
Generalized Laplacian Eigenmaps

Hao Zhu†,§ Piotr Koniusz *,§,†
§Data61/CSIRO †Australian National University

allenhaozhu@gmail.com, piotr.koniusz@data61.csiro.au

Abstract

Graph contrastive learning attracts/disperses node representations for similar/dis-
similar node pairs under some notion of similarity. It may be combined with a
low-dimensional embedding of nodes to preserve intrinsic and structural properties
of a graph. COLES, a recent graph contrastive method combines traditional graph
embedding and negative sampling into one framework. COLES in fact minimizes
the trace difference between the within-class scatter matrix encapsulating the graph
connectivity and the total scatter matrix encapsulating negative sampling. In this
paper, we propose a more essential framework for graph embedding, called Gen-
eralized Laplacian EigeNmaps (GLEN), which learns a graph representation by
maximizing the rank difference between the total scatter matrix and the within-class
scatter matrix, resulting in the minimum class separation guarantee. However, the
rank difference minimization is an NP-hard problem. Thus, we replace the trace
difference that corresponds to the difference of nuclear norms by the difference of
LogDet expressions, which we argue is a more accurate surrogate for the NP-hard
rank difference than the trace difference. While enjoying a lesser computational
cost, the difference of LogDet terms is lower-bounded by the Affine-invariant
Riemannian metric (AIRM) and upper-bounded by AIRM scaled by the factor of√
m. We show on popular benchmarks/backbones that GLEN offers favourable

accuracy/scalability compared to state-of-the-art baselines.

1 Introduction

Laplacian Eigenmaps [3] and IsoMap [36] are graph embedding methods that reduce the dimension-
ality of data by assuming the data exists on a low-dimensional manifold. The objective function in
such models encourages node embeddings to lie near each other in the embedding space if nodes are
close to each other in the original space. While the classical methods capture the related node pairs,
they neglect modeling unrelated node pairs.

In contrast, modern graph embedding models such as [35, 10, 44] and Graph Contrastive Learning
(GCL) [37, 56, 11, 57, 55] are unified under the (Sampled) Noise Contrastive Estimation framework,
called (Sampled)NCE [27, 23]. Most of GCL methods do not incorporate the graph information into
the loss but follow the setting from computer vision, i.e., they assume that randomly drawn pairs
should be dissimilar, whereas the original sample and its augmentations should be similar [39]. In
contrast, COntrastive Laplacian EigenmapS (COLES) [55] is a framework which combines a (graph)
neural network with Laplacian eigenmaps utilizing the graph Laplacian matrix within a contrastive
loss. Based on the NCE framework, COLES minimizes the trace difference of Laplacians.

In this paper, we analyze the relation among within-class, between-class and total scatter matrices
under the rank inequality, and prove that, under a simple assumption, the distance between any
dissimilar (negative) samples would be greater/equal than the inter-class distance between their
corresponding class centers. Based on such a condition, we derive GLEN, a reformulation of graph
embedding into a rank difference problem, which is a more general framework than other graph

*The corresponding author. Code: https://github.com/allenhaozhu/GLEN.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
1

https://github.com/allenhaozhu/GLEN

embedding frameworks, i.e., under specific relaxations of the rank difference problem, we can recover
different frameworks.To that end, we demonstrate how to optimize the rank difference problem
with a difference of LogDet expressions, a differentiable relaxation suitable for use with (graph)
neural networks. We consider other surrogates of the rank difference problem, based on the Nuclear
norm, γ-nuclear norm, Schatten norm, and the Geman norm. Moreover, we provide theoretical
considerations regarding the low-rank optimization and connection to the Riemannian manifold in
order to interpret our approach.

In summary, our contributions are threefold:

i. We propose a rank-based condition connecting within-class, between-class and total scatter
matrices under which we provide the minimum class separation guarantee. We propose a loss
function, Generalized Laplacian EigenNaps (GLEN), that realizes this condition.

ii. As the rank difference problem is NP-hard, we consider a difference of LogDet surrogate to learn
node embeddings, as opposed to the trace difference (an upper bound of the difference of LogDet
terms) used by other graph embedding models. We also consider other surrogates.

iii. We study the distance between symmetric positive (semi-)definite matrices and the LogDet-based
relaxation of GLEN. While enjoying fewer computations, the difference of LogDet terms of
GLEN enjoys the Affine-invariant Riemannian metric (AIRM) for a lower bound and AIRM
scaled by

√
m as an upper bound. We explain how GLEN connects to other graph embeddings.

2 Related Works
Graph Embeddings. By assuming that the data lies on a low-dimensional manifold, graph em-
bedding methods such as Laplacian Eigenmaps [3] and IsoMap [36] optimize low-dimensional
data embeddings. These methods [5] construct a similarity graph by measuring the similarity of
high-dimensional feature vectors and embed the nodes into a low-dimensional space.

DeepWalk [31] uses truncated random walks to explore the graph structure, and the skip-gram model
for word embedding to determine the embedding vectors of nodes. By setting the walk length to
one and using negative sampling [26], LINE [35] explores a similar idea with an explicit objective
function while REFINE [52] imposes additional orthogonality constraints which deem REFINE
extremely fast. Node2Vec [9] interpolates between breadth- and depth-first sampling. COLES [55]
unifies traditional graph embedding and negative sampling by introducing a positive contrastive term
that captures the graph structure, and a negative contrastive random sampling. COLES solves the
trace difference problem akin to traditional graph embedding models [43]. In this paper, we propose
a more general loss for graph embedding, i.e., COLES solves the trace difference (Nuclear norms
difference) relaxation of GLEN.

Graph embedding techniques [43] provide a general framework for dimensionality reduction such
as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Pre-
serving Projections (LPP) [12]. All methods within this category can be considered as solving the
same problem under varying assumptions, i.e., maximising the intra- and inter-class separation by
optimizing the trace difference, also used in metric learning [22]. However, such a family of objective
functions is not motivated by the guarantee on the minimum class separation between feature vectors
from different categories. GLEN, in its purest NP-hard form, provides the minimum class separation
guarantee and can be realised by several formulations depending on chosen trade-offs.

