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Abstract

Latent variable discovery is a central problem in data analysis with a broad range
of applications in applied science. In this work, we consider data given as an
invertible mixture of two statistically independent components, and assume that
one of the components is observed while the other is hidden. Our goal is to recover
the hidden component. For this purpose, we propose an autoencoder equipped
with a discriminator. Unlike the standard nonlinear ICA problem, which was
shown to be non-identifiable, in the special case of ICA we consider here, we show
that our approach can recover the component of interest up to entropy-preserving
transformation. We demonstrate the performance of the proposed approach in
several tasks, including image synthesis, voice cloning, and fetal ECG extraction.

1 Introduction

The recovery of hidden components in data is a long-standing problem in applied science. This
problem dates back to the classical PCA [44, 20], yet it has numerous modern manifestations and
extensions, e.g., kernel-based methods [47], source separation [11, 3], manifold learning [54, 46, 2, 9],
and latent Dirichlet allocation [4], to name but a few. Perhaps the most relevant line of work in the
context of this paper is independent component analysis (ICA) [23], which attempts to decompose an
observed mixture into statistically independent components.

Here, we consider the following ICA-related recovery problem. Assume that the data is generated as
an invertible mixture of two (not necessarily one dimensional) independent components, and that
one of the components is observed while the other is hidden. In this setting, our goal is to recover
the latent component. At first glance, this problem setting may seem specific and perhaps artificial.
However, we posit that it is in fact broad and applies to many real-world problems.

For example, consider thorax and abdominal electrocardiogram (ECG) signals measured during
labor for the purpose of determining the fetal heart activity. In analogy to our problem setting, the
abdominal signal can be viewed as a mixture of the maternal and fetal heart activities, the maternal
signal can be viewed as an accurate proxy of the maternal heart activity alone, and the fetal heart
activity is the hidden component of interest we wish to recover. In another example from a different
domain, consider a speech signal as a mixture of two independent components: the spoken text
and the speaker identity. Arguably, the speaker identity is associated with the pitch and timbre,
which are independent of information about the textual content, rhythm and volume. Consequently,
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recovering a speaker-independent representation of the spoken text facilitates speech synthesis and
voice conversion.

In this paper, we present an autoencoder-based approach, augmented with a discriminator, for this
recovery problem. First, we theoretically show that this architecture of solution facilitates the
recovery of the latent component up to an entropy-preserving transformation. Second, in addition
to the recovery of the latent component (the so-called analysis task), it enables us to generate new
mixtures corresponding to new instances of the observed independent component (the so-called
synthesis task). Experimentally, we show both analysis and synthesis results on several datasets,
consisting of simulated and real-world data. In particular, we demonstrate the proposed approach on
ECG analysis, image synthesis, and voice cloning tasks.

Our contributions are as follows. (i) We propose an easy-to-train mechanism for extraction of a
single latent independent component. (ii) We present a simple proof for the ability of the proposed
approach to recover the latent component. (iii) We experimentally demonstrate the applicability of
the proposed approach in the contexts of both analysis and synthesis tasks. Specifically, we show
applications to real-world data from different fields.

2 Related Work

The problem we consider in this work could be viewed as a simplified case of the classical formulation
of nonlinear ICA. Several algorithms have been proposed for recovery of the independent components,
assuming that (i) the mixing of the components is linear, and (ii) the components (with a possible
exception of one) are non-Gaussian; this case was proven to be identifiable [10, 13]. The nonlinear
case, however, i.e., when the mixing of the independent components is an arbitrary invertible function,
was proven to be non-identifiable in the general case [24].

Identifiable nonlinear ICA. Hyvarinen et al. [25] have recently described a general framework
for identifiable nonlinear ICA, generalizing several earlier identifiability results for time series,
e.g., [21, 22, 51], in which in addition to observing the data x, the framework requires an auxiliary
observed variable u, so that conditioned on u, the latent factors are independent (i.e., in contrast to
being marginally independent as in a standard ICA setting). The approach we propose in this work
falls into this general setting, as we assume that the auxiliary variable u is in fact one of the latent
factors, which immediately satisfies the conditional independence requirement. For this special case
we provide a simple and intuitive recovery guarantee.

