
A Supplemental Material

A.1 Diagonal State Spaces

We restate Proposition 1 for convenience.
Proposition. Let K P C1ˆL be the kernel of length L of a given state space pA,B,Cq and sample
time ∆ ą 0, where A P CNˆN is diagonalizable over C with eigenvalues λ1, . . . , λN and @i, λi ‰ 0
and eLλi∆ ‰ 1. Let P P CNˆL be Pi,k “ λik∆ and Λ be the diagonal matrix with λ1, . . . , λN .
Then there exist rw,w P C1ˆN such that

(a) K “ K∆,LpΛ, p1q1ďiďN , rwq “ rw ¨ Λ´1peΛ∆ ´ Iq ¨ elementwise-exppP q,

(b) K “ K∆,LpΛ, ppeLλi∆ ´ 1q´1q1ďiďN , wq “ w ¨ Λ´1 ¨ row-softmaxpP q.

Proof. Let A be diagonalizable over C as A “ V ΛV ´1 with eigenvalues λ1, . . . , λN P C. From
Equation 4 we have

K “ p CeA¨k∆peA∆ ´ IqA´1B q0ďkăL,

where

Kk “ CeA¨k∆peA∆ ´ IqA´1B “ pCV qeΛk∆peΛ∆ ´ IqΛ´1pV ´1Bq .

For CV P C1ˆN and V ´1B P CNˆ1 let pCV qJ ˚ pV ´1Bq “ rw P CN be the element-wise product
of CV and V ´1B. Then,

Kk “

N
ÿ

i“1

eλik∆peλi∆ ´ 1q

λi
¨ rwi (7)

“

N
ÿ

i“1

eλik∆peλi∆ ´ 1q

λipeLλi∆ ´ 1q
¨ ppeLλi∆ ´ 1q rwiq (8)

“

N
ÿ

i“1

p rwi ¨ peLλi∆ ´ 1qq ¨
1

λi
¨

eλik∆

p
řL´1

r“0 erλi∆q
(9)

where the last equality follows from pzL ´ 1q “ pz ´ 1qpz0 ` . . . ` zL´1q and using zL ‰ 1.

Let P P CNˆL be the matrix Pi,k “ λi ¨ k∆ and let E “ elementwise-exppP q. It is easy to verify
that Equation 7 can be re-written as a vector-matrix product as

K “ rw ¨ Λ´1peΛ∆ ´ Iq ¨ E .

Similarly, for the state space pΛ, p1q1ďiďN , rwqq and sample time ∆ its kernel rK can be obtained
from Equation 4 as

rKk “ rw ¨ eΛ¨k∆peΛ∆ ´ IqΛ´1 ¨ r1, . . . , 1sNˆ1

“

N
ÿ

i“1

rwi ¨
eλik∆peλi∆ ´ 1q

λi

which is also the expression for Kk (Equation 7). This proves part (a) and we now consider part (b).
Let w P CN be defined as

wi “ rwi ¨ peLλi∆ ´ 1q.

Then from Equation 9,

Kk “

N
ÿ

i“1

w ¨
1

λi
¨

eλik∆

p
řL´1

r“0 erλi∆q
. (10)

Let S “ row-softmaxpP q denote the matrix obtained after applying softmax on the rows of P , i.e.

Si,k “
eλik∆

řL´1
r“0 erλi∆

.

14

It is easy to verify that Equation 10 can be expressed as a vector-matrix product

K “ w ¨ Λ´1 ¨ S .

Similarly, for the state space pΛ, ppeLλi∆ ´ 1q´1q1ďiďN , wqq and sample time ∆ its kernel pK can
be obtained from Equation 4 as

pKk “ w ¨ eΛ¨k∆peΛ∆ ´ IqΛ´1 ¨ r. . . , peLλi∆ ´ 1q´1, . . .sNˆ1

“

N
ÿ

i“1

wi ¨
eλik∆peλi∆ ´ 1q

λipeLλi∆ ´ 1q

“

N
ÿ

i“1

rwi ¨
eλik∆peλi∆ ´ 1q

λi

which is also the expression for Kk (Equation 7).