Unsupervised Representation Learning for Graph Neural Networks (GNN). Unsupervised
GNN training can be reconstruction-, contrastive- or diffusion-based. To train a graph encoder
in an unsupervised manner, GCN [17] minimizes a reconstruction error which only considers the
similarity matrix and ignores the dissimilarity information. At various scales of the graph, contrastive
methods determine the positive and negative sets. For example, local-local CL and global-local CL
strategies are highly popular. GraphSAGE [10], inspired by DeepWalk [31], uses the contrastive
loss which encourages neighbor nodes to have similar representations, while preserving dissimilarity
between representations of disparate nodes. DGI [37], inspired by Deep InfoMax (DIM) [13], uses
an objective with global-local sampling strategy to maximize the Mutual Information (MI) between
global and local graph embeddings. Augmented Multiscale Deep InfoMax (AMDIM) [2] maximizes
MI between multiple data views. MVRLG [11] contrasts encodings from first-order neighbors
and a graph diffusion. Fisher-Bures Adversary GCN [34] treats the graph as generated w.r.t. some
observation noise. COSTA [50] constructs the views by injecting features with the random noise.

2

(a) Rank(Sb) = 0 (b) Rank(Sb) = 1 (c) Rank(sb) = 2

Figure 1: Three cases under our Condition 1, i.e., Rank(St) = Rank(Sw)+Rank(Sb). The red line
and plane indicate the space of class centers. The black dots represent class centers. Other colored
lines or ellipses represent the spaces of different categories. We show a non-exhaustive set of cases.

However, such contrastive approaches often require thousands of epochs to converge and perform
well. In addition, many contrastive losses have an exponential increase in memory overhead w.r.t. the
number of nodes. In contrast, our method does not explicitly use the local-local setting but the total
scatter matrix, and thus saves computational and storage cost.

Linear GNNs, i.e., SGC [42] and S2GC [53], capture the neighborhood and increasingly larger
neighborhoods of each node due to the diffusion, respectively. SGC and S2GC have no projection
layer, thus the size of embeddings is equal to the input dimension. GLEN can learn a projection layer
in an unsupervised manner with a linear function or Multi-Layer Perceptron (MLP) applied to linear
GNNs or any other GNN models [18, 34, 49], etc.

3 Preliminaries

Notations. Let G=(V,E) be a simple, connected and undirected graph with n= |V | nodes and
m= |E| edges. Let i ∈ {1, · · · , n} be the node index of G, and dj be the degree of node j of G.
Let W be the adjacency matrix, and D be the diagonal matrix containing degrees of nodes. Let
X ∈ Rn×d denote the node feature matrix where each node v is associated with a feature vector
xv ∈ Rd. Let the normalized graph Laplacian matrix be defined as L = I− W̃ ∈ Sn+, a symmetric
positive semi-definite matrix and W̃ = D−1/2WD−1/2. Sm+(+) is a set of symmetric positive (semi-
)definite matrices. Let Z = fΘ(X) ∈ Rn×m be a generalized node embedding, i.e., X could be
identity matrix (e.g., no node attributes), fΘ(X) could be GNN or a linear function with parameters
Θ. Scalars/vectors/matrices are denoted by lowercase regular/lowercase bold/uppercase bold fonts.

3.1 Scatter Matrices

Below are given standard definitions of scatter matrices, including the total scatter matrix St ∈ Sm+(+),
the within-class matrix Sw ∈ Sm+(+), and between-class matrix Sb ∈ Sm+(+):

St =

n∑
i=1

(zi − z̄) (zi − z̄)
⊤
= Z⊤(I− W̃t

)
Z where W̃t =

1

n
ee⊤,

Sw =

n∑
i=1

(zi − µyi) (zi − µyi)
⊤
= Z⊤(I− W̃w

)
Z where W̃w =

C∑
c=1

1

nc
ecec⊤,

Sb =

C∑
c=1

nc (µc − z̄) (µc − z̄)
⊤
. (1)

Let e be an n-dimensional vector with all coefficients equal one, I be an identity matrix, St be the
total scatter (covariance) matrix, and z̄ ∈ Rm be the mean of all samples. Let µyi

∈ Rm be the class
center of the i-th sample and µc ∈ Rm be the c-th class center. Let the total number of categories
be given by C, whereas nc be the number of samples for the c-th category. Let ec ∈ Rn be a vector
where a given coefficient indexed by node is equal one if its node is of class c, otherwise it is equal
zero. We note that both St and Sw can take a form akin to Laplacian eigenmaps such that W̃t and
W̃w are the corresponding normalized adjacent matrices. Let us also define graph Laplacian matrices

3

Lt = I− W̃t ∈ Sn+ and Lw = I− W̃w ∈ Sn+ which will be used in the sequel. Importantly, let us
assume that a graph Laplacian matrix L containing graph links could be seen as a noisy version of
Lw in which all nodes of a given class c connect under the weight equal 1/nc.

Observe that St = Sw + Sb. Thus, Rank(St) ≤ Rank(Sw) + Rank(Sb) due to the rank inequality.
Below we highlight the condition underpinning the subsequent motivation:

Condition 1. Rank(St) = Rank(Sw) + Rank(Sb).