Following works have recently extended the framework of Hyvarinen et al. [25] to generative
models [30], unknown intrinsic problem dimension [50], and multiview setting [17]. With respect to
iVAE [30], we allow for the recovery of high-dimensional components, whereas in iVAE, only one-
dimensional components are recovered. In addition, our work presents several important differences:
(i) we formulate our recovery guarantee result in terms of entropy-preserving map rather than
statistical identifiability. (ii) It allows for a compact proof of the recovery guarantee. (iii) We present
experiments on real-world data and comparisons to leading methods per application domain, whereas
in [30], the iVAE approach was mostly demonstrated on simulated data.

Disentangled representation learning methods. While the main interest in ICA has originally
been for purposes of analysis (i.e., recovery of the independent sources from the observed data),
the highly impressive achievements in deep generative modeling in recent years have drawn much
interest also to the direction of data synthesis (e.g., images) from independent factors. In the
research community, this direction is often termed learning of disentangled representations, i.e.,
representations in which modification of a single latent coordinate in the representation affects the
synthesized data by manipulating a single perceptual factor in the observed data, leaving other factors
unchanged. In a similar fashion to the ICA case, the task of learning disentangled representations in
the general case was proved to be non-identifiable [39]. Several methods for learning disentangled
representations have been recently proposed, most of which are based on a variational autoencoder
(VAE, Kingma and Welling [32]) formulation, and decompositions of the VAE objective, for
example [19, 31, 8, 7, 33, 6, 14]. GAN-based approaches for disentanglement have been proposed as
well [8, 5].

Domain confusion. Our proposed approach is based on the ability to learn an encoding in which
different conditions (i.e., states of the observed factor) are indistinguishable. Such a principle has been
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Figure 1: A diagram of the proposed approach. Learned functions are colored in blue, while the
objective functions are colored in gray.

in wide use in the machine learning community for domain adaptation tasks [15]. A popular means
to achieve this approximate invariance is via discriminator networks, for example, in [35, 42, 48, 43],
where the high-level mechanism is similar to the one proposed in this work, although the specifics
are different.

We remark that while the algorithm we propose here has been presented before, e.g., in the context of
singing voice conversion [43], to the best of our knowledge, it was not discussed in the context of
latent independent component recovery, and no identifiability results were shown.

3 Problem Formulation

Let X ∈ Rd be a random variable. We assume that X is generated via X = f(S, T ), where f is an
unknown invertible function of two arguments, and S ∈ S and T ∈ T are two random variables in
arbitrary domains, satisfying S ⊥⊥ T . We refer to S as the unobserved source that we wish to recover,
to T as the observed condition, and to X as the observed input.

Let {(si, ti)}ni=1 be n realizations of S × T , and for all i = 1, . . . , n, let xi = f(si, ti). Given only
input-condition pairs, i.e., {(xi, ti)}ni=1, we state two goals. First, from analysis standpoint, we aim
to recover the realizations s1, . . . sn of the unobserved source S. Second, from synthesis standpoint,
for any (new) realization t of T , we aim to to generate an instance x = f(si, t) for any i = 1, . . . , n.

4 Autoencoder Model with Discriminator

To achieve the above goals, we propose an autoencoder (AE) with a discriminator. The AE model is
denoted by (E,D), where the encoder E maps inputs x to codes s′ (analysis), and the decoder D
maps code-condition tuples (s′, t) to input reconstructions x̂ (synthesis), i.e., x E7−→ s′ and (s′, t)

D7−→ x̂.
The discriminator, denoted by g(·), maps codes s′ to predicted conditions t̂1.

We use two objective terms in a GAN-like minimax game:

min
E,D

max
g

[R (x,D(E(x), t))− λI (t, g(E(x)))] . (1)

The first objective, denoted byR, measures the discrepancy between an input x and its reconstruction
x̂ = D(E(x), t). The second objective, denoted by I, quantifies the independence between the
condition T and code S′ via a prediction t̂ = g(s′). In order to maximize −I (t, g(E(x))), the
discriminator aims at leveraging any information in the code S′ = E(X) on the condition T
(via a learned function g) to obtain an accurate prediction t̂ = g(s′). In order to minimize both
R (x,D(E(x), t)) and −I (t, g(E(x))), the autoencoder aims at reconstructing the input from the
code s′ and the condition t, while failing the discriminator. We will show formally and empirically,
that this results in an equilibrium in which S′ does not contain any information on T and contains all
the remaining information in X . Our approach is illustrated in Figure 1.

