Proof of Theorem 4.2

Note that BwK is not automatically a special case of our model because of our assumption that the
null arm has strictly positive drift for every resource. In this section we present a reduction from
BwK with B

T bounded away from 0 to our model. We show that our results imply a logarithmic regret
bound for BwK under certain assumptions.

Reduction Assume we are given an instance of BwK with B
T ≥ δdrift > 0. (Existing results

on logarithmic regret for BwK also assume the ratio of the initial budget to the time horizon is
bounded away from 0 [14].) We will reduce the given BwK instance to a problem in our model.
The reduction initializes an instance of ExploreThenControlBudget (Algorithm 3) running in a
simulated environment with the same set of arms as in the given BwK instance, plus an additional
null arm whose drift is equal to δdrift deterministically for each resource. The reduction will maintain
two time counters: ta is the actual number of time steps that have elapsed in the BwK prlblem, and ts
is the number of time steps that have elapsed in the simulation environment in which Algorithm 3
is running. Likewise, there are two vectors that track the remaining budget: Ba is the remaining
budget in the actual BwK problem our reduction is solving, while Bs is the remaining budget in the
simulation environment. These two budget vectors will always be related by the equation

Bs = Ba − Tδdrift1 + tsδdrift1. (110)

In particular, the initial budget of each resource is initialized (at simulated time ts = 0) to B− Tδdrift.

Each step of the reduction works as follows. We call Algorithm 3 to simulate one time step in
the simulated environment. If Algorithm 3 recommends to pull a non-null arm x, we pull arm x,
increment both of the time counters (ta and ts), and update the vector of remaining resource amounts,
Ba, according to the resources consumed by arm x. If Algorithm 3 recommends to pull the null
arm, we do not pull any arm, and we leave ta and Ba unchanged; however, we still increment the
simulated time counter ts. Finally, regardless of whether a null or non-null arm was pulled, we update
Bs to satisfy Eq. (110).

Correctness Since the reduction pulls the same sequence of non-null arms as Algorithm 3 until the
BwK stopping condition is met and the additional pulls of the null arm in the simulation environment
yield zero reward, the total reward in the actual BwK problem equals the total reward earned in the

25

simulation environment at the time when the BwK stopping condition is met and the reduction ceases
running. Since Algorithm 3 maintains the invariant that Bs is a nonnegative vector, Eq. (110) ensures
that Ba will also remain nonnegative as long as ts ≥ T must hold. Theorem 4.1 ensures that the total
expected reward earned in the simulation environment and hence, also in the BwK problem itself,
is bounded below by T · OPTLP − C̃ · log T , where C̃ is the constant in Theorem 4.1 and OPTLP

denotes the optimal value of the LP relaxation (Eq. (1)) for the simulation environment.

We would like to show that this implies the regret of the reduction (with respect to the LP relaxation
of BwK) is bounded by C̃ · log T . To do so, we must show that the LP relaxations of the original BwK
problem and the simulation environment have the same optimal value. Let µr

x and µd,j
x denote the

expected reward and expected drifts in the actual BwK problem with arm set X , and let µ̂r
x and µ̂d,j

x
denote the expected reward and drifts in the simulation environment with arm set X+ = X ∪ {x0}.
The two LP formulations are as follows.

max
p

∑
x∈X

pxµ
r
x

s.t.
∑
x∈X

pxµ
d,j
x ≥ −B

T
∀j ∈ J ,∑

x∈X
px ≤ 1

px ≥ 0 ∀x ∈ X .

max
p

∑
x∈X

pxµ̂
r
x

s.t.
∑
x∈X

pxµ̂
d,j
x ≥ −B

T
− δdrift ∀j ∈ J ,∑

x∈X+

px = 1

px ≥ 0 ∀x ∈ X+.

The differences between the two LP formulations lie in substituting µ̂ for µ, substituting X+ for X ,
and transforming the inequality constraint

∑
x∈X px ≤ 1 into an equality constraint

∑
x∈X+ px = 1.