3.2 Motivation

Figure 1 shows some three optimal solutions for Condition 1. The rank of between-class scatter
matrix Sb for the whole dataset is at most C − 1 (where C is the number of classes). Since
Rank(AB) ≤ min(Rank(A),Rank(B)), we have† Rank(S−1

w Sb) ≤ Rank(Sb) ≤ C − 1. The
rank is the number of non-zero eigenvalues of a matrix so S−1

w Sb has at most C − 1 non-zero
eigenvalues. Condition 1 implies that Rank(S−1

w Sb) = 0 results in the minimum class separation
guarantee under that condition.
Theorem 1. Let the feature dimension be larger than the class number (i.e., m > C) and Condition 1
hold. Then, the minimum class separation is equal to the distance between class centers. In other
words, the distance between any two vectors zi and zj with labels yi ̸= yj is greater/equal the
distance between class centers µyi

and µyj
:

∥µyi
− µyj

∥2 ≤ ∥zi − zj∥2, ∀yi ̸= yj , i, j ∈ {1, · · · , C}. (2)

Proof. As Sw is the orthogonal complement of Sb, i.e., S−1
w Sb = 0, Sw + Sb = UΣU⊤, Sw =

U1:kΣ1:kU
⊤
1:k and Sb = Uk+1:mΣk+1:mU⊤

k+1:m where 1 ≤ k < m. Let zi = µyi +U⊤ϵi where
ϵi is the representation under the basis U and ϵ(k+1:m),i = 0 because only top k components 1 :k
represent Sw. Thus, the orthogonal projection Uk+1:m fulfills ∥Uk+1:m(zi − zj)∥2 ≤ ∥zi − zj∥2.
Moreover, Uk+1:m(zi − µyi

) = Uk+1:m(U⊤ϵi) = 0. That is, all {zi : yi = c} are projected onto
the mean µc. Thus, the inequality in Eq. 2 holds.

Theorem 1 guarantees the worst inter-class distance§. Figure 1 shows some cases that meet Condi-
tion 1. Figure 1a shows the case for which the class centers collapse to a single point and thus the
inter-class distance equals zero (collapse of the feature space). Figures 1b and 1c show other cases.

4 Methodology

Condition 1 points to a promising research direction in learning discriminative feature spaces.
However, optimizing over the rank is NP-hard and non-differentiable. In what follows, we provide the
formulation of Generalized Laplacian EigeNmaps (GLEN) and its relaxation, which is differentiable.

4.1 Generalized Laplacian Eigenmaps

As solving Condition 1 is NP-hard, we propose a relaxation where Rank(St) is encouraged to be as
large as possible (bounded by the feature dimension m). On the contrary, if Rank(St) ≈ Rank(Sb)
then the small Rank(Sw) limits the feature diversity. In the extreme case, if Rank(Sw) = 0, the
feature representation collapses. Larger 0 < Rank(Sb) ≤ C − 1 improves the inter-class diversity.

We propose a new Generalized Laplacian EigeNmaps (GLEN) framework for unsupervised
network embedding. In the most general form, GLEN maximizes the difference of rank terms:

Θ∗ = argmax
Θ

Rank
(
St

(
fΘ(X)

))
− Rank

(
Sw

(
fΘ(X)

))
. (3)

As the general matrix Rank Minimization Problem (RMP) [7] is NP-hard and so is the difference of
rank terms in Eq. 3, we relax this problem by the difference of LogDet terms that serve as a surrogate
of the NP-hard problem. Appendix I derives GLEN from the SampledNCE framework.

†We write S−1
w but if Sw is rank-deficient, −1 is replaced with the Moore–Penrose inverse (pseudo-inverse).

§Other graph embedding models that maximize/minimize inter-/intra-class distances have no such guarantees.

4

GLEN (LogDet relaxation).

I. Define:
δ(St,Sw;α, λ) = log det(I+ αSt)− λ log det(I+ αSw), (4)

where λ ≥ 0 controls the impact of log det(Sw). If λ = 0, δ(·) encourages Rank(fΘ(X)) = m.

II. Let St = fΘ(X)⊤LtfΘ(X) and Sw = fΘ(X)⊤LwfΘ(X). Then the LogDet relaxation
becomes:

Θ∗ = argmax
Θ

log det
(
I+ αfΘ(X)⊤LtfΘ(X)

)
− log det

(
I+ αfΘ(X)⊤LwfΘ(X)

)
, (5)

where I ensures I + αfΘ(X)⊤LfΘ(X) > 0 as fΘ(X)⊤LfΘ(X) may be Sm+ leading to
det(fΘ(X)⊤LfΘ(X)) = 0. Thus, we use log det(I+ αS) as a smooth surrogate for Rank(S).

Proposition 1. Let σ(S) be the vector of eigenvalues of matrix S ∈ Sm+(+), and Eig(S) be a
diagonal matrix with σ(S) as its diagonal. Let S,S′ ∈ Sm+(+) and α > 0. Then, δ(S,S′;α, λ) =
δ(Eig(S),Eig(S′);α, λ), i.e., δ(·) depends on eigenvalues rather than eigenvectors of S and S′.

Proof. The proof follows from the equality det(I+ αS) =
∏

i σi(I+ αS) =
∏

i(1 + ασi(S)) =
det(I + αEig(S)). Thus δ(S,S′;α, λ) = log det(I + αS) − λ log det(I + αS′) = log det(I +
αEig(S))− λ log det(I+ αEig(S′)) = δ(Eig(S),Eig(S′);α, λ).

5 Theoretical Analysis

Below, we compare our approach and other methods by looking at (i) the low-rank optimization and
(ii) the non-Euclidean distances between symmetric positive (semi-)definite matrices.

5.1 Nuclear Norm vs. LogDet for Rank Minimization

Claim 1. COLES [55] is a convex relaxation (using the nuclear norm) of the rank difference in Eq. 3:

Θ∗ = argmax
Θ

Tr
(
fΘ(X)⊤LtfΘ(X)

)
− λTr

(
fΘ(X)⊤LwfΘ(X)

)
s.t. Ω(fΘ(X)) = B, (6)

where Tr
(
fΘ(X)⊤LtfΘ(X)

)
= ∥St∥∗ and Tr

(
fΘ(X)⊤LwfΘ(X)

)
= ∥Sw∥∗.

The nuclear norm ∥ · ∥∗ can be regarded as the ℓ1 norm over singular values. As the ℓ1 norm
induces sparsity, the nuclear norm encourages sparse singular values leading to low-rank solutions.
If fΘ(X)⊤fΘ(X) is restricted to be diagonal, ∥fΘ(X)⊤fΘ(X)∥∗ = ∥Diag

(
fΘ(X)⊤fΘ(X)

)
∥1

and the nuclear norm surrogate for the rank minimization reduces to the ℓ1 norm surrogate for the
cardinality (rank) minimization. However, for the m-dimensional embedding, the solution of trace
difference lies on a subspace of dimension less than m− 1 [3]. Thus, the constraint Ω(fΘ(X)) = B
prevents the dimensional collapse, i.e., fΘ(X)⊤fΘ(X) = I.