A.2 Numerically Stable softmax

As noted in §3.1, softmax can have singularities over C. To address this issue, we use a simple
correction to make it well-defined over the entire domain:

• softmax : Given px0, . . . , xL´1q “ x P CL, let softmaxpxq P CL be defined as psoftmaxpxqqk “

exkpex0 ` . . . ` exL´1q´1. Note that for any c P C, softmaxpx0, . . . , xL´1q “ softmaxpx0 ´

c, . . . , xL´1 ´ cq. Unlike over R, softmax can have singularities over C as sum of exponentials
can vanish. E.g. e0 ` eiπ “ 0 and hence softmaxp0, iπq is not defined.

• max : Given px0, . . . , xL´1q “ x P CL, let maxpxq be the xi with the maximum real part, i.e.
xargmaxiRepxiq.

• reciprocalϵ : Given x P C and ϵ P Rą0, let reciprocalϵpxq “ x
x¨x`ϵ where x is the complex

conjugate of x. The denominator is always in Rěϵ and |reciprocalϵ| ď p2
?
ϵq´1.

• softmaxϵ : Given px0, . . . , xL´1q “ x P CL let m “ maxpxq and rxi “ xi ´ m. Note that
|erxi | ď 1. Given ϵ P Rą0, let softmaxϵpxq P CL be

psoftmaxϵpxqqk “ erxk ¨ reciprocalϵ

˜

L´1
ÿ

r“0

erxr

¸

.

softmaxϵ is always bounded and differentiable.

In our implementation, we use softmaxϵ with ϵ “ 10´7.

SSM Softmax In our current implementation of softmaxpxq (Figure 6), we exploit the specific
structure of x that arises in Algorithm 1. We now describe an alternate method based on FFT which
also uses this specific structure and might lead to a faster implementation in the future.
Claim 1 (SSM Softmax). Given c P C, let p “ IrRepcq ą 0s, n “ 1 ´ p, e “ exppc ¨ pn ´ pqq and
r “ pn ´ peq{pp ´ neq. Let ω “ expp´2πi{Lq where i “

?
´1. Then,

softmaxpc ¨ 0, . . . , c ¨ pL ´ 1qq “ inverseFFT

ˆ

1 ´ e

n ´ pe ` pp ´ neqωk

˙

0ďkăL

“ inverseFFT

ˆ

r ` 1

r ` ωk

˙

0ďkăL

.

Proof. There are 2 cases depending on sign of Repcq.

Case 1 (p “ 0, n “ 1): In this case we have e “ exppcq. For the map

F pzq “
1 ´ e

1 ´ eL

L´1
ÿ

k“0

pezqk “
p1 ´ eqp1 ´ pezqLq

p1 ´ eLqp1 ´ ezq

15

we get the coefficients of F pzq as

invFFTpF pωkq0ďkăLq “

ˆ

p1 ´ eq

p1 ´ eLq
ek

˙

0ďkăL

“ softmaxpc ¨ 0, . . . , c ¨ pL ´ 1qq.

We have,

F pωkq “
p1 ´ eqp1 ´ peωkqLq

p1 ´ eLqp1 ´ e ¨ ωkq
“

1 ´ e

1 ´ e ¨ ωk

where last equality follows from ωL “ 1.

Case 2 (p “ 1, n “ 0): In this case we have e “ expp´cq. For the map

F pzq “
1 ´ e

1 ´ eL

L´1
ÿ

k“0

ekzL´1´k “
p1 ´ eqzL´1

1 ´ eL

L´1
ÿ

k“0

´ e

z

¯k

“
p1 ´ eqzL´1

1 ´ eL
1 ´

`

e
z

˘L

1 ´ e
z

“
p1 ´ eq

p1 ´ eLq

pzL ´ eLq

pz ´ eq

we get the coefficients of F pzq as

invFFTpF pωkq0ďkăLq “

ˆ

p1 ´ eq

1 ´ eL
eL´1´k

˙

k

“

ˆ

pe´1 ´ 1q

pe´1qL ´ 1
pe´1qk

˙

0ďkăL

“ softmaxpc ¨ 0, . . . , c ¨ pL ´ 1qq

as e´1 “ exppcq. Moreover, we have

F pωkq “
p1 ´ eqpωk¨L ´ eLq

p1 ´ eLqpωk ´ eq
“

1 ´ e

´e ` ωk

where last equality follows from ωL “ 1.