1This formulation of the discriminator does not capture all scenarios, however we use it here for simplicity.
In Section 4.2, we describe additional implementations of the discriminator.
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4.1 Recovery of the Latent Component

Let S′ = E(X) be a random variable representing the encoder output, and let X̂ = D(S′, T ) be a
random variable representing the decoder output.

Lemma 4.1 establishes that when the autoencoder is trained to perfect reconstruction and the learned
code is independent of the condition, the learned code contains the same information as S, thereby
proving that the latent component of interest can be recovered, up to an entropy-preserving transfor-
mation. The lemma is stated assuming S is discrete, and in terms of mutual information I(·; ·) and
entropy H(Y ) := −

∑
y∈Y p(y) log p(y), where Y is a random variable with density p, taking values

in Y . An equivalent result for the case of continuous S can be obtained by replacing the entropy term
with the limiting density of discrete points [27] H(Y ) := −

∫
y∈Y p(y) log p(y)

m(y)dy, where m(·) is
the limiting density.

Lemma 4.1. Suppose we train the autoencoder model to zero generalization loss, i.e., X̂ = X , and
impose on the code that S′ ⊥⊥ T . Then I(S;S′) = H(S) = H(S′).

Proof. Since S ⊥⊥ T , H(S|S′) = H(S|S′, T ) = H(S, T |S′, T ). Since X = f(S, T ) and f is
invertible, H(S, T |S′, T ) = H(X|S′, T ). Since X̂ = X , and since X̂ is a function of S′, T we have

H(X|S′, T ) = H(X̂|S′, T ) = H(X̂, S′, T )− h(S′, T ) = 0.

Therefore H(S|S′) = 0, and I(S;S′) = H(S)−H(S|S′) = H(S). Finally, since H(S′) ≤ H(S),
we have H(S) = I(S′;S) ≤ H(S′) ≤ H(S), hence H(S′) = H(S).

Lemma 4.1 has two important consequences. First, it shows that unlike the standard nonlinear ICA
problem, the problem we consider here allows for recovery of the latent independent component
of interest. More specifically, it proves that when the autoencoder yields perfect reconstruction
and condition-independent code, the learned code is a recovery of the random variable S, up to
entropy-preserving transformation. Second, the lemma prescribes a recipe for the practical solution
we present here. Requiring the autoencoder to generate accurate reconstruction X̂ of X ensures that
no information on S is lost in the encoding process. Independence of S′ and T is achieved implicitly;
it results from the equilibrium of the GAN-like minimax game (1), as the discriminator can benefit
from any mutual information between S′ and T .

4.2 Training Objectives

As described above, to obtain a code S′ that is independent of the condition T , we utilize a discrimi-
nator network, aiming to leverage information on T in S′ for prediction, and train the encoder E to
fail the discriminator, in a standard adversarial training fashion. Doing so pushes the learned codes
S′ towards being a condition-free encoding of X .

We propose to optimize the following objectives of the discriminator and the autoencoder:

Ldisc = min
g
I (t, g(E(x))) , (2)

LAE = min
E,D

[R (x,D(E(x), t))− λI (t, g(E(x)))] . (3)

The specific reconstruction and independence objective terms are application-dependent. In our
experiments, we make use of the following.

Reconstruction. We use standard reconstruction loss functions. In the experiments with images, `1
and SSIM loss [56] (and combinations of these) are used. `1 loss is also used in the audio experiments,
and MSE loss in the experiments with ECG signals.

Independence. The discriminator computes a map t̂ = g(s′), where s′ = E(x) is the code obtained
from the encoder and t̂ = g(s′) is the condition predicted by the discriminator. The discriminator is
trained to minimize the independence term I(t̂, t) (thus to leverage mutual information in S′ and T ).