Compared with the trace-based relaxation, LogDet is more suitable for cardinality minimization as
it is less sensitive to large singular values. Also, the difference of LogDet terms does not require
decorrelation of features to prevent the dimensional collapse. We discuss this matter in Appendix A.
In our case, the difference of LogDet terms is always bounded by the difference of trace terms as
follows.
Proposition 2. Given an embedding matrix fΘ(X) ∈ Rn×m, a fixed small constant α > 0, we have
the following inequality:

log det (I+ αSt)− log det (I+ αSw) < αTr(St − Sw). (7)

Proof.
log det (I+αSt)−log det (I+ αSw) = log det (I+αEig(St))−log det (I+ αEig(Sw))

= Tr (log(I+ αEig(St)− log(I+ αEig(Sw)) < αTr(St − Sw).
(8)

Proposition 2 is also related to the inequality Rank(S) ≤ log det(I+ S) ≤ Tr(S) [7].

5

5.2 Distance between Symmetric Positive (Semi-)Definite Matrices.

Below, we provide a perspective on non-Euclidean distances between matrices from Sm+(+) to compare
the proposed method with other graph embeddings, e.g., Laplacian Eigenmaps [3] and COLES [55].
For clarity, we also reformulate the Laplacian eigenmaps and COLES into forms in Prop. 3 and 4.

Proposition 3. Laplacian Eigenmaps [3] method equals to maximizing the Frobenius norm:

Θ∗ = argmax
Θ

∥fΘ(X)fΘ(X)⊤ − Lw∥2F , s.t. fΘ(X)⊤fΘ(X) = I. (9)

Proposition 4. Contrastive Laplacian Eigenmaps [55] equals to maximizing the difference of
Frobenius norm terms:

Θ∗=argmax
Θ

∥fΘ(X)fΘ(X)⊤−Lw∥2F−∥fΘ(X)fΘ(X)⊤−Lt∥2F , s.t. fΘ(X)⊤fΘ(X) = I. (10)

Proof.

∥fΘ(X)fΘ(X)⊤− L∥2F = Tr(fΘ(X)fΘ(X)⊤fΘ(X)fΘ(X)⊤− 2fΘ(X)LfΘ(X)⊤ + L⊤L)

= constant− 2Tr(fΘ(X)LfΘ(X)⊤) ≥ 0.
(11)

Note that Eq. 9 encourages the linear kernel matrix fΘ(X)fΘ(X)⊤ to be close to W̃w while Eq. 10
encourage the linear kernel matrix to be far from the W̃w at the same time.

Our loss follows the non-Euclidean geometry. Below, we demonstrate the relation of Eq. 4 to the
Affine-invariant Riemannian metric (AIRM). Indeed, our loss function is bounded from both sides by
AIRM and AIRM scaled by

√
m respectively.

Proposition 5. Let σ(S) be the vector of eigenvalues of S, for any matrix St,Sw ∈ Sm+(+), we have:

∥ log((I+ St)
−1/2(I+ Sw)(I+ St)

−1/2)∥F ≤ log det(I+ St)− log det(I+ Sw)

≤
√
m∥ log((I+ St)

−1/2(I+ Sw)(I+ St)
−1/2)∥F .

(12)
Proof. Given A = I+ St and B = I+ Sw, we have:

log det(A)− log det(B) = log(det(A) det(B−1)) = log(det(A) det(B−1/2) det(B−1/2))

= Tr log(B−1/2AB−1/2).
(13)

We have Tr(A) = ∥σ(A)∥1, ∥A∥F = ∥σ(A)∥2 and ∥x∥2 ≤ ∥x∥1 ≤
√
m∥x∥2.

Thus, Eq. 4 is trying to find a mapping function maximizing an approximation of AIRM distance
between the total scatter matrix and the within-class matrix.

5.3 Relationship of the LogDet model to the Schatten norm

Below we demonstrate the relationship between the LogDet, Trace and Rank operators, respectively,
under the Schatten norm [28] framework. Essential is the following family of objective functions:

fα,γ(S) =
1

c

m∑
i=1

log (ασi(S) + γ) = log det (αS+ γI) , α, γ ≥ 0, (14)

where σi(S), i = 1, . . . ,m, are the eigenvalues of either St ∈ Sm+(+) or Sw ∈ Sm+(+), which are the
total scatter matrix and the within scatter matrix from our experiments, respectively. Moreover, we
define a normalization constant c where c = 1 or c = log(α+ γ) as detailed below.

Given c = 1, we have:

lim
p→0

Sp
γ,p(S)−m

p
= f1,γ(S) where Sγ,p(S) =

(m∑
i=1

(σi(S) + γ)
p
)

)1/p

. (15)

6

From the asymptotic analysis, we conclude that the LogDet is an arbitrarily accurate rational ap-
proximation of ℓ0 (the so-called pseudo-norm counting non-zero elements) over the eigenvalues of
S.

The case p = 1 yields the nuclear norm (trace) which makes the ‘smoothed’ rank difference of
GLEN become equivalent of COLES. The opposing limit case, denoted as p = 0 recovers the LogDet
formula.

One can also recover the exact Rank from the LogDet formulation by:

lim
α→∞

fα,1(S) = Rank(S) if c = log(1 + α). (16)

This is apparent because:

lim
α→∞

log(1 + ασi)

log(1 + α)
= 1 if σi > 0 and lim

α→∞

log(1 + ασi)

log(1 + α)
= 0 if σi = 0. (17)

6 Experiments

We evaluate GLEN (its relaxation) on transductive and inductive node classification tasks and
node clustering. GLEN is compared to popular unsupervised, contrastive, and (semi-)supervised
approaches. Except for the classifier, unsupervised models do not use labels. To learn similarity/dis-
similarity, contrastive models employ the contrastive setting. Labels are used to train the projection
layer and classifier in semi-supervised models. A fraction of nodes (i.e., 5 or 20 per class) used for
training are labeled for semi-supervised setting. A SoftMax classifier is used for (semi-)supervised
models, while a logistic regression classifier is used for unsupervised and contrastive approaches. See
Appendix E for implementation details.

