
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section A in Appendix
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Available at
https://github.com/nilesh2797/ELIAS

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section B in Appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] See section Section C.4 in
Appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

https://github.com/nilesh2797/ELIAS

A Potential Negative Societal Impact

Our method proposes to learn efficient data structure for accurate prediction in large-output space. It
helps existing large-scale retrieval systems used in various online applications to efficiently produce
more accurate results. To the best of our knowledge, this poses no negative impacts on society.

B Experimental Details

B.1 ELIAS Hyperparameters

ELIAS’s hyperparameters include,

• max-len: denotes the maximum sequence length of input for the BERT encoder. As per standard
XMC practices, for full-text dataset we choose 128 and for short-text we choose 32

• C: denotes number of clusters in the index graph, we use same values as LightXML [18] and
X-Transformer [6] for fair comparison

• α: multiplicative hyperparameter used in Equation 1, controls effective number of clusters that can
get activated for a given input

• β: multiplicative hyperparameter used in Equation 5, controls effective number of labels that can
get assigned to a particular cluster

• κ: controls the row-wise sparsity of adjacency matrix A, we choose κ ≈ 10× L/C

• λ: controls importance of classification loss Lc and shortlist loss Ls in the final loss L, we choose
λ by doing grid search over the smallest dataset LF-AmazonTitles-131K

• K: denotes the shortlist size, label classifiers are only evaluated on top-K shortlisted labels. We
choose K = 2000 which is approximately same as the number of labels existing partition based
methods shortlist assuming beam-size b = 20 and number of labels per cluster = 100

• b: denotes the beam size, similar to existing partition based methods we use b = 20

• num-epochs: denotes the total number of epochs (i.e. including stage 1 and stage 2 training)

• LRW, LRϕ: We empirically observe that the network trains faster when we decouple the initial
learning rates of the transformer encoder (LRϕ) with rest of the model (LRW). We choose a much
smaller values for LRϕ and a relatively larger value for LRW

• bsz: denotes the batch-size of the mini-batches used during training

Table 4: ELIAS hyperparameters

Dataset max-len C α β κ λ K b num-epochs LRW LRϕ bsz

LF-AmazonTitles-131K 32 2048 10 150 1000 0.05 2000 20 60 0.02 1e−4 512
Amazon-670K 128 8192 10 150 1000 0.05 2000 20 60 0.01 1e−4 256
Wikipedia-500K 128 8192 10 150 1000 0.05 2000 20 45 0.005 5e−5 256
Amazon-3M 128 32768 20 150 1000 0.05 2000 20 45 0.002 2e−5 64

B.2 Datasets

LF-AmazonTitles-131K: A product recommendation dataset where input is the title of the product
and labels are other related products to the given input. “LF-*” datasets additionally contain label
features i.e. a label is not just an atomic id, label features which describe a label are also given. For
this paper, we don’t utilize these additional label features and compare ELIAS to only methods which
don’t utilize label features either. Notably, even though ELIAS doesn’t use label features it achieves
very competitive performance with methods which use the label features in their model.

Amazon-670K: A product recommendation dataset where input is a textual description of a query
product and labels are other related products for the query.

Wikipedia-500K: A document tagging dataset where input consists of full text of a wikipedia page
and labels are wikipedia tags relevant to that page.

14

[ROOT]

Clusters

Labels

Fixed Label Assignments

Stage

[ROOT]

Clusters

Initialize

[ROOT]

Clusters

Stage

Labels

Labels

Figure 6: Illustration of ELIAS’s search index graph in different training stages.

Amazon-3M: A product recommendation dataset where input is a textual description of a query
product and labels are other co-purchased products for the query.