We know that µr
x = µ̂r

x for every x ∈ X and µ̂r
x0 = 0. Furthermore, µ̂d,j

x denotes the expected drift
of resource j in the simulation environment when arm x is pulled. This can be written as the sum of
two terms: drift µd,j

x is the expectation of the (non-positive) quantity added to the jth component of
budget vector Ba when pulling arm x in the actual BwK environment; in addition to this non-positive
drift, there is a deterministic positive drift of δdrift due to incrementing the simulation time counter
ts and recomputing Bs using Eq. (110). Hence, µ̂d,j

x = µd,j
x + δdrift for all x ∈ X and j ∈ J .

Furthermore, µ̂d,j
x0 = δdrift. Hence, for any vector p⃗ representing a probability distribution on X+, we

have ∑
x∈X+

pxµ̂
d,j
x =

(∑
x∈X

pxµ̂
d,j
x

)
+ δdrift. (111)

Accordingly, a vector p⃗ satisfies the constraints of the BwK LP relaxation above if and only if the
probability vector on X+ obtained from p⃗ by setting px0 = 1−

∑
x∈X px satisfies the constraints

of the second LP relaxation above. This defines a one-to-one correspondence between the sets of
vectors feasible for the two LP formulations. Furthermore, this one-to-one correspondence preserves
the value of the objective function because µ̂r

x = µr
x for x ∈ X and µ̂r

x0 = 0. Thus, the optimal value
of the two linear programs is the same. This completes the proof.

F Experiments

In this section we present some simple experimental results. 5 For simplicity, we only consider
Bernoulli distributions, i.e., rewards are supported on {0, 1}, a positive drift arm’s drifts are supported
on {0, 1}, and a negative drift arm’s drifts are supported on {0,−1}. We generate the data for the
experiments as follows:

• Fig. 1 plot (a): We set T = 25k,B = 0, n = 2 and m = 1. The expected reward and drifts
for the arms are: (0; 0.1), (0.8; 0.4). The LP solution is supported on a single positive drift
arm.

• Fig. 1 plot (b): We set T = 25k,B = 400, n = 2 and m = 1. The expected reward and
drifts for the arms are: (0; 0.4), (0.8;−0.3). The LP solution is supported on the null arm
and the negative drift arm.

• Fig. 1 plot (c): We set T = 25k,B = 400, n = 3 and m = 1. The expected reward and
drifts for the arms are: (0; 0.4), (0.8;−0.3), (0.1; 0.3). The LP solution is supported on the
positive drift arm and the negative drift arm.

5The code and data are available at https://github.com/raunakkmr/
non-monotonic-resource-utilization-in-the-bandits-with-knapsacks-problem-code.

26

(a) ControlBudget with one resource - case
1 (positive drift arm)

(b) ControlBudget with one resource - case
2 (null plus negative drift arm)

(c) ControlBudget with one resource - case
3 (positive plus negative drift arm) (d) ControlBudget with multiple resources

Figure 1: Regret of ControlBudget on a variety of test cases.

(a) ControlBudget (b) ExploreThenControlBudget

Figure 2: Regret of ControlBudget and ExploreThenControlBudget on the same test case. We
modify ExploreThenControlBudget to use the empirical means instead of UCB/LCB estimates
for phase one as described in Appendix F.

• Fig. 1 plot (d): We set T = 25k,B = 3, n = 3 and m = 2. The expected reward and
drifts for the arms are: (0; 0.1, 0.08), (0.8;−0.2,−0.25), (0.1; 0.4, 0.5). The LP solution is
supported on the positive drift arm and the negative drift arm.

• Fig. 2 plot (a) and (b): We set T = 150k,B = 10, n = 3 and m = 1. The expected reward
and drifts for the arms are: (0; 0.9), (0.8;−0.6), (0.1; 0.7). The LP solution is supported on
the positive drift arm and the negative drift arm.

As our plots show (Fig. 1), our MDP policy, ControlBudget, performs quite well and achieves
constant regret.

Our learning algorithm does not perform as well empirically due to large constant factors. Specifically,
the number of rounds required for the confidence radius to be small enough for phase one to

27

successfully identify X∗ and J∗ is too large. In our simple test cases, if we simply consider the
empirical means, which are very close to the true means, instead of the UCB/LCB estimates for phase
one, then the learning algorithm performs as expected: it achieves logarithmic regret by spending a
logarithmic number of rounds identifying X∗ and J∗, and achieves constant regret thereafter (Fig. 2).

28