Datasets. GLEN is evaluated on four citation networks: Cora, Citeseer, Pubmed, Cora Full [17, 4]
for transductive setting. We also employ the large scale Ogbn-arxiv from OGB [14]. See Appendix D
for details of datasets.

Metrics. As fixed data splits [45] often on transductive models benefit models that overfit, we average
results over 50 random splits for each dataset. We evaluate performance for 5 and 20 samples per
class. Nonetheless, we also evaluate our model on the standard splits.

Baseline models. We group baseline models into unsupervised, contrastive and (semi-)supervised
methods, and implement them in the same framework/testbed. Contrastive methods include Deep-
Walk [31], GCN+SampledNCE developed as an alternative to GraphSAGE+SampledNCE [10],

Table 1: Mean classification accuracy (%) and the standard dev. over 50 random splits. Numbers of
labeled samples per class are in parentheses. The best accuracy per column is in bold. Models are
organized into semi-supervised, contrastive and unsupervised groups. OOM means out of memory.

Method Cora Citeseer Pubmed Cora Full
(5) (20) (5) (20) (5) (20) (5) (20)

Semi-
supervised

GCN 67.5±4.8 79.4±1.6 57.7±4.7 69.4±1.4 65.4±5.2 77.2±2.1 49.3±1.8 61.5±0.5
GAT 71.2±3.5 79.6±1.5 54.9±5.0 69.1±1.5 65.5±4.6 75.4±2.3 43.9±1.5 56.9±0.6
MixHop 67.9±5.7 80.0±1.4 54.5±4.3 67.1±2.0 64.4±5.6 75.7±2.7 47.5±1.5 61.0±0.7

Contrastive

DeepWalk 60.3±4.0 70.5±1.9 38.3±2.9 45.6±2.0 60.3±5.6 70.8±2.6 38.9±1.4 51.1±0.7
GCN+SampledNCE 61.3±4.3 74.3±1.6 42.3±3.4 56.8±1.9 60.9±5.7 70.3±2.5 32.7±1.9 45.2±0.9
SAGE+SampledNCE 65.0±3.5 73.8±1.5 48.0±3.5 56.5±1.6 64.1±6.1 74.6±1.9 35.0±1.4 43.6±0.6
Graph2Gauss 72.7±2.0 76.2±1.1 60.7±3.5 65.7±1.5 67.6±3.9 74.1±2.1 38.9±1.3 49.3±0.5
SCE 74.3±2.7 80.2±1.1 65.4±2.9 70.7±1.2 65.7±6.0 75.8±2.2 50.7±1.5 60.6±0.6
DGI 72.9±4.0 78.1±1.8 65.7±3.6 71.1±1.1 65.3±5.7 73.9±2.3 50.5±1.4 58.4±0.6
COLES-GCN 73.8±3.4 80.8±1.3 66.0±2.6 69.0±1.3 62.7±4.6 72.7±2.1 47.3±1.5 58.9±0.5
COLES-GCN (Stiefel) 75.0±3.4 81.0±1.3 67.9±2.3 71.7±0.9 62.6±5.0 73.2±2.6 47.6±1.2 59.2±0.5
COLES-S2GC 76.5±2.6 81.5±1.2 67.5±2.2 71.3±1.0 66.0±5.2 77.4±1.9 51.2±1.4 61.8±0.5
GLEN-GCN 77.5±2.6 82.7±1.2 67.6±2.6 72.0±0.9 68.7±5.7 78.2±2.4 52.7±1.5 62.0±0.5
GLEN-S2GC 78.2±2.4 83.0±1.0 69.1±2.1 72.3±0.9 70.6±3.9 80.1±1.9 53.0±1.5 62.6±0.5

Contrastive +
Multiview

GraphCL 72.6±4.2 78.3±1.7 65.6±3.0 71.1±0.8 OOM OOM OOM OOM
GRACE 64.9±4.2 73.9±1.6 61.8±3.9 68.4±1.6 OOM OOM OOM OOM
GCA 61.5±4.9 75.8±1.9 43.2±3.6 55.7±1.9 OOM OOM OOM OOM

Unsupervised

SGC 63.9±5.4 78.3±1.9 59.5±3.4 69.8±1.4 65.8±4.4 76.3±2.3 46.0±2.2 57.7±1.2
S2GC 71.4±4.4 81.3±1.2 60.3±4.0 69.5±1.2 67.6±4.2 73.3±2.0 41.8±1.7 60.0±0.5
PCA-S2GC 72.1±3.8 81.2±1.3 61.0±3.5 68.8±1.3 67.5±4.3 73.2±2.0 42.3±1.7 59.3±0.6
RP-S2GC 65.9±4.6 78.1±1.2 51.4±3.2 61.7±1.6 66.1±5.0 72.5±1.9 31.5±1.4 48.7±0.6

7

Graph2Gauss [4], SCE [47], DGI [37], GRACE [56], GCA [57], GraphCL [46] and COLES [55],
which are our main competitors. Note that GRACE, GCA and GraphCL are based on multi-view and
data augmentation, and GraphCL is mainly intended for graph classification. We do not study graph
classification as it requires advanced node pooling with mixed- or high-order statistics [40, 19, 20].
We compare results with representative (semi-)supervised GCN [17], GAT [37] and MixHop [1]
models. SGC and S2GC are unsupervised spectral filter networks. They do not have any learnable
parameters. COLES and GLEN could be regarded as dimension reduction techniques for SGC and
S2GC, thus we compare them to PCA-S2GC and RP-S2GC, which use PCA and random projections
to obtain the projection layer. We set hyperparameters based on the settings described in prior papers.