When the condition takes values from a finite symbolic set, we train the discriminator as a classifier
that predicts the condition class from the code, and we set the independence term to I(t̂, t) =
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Cross Entropy(t̂, t). This is also known as a Domain Confusion term. Using this term, the autoencoder
is trained to produce codes that maximize the cross entropy with respect to the true condition, and the
equilibrium of the game is when this term equals the cross entropy of a random guess.

When the condition and its prediction take numerical values, i.e., t, t̂ ∈ R, we train the discriminator
as a regression model and set the independence term to: I(t̂, t) = −Correl2(t̂, t). We remark that
this term also equals the negative R2 term of a simple regression model, regressing t on t̂. Using this
term, the autoencoder is trained to produce codes for which the squared correlation with the condition
is minimized. As t̂ is a nonlinear function of s′ computed via a flexible model such as a neural net,(
Correl(t̂, t)

)2
= 0 implies that S′ and T are approximately statistically independent.

In addition, we also successfully train the discriminator in a contrastive fashion, i.e., to distinguish
between “true tuples” (s′, t) that correspond to samples (s, t) from the joint distribution of S and
T satisfying s′ = E(x) and x = f(s, t), and “fake tuples” (s′, t), where s′ = E(x) but x = f(s, t̃)

with t 6= t̃. The contrastive objective is then I(s′, t) = Cross Entropy(l̂, l), where l is the ground
truth true/fake label and l̂ = g(s′, t) is the predicted true/fake label made by the discriminator. Note
that this implementation deviates from the discriminator formulation we used thus far. Here, the
discriminator g(·, ·) maps tuples of codes and conditions (s′, t) to true/fake labels.

We remark that other possible implementations of the independence criterion can be utilized as well,
e.g., nonlinear CCA [1, 41] and the Hilbert-Schmidt Independence Criterion (HSIC) [18].

Optimizers. Our proposed approach utilizes two optimizers, one for the autoencoder and one for
the discriminator. The AE optimizer optimizes LAE by tuning the encoder and decoder weights.
The discriminator optimizer optimizes Ldisc by tuning the discriminator weights (which determine
the function g). A common practice in training GANs is to call the two optimizers with different
frequencies. We specify the specific choices used in our experiments in Appendix ??.

GAN real/ fake discriminator. Optionally, a GAN-like real / fake discriminator can be added as
an additional discriminator in order to encourage generating more realistic inputs. While we have a
successful empirical experience with such GAN discriminators (e.g., see Appendix ??), this is not a
core requirement of our proposed approach.

5 Experimental Results

In this section, we demonstrate the efficacy of the proposed approach in various settings, by reporting
experimental results obtained on different data modalities and condition types, in both analysis and
synthesis tasks. We present four applications here and additional two in the appendix.

We begin with a two dimensional analysis demonstration, in which the condition is real-valued.
Second, we demonstrate the utility of our approach for image manipulation, where the condition
is given as an image. Third, the proposed approach is used for voice cloning, which is primarily
a synthesis task with a symbolic condition. Fourth, we apply our approach to an ECG analysis
task, using a real-valued heartbeat signal as the condition. Additional experimental results in image
synthesis are described Appendix ?? and ??.

The network architectures and training hyperparameters used in each of the experiments are described
Appendix ??. In addition, codes reproducing some of the results in this manuscript are available
at https://github.com/shaham-lab/disilv.

5.1 2D Analysis Demonstration

In this example, we first generate the latent representation of the data by sampling from two indepen-
dent uniform random variables. We then generate the observed data via linear mixing. We consider
one of the latent components as the condition and train the autoencoder to reconstruct the observed
data, while obtaining code which is independent of the condition using the regression objective.We
use `1 as a reconstruction term. The top row in Figure 2 shows the latent, observed and reconstructed
data, as well as the distribution of the condition and the learned code. The bottom row in Figure 2
shows the results of a similar setup, except for the mixing which is now nonlinear. As can be seen,
the joint distribution of the learned code and the condition is approximately a tensor product of the
marginal distributions, which implies that the latent component is indeed recovered.
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Figure 2: Analysis demonstration. The reconstruction plots show train data in red and reconstructed
test data in blue. The learned code s′ is a recovery of the latent factor s, up to entropy-preserving
transformation (e.g., an arbitrary monotonic transformation). The approximate independence of
the S′ and the condition T can be recognized by noticing that the joint density of the code and the
condition is an outer product of the marginal distributions. The p-values of χ2 independence test for
the shown results are 0.75 (linear mixing) and 0.83 (nonlinear mixing)