B.3 Evaluation Metrics

We use standard Precision@K (P@K), propensity weighted variant of Precision (PSP@K), and
Recall@K (R@K) evaluation metrics for comparing ELIAS to baseline methods. For a single

15

Table 5: Dataset statistics, here Dbow denotes the dimensionality of sparse bag-of-word features

Dataset Num Train Points Num Test Points Num Labels Avg. Labels per Point Avg. Points per Label Dbow

LF-AmazonTitles-131K 294,805 134,835 131,073 2.29 5.15 40,000
Amazon-670K 490,449 153,025 670,091 3.99 5.45 135,909
Wikipedia-500K 1,779,881 769,421 501,070 4.75 16.86 2,381,304
Amazon-3M 1,717,899 742,507 2,812,281 22.02 36.06 337,067

data-point i, these evaluation metrics can be formally defined as:

P@K =
1

K

K∑
j=1

yirank(j) (11)

PSP@K =

K∑
j=1

yirank(j)

prank(j)
(12)

R@K =
1

∥yi∥0

K∑
j=1

yirank(j) (13)

Where, yi = [yil]
L
l=1, yl ∈ {0, 1} represents the ground truth label vector, p represents the propensity

score vector [17], ∥.∥0 represents the ℓ0 norm, and rank(j) denotes the index of jth highest ranked
label in prediction vector of input i.

C More on ELIAS

C.1 Additional Training Details

Figure 6 illustrates the evolution of ELIAS’s search index graph over different stages of training.
In stage 1, label to cluster assignments are pre-determined and fixed by clustering all labels into C
clusters. Then, rest of the ML model i.e. ϕ,WC ,WL is trained. The model obtained after stage 1
training is used to initialize the row-wise sparse adjacency matrix A as described in Section 3.4. In
stage 2, the non-zero entries in the sparse adjacency matrix A along with the rest of the ML model
is trained jointly to optimize the task objective. The clustering procedure used in stage 1 can be
described as follows:

We first obtain a static representation ψ(xi) for each training point xi as:

ψ(xi) = [
bow(xi)

∥bow(xi)∥2
,
ϕ(xi)

∥ϕ(xi)∥2
] (14)

Here, [] represents the concatenation operator, bow(xi) represents the sparse bag-of-words repre-
sentation of xi and ϕ(xi) represents the deep encoder representation of xi. Next we define label
centroids µl for each label as:

µl =

∑
i:yi

l=1 ψ(x
i)

∥
∑

i:yi
l=1 ψ(x

i)∥2
(15)

We then cluster all labels into C clusters by recursively performing balanced 2-means [25] over label
centroids {µl}Ll=1. This gives us a clustering matrix C ∈ RC×L, where Cc,l = 1 iff label l got
assigned to cluster c. Note that, a label is assigned to only one cluster and each cluster gets assigned
equal number of labels. We assign this clustering matrix C to the label-cluster adjacency matrix A
and keep it frozen during the stage 1 training i.e. only parameters ϕ,WC ,WL are trained on the loss
defined in Section 3.3.

C.2 Additional Sparse Ranker Details

In this subsection we describe the training and prediction procedure of sparse ranker in more detail.

Training Sparse Ranker: Let Ȳi = {ȳij}100j=1 denote the set of top 100 predictions made by trained
ELIAS model for training point xi. Similar to the representation used for clustering label space in

16

Table 6: Empirical prediction time, training time, and model sizes on benchmark datasets

Dataset Prediction (1 GPU) Training (1 GPU) Training (8 GPU) Model Size
LF-AmazonTitles-131K 0.08 ms/pt 1.66 hrs 0.33 hrs 0.65 GB
Wikipedia-500K 0.55 ms/pt 33.3 hrs 6.6 hrs 2.0 GB
Amazon-670K 0.57 ms/pt 10.1 hrs 2.1 hrs 2.4 GB
Amazon-3M 0.67 ms/pt 37.6 hrs 7.5 hrs 5.9 GB

stage 1 training, sparse ranker represents the input xi with the static representation ψ(xi) as:

ψ(xi) = [
bow(xi)

∥bow(xi)∥2
,
ϕ(xi)

∥ϕ(xi)∥2
] (16)

It learns sparse linear classifiers W̄ = {w̄l}Ll=1, where w̄l ∈ RD′
and D′ is the dimensionality of ψ,

on loss L̄ defined as following:

L̄ = −
N∑
i=1

∑
l∈Ȳi

(yil log(σ(w̄
T
l ψ(x

i))) + (1− yil)(1− σ(w̄T
l ψ(x

i)))) (17)

Because these classifiers are only trained on O (100) labels per point, the complexity of L̄ is only
O (100×N). Such sparse linear classifiers can be efficiently trained with second order parallel
linear solvers like LIBLINEAR [12] on CPU. In particular, even on the largest Amazon-3M dataset
with 3 million labels, training sparse ranker only takes about an hour on a standard CPU machine
with 48 cores.