6.1 Transductive Learning

In this section, we consider transductive learning where all nodes are available in the training process.

COLES vs. GLEN. Table 1 shows the performance of GLEN vs. COLES on two different backbones,
i.e., GCN and S2GC. On both backbones, GLEN shows non-trivial improvements on all four datasets.
GLEN-S2GC outperforms the COLES by up to 4.6%. Table 2 evaluates GLEN on Cora, Citeseer,
PubMed on the standard splits instead of the random splits. See Appendix G for comparisons to
additional contrastive learning frameworks.

Contrastive Embedding Baselines vs. GLEN. Table 1 shows that GLEN-GCN and GLEN-S2GC
outperform unsupervised models. In particular, GLEN-GCN outperforms GCN+SampledNCE on
all four datasets, which shows that GLEN has an advantage over the SampledNCE framework. In
addition, GLEN-S2GC outperforms the best contrastive baseline DGI by up to 3.4%. On Cora with 5
training samples, GLEN-S2GC outperforms S2GC by 6.8%. Finally, Table 3 shows that GLEN-S2GC
(small number of trainable parameters) outperforms other methods on the challenging Ogbn-arxiv.

Semi-supervised GNNs vs. GLEN. Table 1 shows that the contrastive GCN baselines perform
worse than semi-supervised variants, especially when 20 labeled samples per class are available. In
contrast, GLEN-GCN outperformed the semi-supervised GCN on Cora by 10% and 3.4% given 5
and 20 labeled samples per class. GLEN-GCN also outperforms GCN on Citeseer and Pubmed by
9.9% and 5.2% given 5 labeled samples per class. These results show the superiority of GLEN on
four datasets when the number of samples per class is 5. Even for 20 labeled samples per class,
GLEN-S2GC outperforms the best semi-supervised baselines on all four datasets e.g., by 3.3% on
Cora. Semi-supervised models (e.g., GAT and MixHop) are affected by the low number of labeled
samples, which is consistent with [25]. The accuracy of GLEN-GCN and GLEN-S2GC is unaffected.

Unsupervised GNNs vs. GLEN. SGC and S2GC are unsupervised linear networks based on spectral
filters which do not use labels (except for the classifier). As a dimension reduction method, GLEN
helps both methods reduce the dimension and achieve discriminative features. Table 1 shows that
GLEN-S2GC outperforms RP-S2GC and PCA-S2GC under the same projection size. GLEN-S2GC
also outperforms the unsupervised S2GC baseline (high-dimensional representation).

Table 2: Comparison with other methods on
Cora, Citeseer and PubMed on standard splits.

Cora Citeseer Pubmed

GCN 81.5 70.3 79.0
GAT 83.0 72.5 79.0

DeepWalk+F 77.36 64.30 69.65
Node2vec+F 75.44 63.22 70.60
GAE 73.68 58.21 76.16
VGAE 77.44 59.53 78.00
DGI 81.26 69.50 77.70
GRACE 81.9 71.2 80.6
GraphCL 81.89 68.40 OOM
GMI 80.28 65.99 OOM
COLES-GNN 81.9 70.3 79.1

GLEN-S2GC 85.10 71.90 80.72

Table 3: Mean classification accuracy (%) and
the standard dev. over 10 runs on Ogbn-arxiv.
Results of other models are from original papers.

Method Test Acc. #Params

MLP 55.50±0.23 110,120
Node2Vec [9] 70.07±0.13 21,818,792
GraphZoom [6] 71.18±0.18 8,963,624
C&S [15] 71.26±0.01 5,160
SAGE-mean [10] 71.49±0.27 218,664
GCN [17] 71.74±0.29 142,888
DeeperGCN [24] 71.92±0.17 491,176
SIGN [33] 71.95±0.11 3,566,128
FrameLet [51] 71.97±0.12 1,633,183
S2GC [53] 72.01±0.25 110,120
COLES-S2GC [55] 72.48±0.25 110,120

GLEN-S2GC 72.67±0.26 110,120

8

Table 4: The clustering performance on Cora, Citeseer and Pubmed.

Method Input Cora Citeseer Pubmed
Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

k-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35
Spectral-f Feature 36.26 15.09 25.64 46.23 21.19 33.70 59.91 32.55 58.61
Spectral-g Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97
DeepWalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06
GAE Both 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26
VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95
ARGE Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41
ARVGE Both 62.66 45.28 62.15 54.40 26.10 52.90 58.22 20.62 23.04
GCN Both 59.05 43.06 59.38 45.97 20.08 45.57 61.88 25.48 60.70
SGC Both 62.87 50.05 58.60 52.77 32.90 63.90 69.09 31.64 68.45
S2GC Both 68.96 54.22 65.43 69.11 42.87 64.65 68.18 31.82 67.81
COLES-GCN Both 60.74 45.49 59.33 63.28 37.54 59.17 63.46 25.73 63.42
COLES-GCN (Stiefel) Both 62.46 47.01 59.38 65.17 38.90 60.85 63.56 25.81 63.58
COLES-S2GC Both 69.70 55.35 63.06 69.20 44.41 64.70 68.76 33.42 68.12

GLEN-GCN Both 69.27 55.34 62.14 68.25 42.98 64.10 64.64 30.08 64.12
GLEN-S2GC Both 71.01 56.69 69.01 69.89 45.37 65.70 69.62 34.97 69.33

Table 5: Mean classification accuracy (%) and the standard dev. over 50 random splits. Numbers of
labeled samples per class are in parentheses. The best accuracy per column is in bold. Models are
organized into semi-supervised, contrastive and unsupervised groups. OOM means out of memory.