5.2 Rotating Figures

In this experiment, we use the setup shown in Figure 3, in which two figures, Bulldog and Bunny,
rotate on discs. The rotation speeds are different and are not an integer multiple one of the other. The
figures are recorded by two static cameras, where the right camera captures both Bunny and Bulldog,
while the left camera captures only Bulldog. The cameras operate simultaneously, so that in each pair
of images Bulldog’s position with respect to the table is the same. This dataset was curated in [36].

We consider images from the right camera (which contain both figures) as the observed input x, and
the images from the left camera (which only show Bulldog) as the condition t. Note that the input
can be considered as generated from two independent sources, namely the rotation angles of Bulldog
and Bunny. The goal is to use x and t to recover the rotation angle s of Bunny2.

Once training is done, we use the autoencoder to generate new images by manipulating Bulldog’s
rotation angle while preserving Bunny’s. This is done by feeding x to the encoder, obtaining an
encoding s′, sampling an arbitrary condition t̃ and feeding (s′, t̃) through the decoder. We use `1 loss
for reconstruction, and contrastive loss to train the discriminator. Namely, we train the discriminator
to distinguish between (image, condition) tuples, which were shot at the same time, and tuples which
were not. Figure 4 shows an exemplifying result. As can be seen, the learned model disentangles
the rotation angles of Bunny and Bulldog and generates images in which Bunny’s rotation angle is
preserved while Bulldog’s is manipulated.

5.3 Voice Cloning

To demonstrate the application of the proposed method to voice conversion, we run experiments on a
non-parallel corpus, CSTR VCTK Corpus [55], which consists of 109 English speakers with several
accents (e.g., English, American, Scottish, Irish, Indian, etc.). In our experiments, we use a subset of
the corpus containing all the utterances for the first 30 speakers (p225- p256, without p235 and p242).

We construct the autoencoder to operate on Mel spectrograms using the speaker id as the condition.
The AE architecture was based on Jasper [38] blocks (specific details can be found in Appendix ??).
The decoder uses a learnable lookup table with 64-dimensional embedding for each speaker. For
the discriminator, we use the same architecture as in [42]. We use `1 loss for reconstruction, and
the discriminator is trained using domain confusion loss. Along with the reconstruction loss, in this

2A related work on this dataset was done in [49], although there the goal was the opposite one, i.e., to recover
the common information of the two views, which is the rotation angle of Bulldog.
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Figure 3: Experiment setup of the rotating figures. Bulldog and Bunny rotate in different speeds. The
right camera captures both Bulldog and Bunny, while the left camera captures only Bulldog. Images
from the right camera are considered as the input x, which is generated from two independent factors
– the rotation angles of the figures. Bulldog is considered as the condition t. The goal is to recover the
rotation angle of Bunny, and to manipulate a given input image x by plugging in a different condition
than the one present in the image. The fact that t and x are captured from two different viewpoints
prevents modification of the image simply by pasting Bulldog into x.

Figure 4: The rotating figures experiment. From left to right: (i) the input image to the encoder x,
(ii) the condition t corresponding to Bulldog in x as captured from the viewpoint of the left camera,
(iii) the reconstruction x̂ of x, (iv) a new condition plugged into the decoder, and (v) the resulting
manipulated image.

experiment we also train a real/fake discriminator, applied to the output of the decoder. To convert
the decoder output to waveform, we use a pre-trained melgan [34] vocoder.

Once the autoencoder is trained, we apply it to convert speech from any speaker to any other speaker.
Some samples of the converted speech are given at https://shaham-lab.github.io/disilv/.
To evaluate the similarity of the converted voice and the target voice, we use MCD (Mel Cepstral
Distortion) on a subset of the data containing parallel sentences of multiple speakers. Specifically,
MCD computes the `1 difference between dynamically time warped instance of the converted source
voice and a parallel instance of the target voice, which is a common evaluation metric for voice
cloning. We remark that the parallel data are used only for evaluation and not for training the
model. We use the script provided in [37] to compute the MCD and compare our proposed approach
to [12, 45] and references therein, which are all considered to be strong baselines, trained on the
VCTK dataset as well. The results, shown in Table 1, demonstrate that our approach outperforms
these strong baselines.