Predicting with Sparse Ranker: Similar to training, we first get top 100 predictions Ȳi from ELIAS
model for each data point xi. Sparse classifiers are evaluated on each (xi, l) pair where l ∈ Ȳi. Let
the score of ELIAS for the pair (xi, l) be pil and score of sparse ranker be qil = σ(w̄T

l ψ(x
i)). Ideally

we would like the final score to be some combination of pil and qil but as observed in Section 3.5,
these two scores are not very well calibrated across different label regimes. To correct this issue, we
learn a score calibration module T which consists of a standard decision tree classifier4 trained on a
small validation set of 5000 data points. In particular, let the validation set be {(xi,yi)}5000i=1 and Ȳi

denote the set of top 100 predictions made by ELIAS on validation point xi. Training data points for
the score calibration module consists of all pairs

⋃5000
i=1

⋃
l∈Ȳi(xi, l), where the input vector of a data

point is a 4 dimensional vector (pil, q
i
l , p

i
l ∗ qil , fl) and the target output is yil . Here, fl denotes the

training frequency (i.e. number of training points) of label l. During prediction, the final score for a
pair (xi, l) is returned as T (pil, q

i
l , p

i
l ∗ qil , fl) + pil ∗ qil .

C.3 Practical Implementation and Resources Used

Many of the design choices for ELIAS’s formulation is made to enable efficient implementation of the
search index on GPU. For example, the row-wise sparsity constraint allows storing and operating the
sparse adjacency matrix as two 2D tensors, which is much more efficient to work with on a GPU than
a general sparse matrix. We implement the full ELIAS model excluding the sparse ranker component
in PyTorch. Sparse ranker is implemented using LIBLINEAR utilities provided in PECOS5 library.
All experiments are run on a single A6000 GPU. Even on the largest dataset Amazon-3M with 3
million labels, prediction latency of single ELIAS model is about 1 ms per data point and training
time is 50 hours.

C.4 Additional Results

Table 7a reports the final accuracy numbers with different λ on Amazon-670K dataset. With a very
small λ the loss only focuses on the classification objective which leads to significantly worse R@100
performance. Increasing λ improves the overall performance up to a certain point, after that the
performance saturates and starts degrading slowly. Table 7b reports the effect of choosing different κ

4https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html

5https://github.com/amzn/pecos

17

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://github.com/amzn/pecos

(row-wise sparsity parameter) to the final model performance on Amazon-670K dataset. We notice
that the model performance increases up to a certain value of κ, after that the model performance
(specially P@1) saturates and starts degrading slowly.

Table 7: ELIAS-1(d) results on Amazon-670K with (a) varying λ, (b) varying κ

(a)

λ P@1 P@5 R@10 R@100
0 47.80 39.45 49.17 66.05
0.01 48.30 39.86 49.73 67.78
0.02 48.48 39.94 49.96 68.27
0.05 48.68 40.05 50.33 68.95
0.1 48.72 40.05 50.19 68.91
0.2 48.62 39.96 50.06 68.82
0.5 48.48 39.76 49.80 68.55

(b)

κ P@1 P@5 R@10 R@100
100 46.79 36.60 42.90 56.38
200 47.88 38.67 46.96 63.30
500 48.68 40.04 49.99 68.48
1000 48.68 40.05 50.33 68.95
2000 48.58 40.07 50.27 68.91
5000 48.57 39.93 50.15 68.91
10000 48.32 39.73 49.97 68.84

Due to lack of space in the main paper, the full component ablation table is reported here in Table 8