Method Cora Citeseer Pubmed Cora Full
(5) (20) (5) (20) (5) (20) (5) (20)

GLEN (Nuclear Norm) 76.5±2.6 81.5±1.2 67.5±2.2 71.3±1.0 66.0±5.2 77.4±1.9 50.8±1.4 61.8±0.5
GLEN (γ-nuclear norm) 71.8±3.0 77.6±1.3 63.2±3.1 69.3±0.8 71.2±4.3 78.1±1.5 49.2±1.4 60.6±0.6
GLEN (Sp norm) 75.2±3.5 80.7±1.2 64.7±2.4 70.9.±0.9 65.9±5.5 73.9±2.4 48.0±1.6 59.7±1.6
GLEN (Geman norm) 72.3±2.5 77.2±1.3 65.4±2.2 70.7.±0.8 72.6±4.5 78.3±1.5 49.2±1.5 60.6±1.6
GLEN (LogDet) 78.2±2.4 83.0±1.0 69.1±2.1 72.3±0.9 70.6±3.9 80.1±1.9 53.0±1.5 62.6±0.5

6.2 Node Clustering

We compare GLEN-GCN and GLEN-S2GC with three types of clustering methods:
i. Methods that use only node features e.g., k-means and spectral clustering (spectral-f) construct a

similarity matrix with the node features by a linear kernel.

ii. Structural clustering methods that only use the graph structure: spectral clustering (spectral-g)
that takes the graph adjacency matrix as the similarity matrix, and DeepWalk [31].

iii. Attributed graph clustering methods that use node features and the graph: Graph Autoencoder
(GAE), Graph Variational Autoencoder (VGAE) [17], Adversarially Regularized Graph Autoen-
coder (ARGE), Var. Graph Autoencoder (ARVGE) [30], SGC [42] , S2GC [53], COLES [55].

We measure and report the clustering Accuracy (Acc), Normalized Mutual Information (NMI) and
macro F1-score (F1). We run each method 10 times on Cora, CiteSeer and PubMed. We set the
number of propagation steps to 8 for SGC, S2GC, COLES-S2GC and COLES-S2GC following
[48]. Table 4 shows that GLEN-S2GC outperforms other methods in all cases, whereas GLEN-GCN
outperforms COLES-GCN, COLES-GCN (Stiefel) and contrastive GCN on all datasets.

6.3 Comparison of Surrogates of Rank

Table 5 above shows results on four additional surrogates of Rank(S):

• Nuclear norm: RNN(S) =
∑

i σi(S).

• γ-nuclear norm [16]: Rγ-NN =
∑

i
(1+γ)σi(S)
γ+σi(S)

.

• Sp norm [28]: RSp
=

∑
i σi(S)

p.

• Geman norm [8]: RGeman =
∑

i
σi(S)

γ+σi(S)
.

9

6.4 Transductive One-shot Learning on Image Classification Datasets

The most common setting in FSL is the inductive setting. In such a scenario, only samples in the
support set can be used to fine-tune the model or learn a function for the inference of query labels.
In contrast, in the transductive scenario, the model has access to all the query data (unlabeled) that
needs to be classified.

EASE [54] is a transductive few-shot learner for so-called episodic image classification. Given feature
matrix Z ∈ Rn×m from a CNN backbone (ResNet-12), EASE minimizes Tr(UZ⊤LwZU

⊤) −
Tr(UZ⊤LtZU

⊤) (subject to UU⊤ = I) in order to learn a linear projection U.

We extend GLEN to EASE to learn the linear projection U by minimizing log det(UZ⊤LwZU
⊤)−

log det(UZ⊤LtZU
⊤) (subject to UU⊤ = I. We also apply the Sp norm instead of log det. Table 6

shows the results of EASE based on the LogDet and the Sp-norm based relaxations of GLEN. For the
simplicity of experiment, we use soft k-means rather than Sinkhorn k-means as in the EASE pipeline.
Please refer to EASE [54] for the experimental setup of one-shot learning.

We evaluate our approach on four few-shot classification benchmarks, mini-ImageNet [38], tiered-
ImageNet [32], CUB [41], and CIFAR-FS [21]. The performance numbers are given as accuracy %
and the 0.95 confidence intervals are reported. We use publicly available pre-trained ResNet-12 [29]
that are trained on the base class training set.

Table 6: Few-shot learning in the transductive setting on EASE based on GLEN.
methods mini–Imagenet [38] tiered–Imagenet [32] CIFAR–FS [21] CUB [41]

EASE [54] 58.2±0.19 70.9±0.21 65.2±0.21 77.7±0.19
EASE GLEN (Sp norm) 60.5±0.23 74.8±0.25 67.8±0.25 81.5±0.25
EASE GLEN (LogDet) 61.4±0.23 76.4±0.25 69.2±0.25 83.4±0.25

Scalability. GraphSAGE and DGI require neighbor sampling with redundant forward/backward
steps (long runtime). In contrast, GLEN-S2GC enjoys a simple implementation with low memory
usage/low runtime. For graphs with over 100 thousands nodes and 10 millions edges (Reddit),
GLEN runs fast on NVIDIA 1080 GPU. Even on larger graph benchmarks, GLEN is fast as it
optimizes the total scatter and the within-class matrices whose size depends on embedding size
rather than the node number. The runtime of GLEN-S2GC is also favourable in comparison to
multi-view augmentation-based GraphCL. Specifically, GLEN-S2GC took 0.54s, 0.3s, 5.3s and 15.4s
on Cora, Citeseer, Pubmed and Cora Full, respectively. GraphCL took 110.19s, 101.0s, ≥ 8h and
≥ 8h respectively. Although the LogDet difference is somewhat slower than the trace difference in
forward/backward propagation, it converges faster, thus enjoying a similar low runtime.

7 Conclusions

In this paper, we model contrastvie learning as a rank difference problem to approximate the condition
that the rank of total scatter matrix should equal the sum of ranks of within-scatter and between-scatter
matrices. We relax this NP-hard assumption with a differentiable difference of LogDet terms. We also
show two perspectives on GLEN and the existing methods based on the low-rank optimization and
distance between symmetric positive (semi-)definite matrices matrices. In low-rank optimization, we
explain why the LogDet difference is a better surrogate function to optimize rank difference compared
to the trace difference. We also show that our solution encourages linear kernel of embeddings become
the geometric mean between the total scatter matrix and the within-class matrix. GLEN works well
with many backbones outperforming many unsupervised, contrastive and (semi-)supervised methods.