5.4 Fetal ECG extraction

In this experiment, we demonstrate the applicability of the proposed approach to non-invasive fetal
electrocardiogram (fECG) extraction, which facilitates the important task of monitoring the fetal
cardiac activity during pregnancy and labor. Following commonly-used non-invasive methods, we
consider extraction of the fECG based on two signals: (i) multi-channel abdominal ECG recordings,
which consist of a mixture of the desired fECG and the masking maternal electrocardiogram (mECG),
and (ii) thorax ECG recordings, which are assumed to contain only the mECG. In analogy to our
problem formulation (see Section 3), the desired unobserved source s denotes the fECG, the observed
condition t denotes the (thorax) mECG, and the input x denotes the abdominal ECG.
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Table 1: Voice cloning results: Mel Cepstral Distortion (MCD) in terms of mean (std). PPG, PPG2
results are taken from [45], VQ AVE and PPG GMM results are taken from [12].

METHOD TTS SKINS [45] GLE [12] VQ VAE PPG GMM PPG PPG2 OURS

MCD 8.76 (1.72) 7.56 8.43 8.57 9.19 (1.50) 9.18 (1.52) 6.27 (1.44)

Table 2: fECG extraction results. In the leftmost column, we present Rx, and in the other columns
we present Rs′ achieved by the different methods.

# OF SUBJECT INPUT OURS ADALINE ESN LMS RLS

TOP 5 2.23 (3.23) 6.86 (1.98) 6.46 (2.54) 1.99 (1.08) 2.60 (1.60) 1.03 (0.70)
TOP 10 1.20 (2.41) 5.43 (2.02) 4.22 (2.94) 1.19 (1.10) 1.56 (1.53) 0.75 (0.56)
TOP 20 0.66 (1.75) 3.53 (2.44) 2.59 (2.63) 0.71 (0.91) 0.89 (1.26) 0.51 (0.46)
ALL 0.30 (1.17) 1.84 (2.16) 1.32 (2.08) 0.36 (0.68) 0.40 (0.94) 0.26 (0.38)

Dataset. We consider the dataset from [52], which is publicly available3 on PhysioNet [16]. This
dataset was recently published and is part of an ongoing effort to establish a benchmark for non-
invasive fECG extraction methods. The dataset consists of ECG recordings from 60 subjects. Each
recording consists of na = 24 abdominal ECG channels and nt = 3 thorax ECG channels. In
addition, it contains a pulse-wave doppler recording of the fetal heart that serves as a ground-truth.
See Appendix ?? for more details.

Model training. The input-condition pairs (xi, ti) are time-segments of the abdominal ECG record-
ings (xi ∈ Rna×nT ) and the thorax ECG recordings (ti ∈ Rnt×nT ), where the length of the
time-segments is set to nT = 2, 000 (4 seconds). We train a separate model for each subject based on
a collection of n input-condition pairs {(xi, ti)}ni=1 of time-segments.

The encoder is based on a convolutional neural network (CNN), so that the obtained codes s′i =
E(xi) ∈ Rnd×nT are time-segments, where the dimension of the code is set to nd = 5. For more
details on the architecture, model training, and hyperparameters selection, see Appendix ??.

We note that the training is performed in an unsupervised manner, i.e., we use the ground-truth
doppler signal only for evaluation and not during training.

Qualitative evaluation. In Figure 5 we present an example of an input-condition pair (xi, ti) and
the obtained code s′i = E(xi, ti). We see that the abdominal channels consist of a mixture of the
fECG and the mECG, where the fECG is significantly less dominant than the mECG and might even
be completely absent from some of the channels. In addition, we see that the thorax channels are
affected by the mECG only. Lastly, we see that the obtained code captures the fECG without any
noticeable trace of the mECG. In addition, we present the projections of 1, 000 sequentially-sampled
inputs xi (abdominal channels), conditions ti (thorax channels), and their codes s′i = E(xi) on their
respective 3 principal components. We color the projected points by the periodicity of the mECG
(middle column), computed from the thorax channels, and by the periodicity of the fECG (rightmost
column), computed from the ground-truth doppler signals. We see that the PCA of the abdominal and
thorax channels are similar, implying that the mECG dominates the mixture. In addition, we see that
the color of the PCA of the abdominal and thorax channels according to the mECG (middle column)
is similar and smooth, unlike the color by the fECG (rightmost column). In contrast, the PCA of
the code is different (bottom row) and only the color by the fECG is smooth (rightmost column),
indicating that the code captures the fECG without a significant trace of the mECG, as desired.