Method P@1 P@3 P@5 nDCG@3 nDCG@5 PSP@1 PSP@3 PSP@5 R@10 R@20 R@100
LF-AmazonTitles-131K

Stage 1 36.96 24.67 17.69 37.47 39.21 28.29 33.16 37.44 47.69 51.74 58.81
+ Stage 2 37.90 25.61 18.45 38.83 40.76 29.73 35.16 39.88 50.12 54.62 62.88
+ Sparse ranker w/o calibration 39.25 26.46 19.02 40.22 42.19 30.54 36.71 41.72 51.40 55.39 62.88
+ Score correction 39.26 26.47 19.02 40.27 42.23 31.30 37.05 41.89 51.40 55.35 62.88
+ 3× ensemble 40.13 27.11 19.54 41.26 43.35 31.05 37.57 42.88 53.31 57.79 65.15

Amazon-670K

Stage 1 46.63 41.65 37.58 44.02 42.11 29.89 33.20 35.66 46.08 52.29 61.72
+ Stage 2 48.68 43.78 40.04 46.24 44.68 31.22 34.94 38.31 50.33 57.67 68.95
+ Sparse ranker w/o calibration 50.72 45.25 41.27 47.91 46.22 30.93 35.45 39.57 51.51 58.43 68.95
+ Score correction 51.41 45.69 41.62 48.49 46.77 33.14 36.77 40.41 51.97 58.81 68.97
+ 3× ensemble 53.02 47.18 42.97 50.11 48.37 34.32 38.12 41.93 53.99 61.33 72.07

Wiki-500K

Stage 1 76.54 57.65 44.33 69.54 67.01 32.61 40.04 43.48 65.78 72.06 80.60
+ Stage 2 77.81 59.14 45.85 71.22 68.97 33.38 41.88 45.98 68.33 74.97 84.70
+ Sparse ranker w/o calibration 79.47 61.08 47.77 73.35 71.41 32.10 42.72 48.25 71.20 77.24 84.70
+ Score correction 80.46 61.60 48.03 74.09 72.01 34.76 44.97 49.82 71.36 77.50 84.70
+ 3× ensemble 81.26 62.51 48.82 75.12 73.10 35.02 45.94 51.13 72.74 79.17 87.22

Amazon-3M

Stage 1 49.12 46.31 44.10 47.46 46.26 16.32 19.44 21.57 19.12 27.90 49.15
+ Stage 2 49.93 47.07 44.85 48.20 46.97 14.97 17.46 19.34 18.94 28.28 52.93
+ Sparse ranker w/o calibration 52.63 49.87 47.58 51.04 49.81 15.79 19.00 21.35 20.39 29.97 53.50
+ Score correction 52.63 49.87 47.58 51.04 49.81 15.79 19.00 21.35 20.39 29.97 53.50
+ 3× ensemble 54.28 51.40 49.09 52.65 51.46 15.85 19.07 21.52 21.59 31.76 57.09

Table 8: Full component ablation of ELIAS on all datasets

D Analysis of learned index

Table 9a reports the final accuracy numbers of ELIAS-1(d) model on Amazon-670K after threshold
based pruning of the learned cluster-to-label assignments (i.e. for a particular threshold we remove all
edges in the learned A which has smaller weight than the threshold). These results indicate that about
∼ 84% edges can be pruned without hurting the model performance. Similarly, table 9b reports the
final accuracy numbers of ELIAS-1(d) model on Amazon-670K after top-K based pruning of the
learned cluster-to-label assignments (i.e. we retain only top-K label assignments per cluster).