Finally, the second equality of the main Claim follows from 1 ´ e “ n ´ pe ` p ´ ne.

The computation of softmax in Claim 1 is numerically stable and we always exponentiate scalars
with a negative real part. The computed function has singularities at c P t´2πik{L, 0 ď k ă Lu.

A.3 Experimental Setup

We now describe the training details for DSS and S4 on LRA and Speech Commands (§4).

Sequence Classification Head: Both LRA and Speech Commands are sequence classification tasks.
The final layer of the DSS stack outputs a sequence which is aggregated into a single vector via mean
pooling along the length dimension. Exceptions to this were TEXT and PATHFINDER tasks where the
rightmost token was used as the aggregate.

We used a separate ∆log,re, ∆log,im P R parameters to respectively scale the real and imaginary parts
of Λ. I.e. for a given Λ P CN , we computed ∆ ˚ Λ as expp∆log,reqΛre ` i ¨ expp∆log,imqΛim.

For all datasets, we used AdamW optimizer with a constant learning rate schedule with decay on
validation plateau. However, for the DSS parameters (§3.2) initial learning rate was 10´3 and weight
decay was not used, with a few exceptions noted below.

We used hyperparameters such as model sizes, number of update steps, etc as recommended by the
S4 authors on their official repository and are listed in Table 4. We made the following exceptions for
DSS trainings:

• LISTOPS: learning rate of ∆log was 0.02 instead of 10´3.

• TEXT: learning rate of ∆log 0.02 instead of 10´3.
• IMAGE: we used seed 0 and trained for 200 epochs instead of 100.

16

Depth Features H Norm Pre-norm Dropout LR Batch Size Epochs WD Patience
ListOps 6 128 BN False 0 0.01 50 50 0.01 5
Text 4 128 BN True 0 0.01 50 40 0 10
Retrieval 6 256 BN True 0 0.002 64 25 0 20
Image 6 512 LN False 0.2 0.004 50 200 0.01 10
Pathfinder 6 256 BN True 0.1 0.004 100 200 0 10
Path-X 6 256 BN True 0.0 0.0005 32 100 0 40

Speech Commands (Raw) 6 128 BN True 0.1 0.01 20 200 0 20

Table 4: Hyperparameters for the S4 and DSS models. Exceptions for DSS are detailed in §A.3. (Top) LRA and
(Bottom) Speech Commands. LR is initial learning rate and WD is weight decay. BN and LN refer to Batch
Normalization and Layer Normalization.

• PATHFINDER: we used Patience “ 13.
• PATH-X: we used batch size 16 and trained for 35 epochs. ∆log was initialized as er where r „

Uplogp.0001q, logp.01qq and its learning rate was 10´4. This was beneficial in early convergence
of the model.

For our experiments, the test accuracy that we report in §4 was measured at the checkpoint with the
highest validation accuracy.

All our experiments were conducted on a single A100 GPU (40GiB).

A.4 Benchmarking Running Times of DSS and S4

We compared the running time of DSS with that of the official S4 implementation on a single
NVIDIA 3090 GPU. Implementations of both S4 and DSS versions below utilize the PyKeOps
library for memory efficiency [CFG`21].

• Running times on the PATH-X task with input length L “ 16384 are summarized in Table 5.
For large batches the time taken to perform the FFT-based convolution and the feedforward part
dominates and hence the speedups of DSS over S4 are less pronounced. For smaller B, the time
taken to compute the kernel becomes significant and DSS provides upto 1.8ˆ speedup over S4.

• We also isolated and benchmarked the time taken to solely compute the S4 kernel vs the DSS kernel
(including the time to perform a backward pass on the sum of all kernel entries). As summarized in
Table 6, for large L, DSS kernel is more than 2ˆ faster than S4 kernel.