Baselines. We consider four baselines taken from a recent review [28]. Specifically, we focus on
methods that utilize reference thorax channels. The first two baselines are based on adaptive filtering,
which is considered to be the traditional approach for fECG extraction: least mean squares (LMS)
and recursive least squares (RLS). This approach was first introduced by Widrow et al. [57], and it
is still considered to be relevant in recent studies [40, 58, 53]. The third baseline is ADALINE [29]
which utilizes neural networks adaptable to the nonlinear time-varying properties of the ECG signal.
The fourth baseline is based on an echo state network (ESN) [26].

3https://physionet.org/content/ninfea/1.0.0/
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Figure 5: Example of an input-condition pair (xi, ti) and the obtained code s′i. The duration of the
presented time segment is 2 sec. Leftmost column: the raw channels. Middle column: the PCA
embedding of the samples colored by the mECG. Rightmost column: the PCA embedding of the
samples colored by the fECG. Top row: the abdominal channels xi (for brevity only 5 channels are
presented). Middle row: the thorax channels ti. Bottom row: the obtained code s′i.

Quantitative evaluation. To the best of our knowledge, there is no gold-standard nor definitive
evaluation metrics for fECG extraction. Here, based on the ground-truth doppler signal, we quantify
the enhancement of the fECG and the suppression of the mECG as follows.

First, we compute the principal component of the input xi. Second, we compute the one-sided auto-
correlation of the principal component, and denote it by Axi

. Then, we quantify the average presence
of the fECG in the inputs xi by computing: Ā(f)

x = 1
ns

∑ns

i=1Axi
(τ

(f)
i ), where τ (f)

i denotes the
periods of the fECG obtained from the doppler signals, and ns denotes the number of time segments
in the evaluated recording. Similarly, we compute Ā(m)

x = 1
ns

∑ns

i=1Axi(τ
(m)
i ), where τ (m)

i denotes
the periods of the mECG obtained from the thorax signals. Finally, to quantify the relative presences
of the signals, we compute the ratio Rx =

Ā(f)
x

Ā
(m)
x

. We apply the same procedure to the codes s′i,
resulting in Rs′ . When evaluating the baselines, we consider the signals obtained after the mECG
cancellation as the counterparts of our code signals.

In Table 2, we present the average ratios in the input, code, and baselines over all the subjects
(see Appendix ?? for results per subject). We note that not all the subjects in the dataset include a
noticeable fECG in the abdominal recordings. Therefore, we present results over subsets of top k
subjects showing highest average ratios Rx. We see that our method significantly enhances the fECG
with respect to the mixture, and it outperforms the tested baselines.

6 Conclusion

In this paper, we present an autoencoder-based approach for single independent component recovery.
The considered problem consists of observed data (mixture) generated from two independent compo-
nents: one observed and the other hidden that needs to be recovered. We theoretically show that this
ICA-related recovery problem can be accurately solved, in the sense that the hidden component is
recovered up to an entropy-preserving function, by an autoencoder equipped with a discriminator. In
addition, we demonstrate the relevance of the problem and the performance of the proposed solution
on several tasks, involving image manipulation, voice cloning, and fetal ECG extraction.

Future research will address the limitations of this work. Lemma 4.1 assumes zero generalization loss,
i.e., convergence to a global minimum, which is often not achieved in practice. In future work we
plan to generalize this statement and assume bounded generalization loss. Another future direction
will address noise robustness. The current setting does not consider any noise, either in t or in x, or
even in f . For example, in the presence of noise, perfect reconstruction is undesired, and other losses
need to be developed and used.
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