Figure 7a plots the fraction of edges of the stage 1 tree that still remain in the learned adjacency
matrix A after thresholding at various cutoff thresholds (i.e. for a threshold we only retain entries
in which are greater than and evaluate how many edges of stage 1 tree remains). on Amazon-670K
dataset. The plot reveals that almost ∼ 60% stage 1 cluster assignments remain in the learned A with
good confidence. Figure 7b plots the distribution of the average number of clusters assigned to a
label for each label decile (decile 1 represents the head most decile and decile 10 represents the tail
most decile). We say that a label l is assigned to a cluster c iff the weight ac,l in the learned adjacency

18

Table 9: ELIAS-1(d) results on Amazon-670K after pruning of learned cluster-to-label adjacency matrix A (a)
after threshold based pruning (b) after top-k based pruning

(a)

Threshold % pruned P@1 P@5 R@10 R@100
0 0 48.68 40.04 50.33 68.95
0.01 20.89 48.68 40.05 50.33 68.96
0.05 64.42 48.68 40.04 50.33 68.96
0.1 73.63 48.68 40.04 50.33 68.95
0.25 84.52 48.65 40.02 50.26 68.82
0.5 89.11 48.40 39.48 48.98 66.75
0.75 91.95 47.70 38.19 46.38 62.17
0.9 93.13 47.26 37.42 44.91 59.53

(b)

Top-K P@1 P@5 R@10 R@100
1000 48.68 40.04 50.33 68.95
750 48.70 40.05 50.34 68.95
500 48.72 40.05 50.34 68.95
300 48.72 40.05 50.34 68.95
200 48.71 40.05 50.32 68.87
100 48.22 39.04 47.98 64.80
50 46.17 33.85 38.35 49.48

matrix A is greater than 0.25. This demonstrates a clear trend that head labels get assigned to more
number of clusters than tail labels.

0.0 0.2 0.4 0.6 0.8 1.0
Learned edge weight threshold

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f s
ta

ge
-1

 e
dg

es
 le

ft

Overlap analysis of stage-1 tree with stage-2 graph

(a)

1 2 3 4 5 6 7 8 9 10
Deciles (decreasing frequency)

0

1

2

3

4

5

6

7

Av
er

ag
e

nu
m

be
r o

f c
lu

st
er

s

Average clusters assigned in each decile

(b)

Figure 7: (a) percentage of stage 1 edges remaining in the learned adjacency matrix A at various
cutoff thresholds on Amazon-670K dataset (b) decilewise distribution of the average number of
assigned cluster in Amazon-670K dataset

In Figure 8 and 9, we qualitatively compare the training point distributions of labels which get
assigned to multiple clusters and labels which get assigned to only one cluster by plotting TSNE
plots of the training points of such labels and their assigned clusters. We say that a label l is assigned
to a cluster c iff the weight ac,l in the learned adjacency matrix A is greater than 0.25. These plots
indicate that labels assigned to multiple clusters often have training points with a more multi-modal
distribution than the labels which get assigned to only one cluster.

19

Figure 8: TSNE plot of training points of labels which get assigned to multiple cluster in the learned
index structure on Amazon-670K dataset. We randomly sample 6 labels which have more than 1
but less than 6 edges with more than 0.25 learned weight (ac,l). The red dots represent the training
point of the sampled label and the dots in other colors indicate the training points of the respective
assigned clusters (we say a training point xi belongs to a cluster c iff sic > 0.25). As we can see
training points of labels which gets assigned to multiple cluster often exhibit multi-modal distribution

20

Figure 9: TSNE plot of training points of labels which get assigned to only one cluster in the learned
index structure on Amazon-670K dataset. We randomly sample 6 labels which only have one edge
with more than 0.25 learned weight (ac,l). The red dots represent the training point of the sampled
label and the blue dots indicate the training points of the assigned cluster (we say a training point xi

belongs to a cluster c iff sic > 0.25). As we can see training points of labels which gets assigned to
only one cluster exhibit uni-modal distribution

21

	Introduction
	Related Work
	ELIAS: End-to-end Learning to Index and Search
	ELIAS Index
	Forward Pass
	Loss
	Staged Training
	Sparse Ranker
	Time Complexity Analysis

	Experimental Results
	Conclusion and Discussions
	Potential Negative Societal Impact
	Experimental Details
	ELIAS Hyperparameters
	Datasets
	Evaluation Metrics

	More on ELIAS
	Additional Training Details
	Additional Sparse Ranker Details
	Practical Implementation and Resources Used
	Additional Results

	Analysis of learned index