Acknowledgments and Disclosure of Funding

We thank reviewers for stimulating questions that helped us improve several aspects of our analysis.
Hao Zhu is supported by an Australian Government Research Training Program (RTP) Scholarship.
Piotr Koniusz is supported by CSIRO’s Machine Learning and Artificial Intelligence Future Science
Platform (MLAI FSP).

10

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In International Conference on Machine
Learning, pages 21–29, 2019.

[2] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by
maximizing mutual information across views. arXiv preprint arXiv:1906.00910, 2019.

[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

[4] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of
graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering, 30(9):1616–1637, 2018.

[6] C Deng, Z Zhao, Y Wang, Z Zhang, and Z Feng. Graphzoom: A multi-level spectral ap-
proach for accurate and scalable graph embedding. In International Conference on Learning
Representations, 2020.

[7] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. Log-det heuristic for matrix rank mini-
mization with applications to hankel and euclidean distance matrices. In Proceedings of the
2003 American Control Conference, 2003., volume 3, pages 2156–2162. IEEE, 2003.

[8] Donald Geman and Chengda Yang. Nonlinear image recovery with half-quadratic regularization.
IEEE transactions on Image Processing, 4(7):932–946, 1995.

[9] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In ACM
SIGKDD international conference on Knowledge discovery and Data Mining, pages 855–864,
2016.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[11] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In International Conference on Machine Learning, pages 4116–4126, 2020.

[12] Xiaofei He and Partha Niyogi. Locality preserving projections. Advances in Neural Information
Processing Systems, 16(16):153–160, 2004.

[13] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[15] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. Combining label
propagation and simple models out-performs graph neural networks. In International Conference
on Learning Representations, 2021.

[16] Zhao Kang, Chong Peng, and Qiang Cheng. Robust pca via nonconvex rank approximation. In
2015 IEEE International Conference on Data Mining, pages 211–220. IEEE, 2015.

[17] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[18] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

11

[19] Piotr Koniusz, Lei Wang, and Anoop Cherian. Tensor representations for action recognition.
IEEE Trans. Pattern Anal. Mach. Intell., 44(2):648–665, 2022.

[20] Piotr Koniusz and Hongguang Zhang. Power normalizations in fine-grained image, few-
shot image and graph classification. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[22] Brian Kulis et al. Metric learning: A survey. Foundations and Trends® in Machine Learning,
5(4):287–364, 2013.

[23] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization.
Advances in Neural Information Processing Systems, 27:2177–2185, 2014.

[24] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to
train deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

[25] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI Conference on Artificial Intelligence, pages 3538–3545,
2018.

[26] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, 2013.

[28] Karthik Mohan and Maryam Fazel. Iterative reweighted algorithms for matrix rank minimization.
The Journal of Machine Learning Research, 13(1):3441–3473, 2012.

[29] Boris N Oreshkin, Pau Rodriguez, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. arXiv preprint arXiv:1805.10123, 2018.

[30] S Pan, R Hu, G Long, J Jiang, L Yao, and C Zhang. Adversarially regularized graph autoencoder
for graph embedding. In International Joint Conference on Artificial Intelligence, 2018.

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[32] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenen-
baum, Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot
classification. arXiv preprint arXiv:1803.00676, 2018.

[33] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

[34] Ke Sun, Piotr Koniusz, and Zhen Wang. Fisher-bures adversary graph convolutional networks.
Conference on Uncertainty in Artificial Intelligence, 115:465–475, 2019.

[35] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In International Conference on World Wide Web, pages
1067–1077, 2015.

[36] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[37] Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

12

[38] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. arXiv preprint arXiv:1606.04080, 2016.

[39] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In International Conference on Machine Learning,
volume 119, pages 9929–9939, 2020.

[40] Zhengyang Wang and Shuiwang Ji. Second-order pooling for graph neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020.

[41] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie,
and Pietro Perona. Caltech-ucsd birds 200. 2010.

[42] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153,
2019.

[43] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-jiang Zhang, Qiang Yang, and Stephen Lin.
Graph embedding and extensions: A general framework for dimensionality reduction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(1):40–51, 2007.

[44] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang. Understanding
negative sampling in graph representation learning. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1666–1676, 2020.

[45] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International Conference on Machine Learning, pages 40–48, 2016.

[46] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in Neural Information Processing
Systems, 33:5812–5823, 2020.

[47] Shengzhong Zhang, Zengfeng Huang, Haicang Zhou, and Ziang Zhou. Sce: Scalable network
embedding from sparsest cut. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 257–265, 2020.

[48] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via
adaptive graph convolution. arXiv preprint arXiv:1906.01210, 2019.

[49] Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, and Irwin King. Graph-adaptive rectified
linear unit for graph neural networks. In TheWebConf (WWW), pages 1331–1339. ACM, 2022.

[50] Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. COSTA: covariance-
preserving feature augmentation for graph contrastive learning. In KDD, pages 2524–2534.
ACM, 2022.

[51] Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yuguang Wang, Pietro Lió, Ming Li, and Guido
Montufar. How framelets enhance graph neural networks. In Marina Meila and Tong Zhang,
editors, International Conference on Machine Learning, volume 139, pages 12761–12771,
2021.

[52] Hao Zhu and Piotr Koniusz. REFINE: Random range finder for network embedding. In ACM
Conference on Information and Knowledge Management, 2021.

[53] Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International Conference on
Learning Representations, 2021.

[54] Hao Zhu and Piotr Koniusz. EASE: Unsupervised discriminant subspace learning for transduc-
tive few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9078–9088, 2022.

[55] Hao Zhu, Ke Sun, and Piotr Koniusz. Contrastive laplacian eigenmaps. Advances in Neural
Information Processing Systems, 34, 2021.

13

[56] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

[57] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of the Web Conference, pages 2069–2080,
2021.

14

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ?.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

i. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
ii. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

iii. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
iv. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
v. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