B 1 16

S4 133 470
DSSEXP 72 400
DSSSOFTMAX 75 410

Table 5: Time (msec) taken for a single gradient
update on PATH-X using hyperparameters in Table
4 and batch size B.

L 4096 16384 65536

S4 4.3 10.8 39.7
DSSEXP 4.2 7.0 18.1
DSSSOFTMAX 4.3 6.9 17.8

Table 6: Time (msec) taken to compute the kernel
of length L for N “ 64, H “ 256.

A.5 Additional Remarks

Casting the kernel to R In this work, we require the inputs u and outputs y to always be over
R, i.e., we assume Equation 5 to be with an explicit casting operation yk “ Rep

řk
j“0 Kj ¨ uk´jq.

For u over R, this further implies yk “
řk

j“0 RepKjq ¨ uk´j . Hence, we can explicitly cast the
complex-valued kernel produced by Proposition 1 to R during training (Algorithm 1, final step) and
cast the outputs over C to R during inference in §3.4.

17

A.6 Learned Parameters of DSSSOFTMAX

1.0 0.5 0.0
0

2

4

la
ye

r
text

1 0 1

listops

1.5 1.0 0.5 0.0

retrieval

4 2 0
real

image

4 3 2 1 0
real

0

2

4

la
ye

r

pathfinder

3 2 1 0
real

sc

4 3 2 1 0
real

pathx

arcsinh(imag / 2)
0.0
1.5
3.0
4.5
6.0
7.5

Figure 5: Trained Λ in DSSSOFTMAX for tasks described in §4.

18

A.7 Implementation of DSSSOFTMAX

def reciprocal(x, epsilon=1e-7):
x_conj = x.conj() # conjugate
return x_conj / (x*x_conj + epsilon)

def dss_kernel(L):
L: kernel length
Lambda: [N 2], log_dt: [H], W: [H N 2] (floats)
Lambda, log_dt, W = get_layer_parameters()
complex parameter stored as 2 floats denoting real,
imaginary parts as ADAM moments are non-linear

convert reals to complex
Lambda, W = map(torch.view_as_complex, (Lambda, W)) # [N], [H N]
dt_Lambda = log_dt.exp().unsqueeze(-1) * Lambda # [H L]
pos = torch.arange(L, device=W.device) # [L]
P = dt_Lambda.unsqueeze(-1) * pos # [H N L]

fast softmax using structure of P
Lambda_gt_0 = Lambda.real > 0 # [N]
if Lambda_gt_0.any():

with torch.no_grad():
P_max = dt_Lambda * (Lambda_gt_0 * (L-1)) # [H N]

P = P - P_max.unsqueeze(-1)
S = P.exp() # [H N L]
dt_Lambda_neg = dt_Lambda * (1 - 2*Lambda_gt_0) # [H N]
1 / S.sum(-1) == num / den
num = dt_Lambda_neg.exp() - 1 # [H N]
den = (dt_Lambda_neg * L).exp() - 1 # [H N]
W = W * num * reciprocal(den * Lambda) # [H N]

mixture of softmaxes
return torch.einsum('hn,hnl->hl', W, S).real # [H L]

def state_space(u):
u: batch of input sequences
B: batch size, H: hidden size, L: sequence length
B, H, L = u.shape
compute state space kernel for each of H coordinates
K = dss_kernel(L) # [H L]
multiply two degree L-1 polynomials
(u0 + u1*z ... uL-1*z^L-1)(K0 + K1*z ... KL-1*z^L-1)
zero-pad them to degree 2L-1 to avoid wrap-around
K_f = torch.fft.rfft(K, n=2*L) # [H L+1]
u_f = torch.fft.rfft(u, n=2*L) # [B H L+1]
y_f = K_f * u_f # [B H L+1]
y = torch.fft.irfft(y_f, n=2*L)[..., :L] # [B H L]
yi = ui*K0 + ... u0*Ki
residual connection, non-linearity, output projection not shown
return y

Figure 6: Core implementation of DSSSOFTMAX layer (§3.2) in PyTorch.

19

