
Appendices
Organizations and Basic. The appendix is organized as follows. We first introduce the basic
definitions and inequalities used throughout the appendices. In Appendix A, we provide more details
about the datasets, computational resources, and more experiment results on CIFAR10, CIFAR100
and miniImageNet datasets. In Appendix B, we prove that CE, FL and LS satisfy the contrastive
property in Definition 1. In Appendix C, we provide a detailed proof for Theorem 1, showing that the
Simplex ETFs are the only global minimizers, as long as the loss function satisfies the Definition 1.
Finally, in Appendix D, we present the whole proof for Theorem 2 that the FL function is a locally
strict saddle function with no spurious local minimizers existing locally and LS function is a globally
strict saddle function with no spurious local minimizers existing globally.
Definition 2 (K-Simplex ETF). A standard Simplex ETF is a collection of points in RK specified
by the columns of

M =

√
K

K − 1

(
IK −

1

K
1K1>K

)
,

where IK ∈ RK×K is the identity matrix, and 1K ∈ RK is the all ones vector. In the other words,
we also have

M>M = MM> =
K

K − 1

(
IK −

1

K
1K1>K

)
.

As in [5,12], in this paper we consider general Simplex ETF as a collection of points in Rd specified

by the columns of
√

K
K−1P

(
IK − 1

K1K1>K
)
, whereP ∈ Rd×K(d ≥ K) is an orthonormal matrix,

i.e., P>P = IK .
Lemma 1 (Young’s Inequality). Let p, q be positive real numbers satisfying 1

p + 1
q = 1. Then for

any a, b ∈ R, we have

|ab| ≤ |a|
p

p
+
|b|q

q
,

where the equality holds if and only if |a|p = |b|q . The case p = q = 2 is just the AM-GM inequality
for a2, b2: |ab| ≤ 1

2

(
a2 + b2

)
, where the equality holds if and only if |a| = |b|.

The following Lemma extends the standard variational form of the nuclear norm.
Lemma 2. For any fixedW ∈ RK×d,Hi ∈ Rd×K , Z̄i = WHi ∈ RK×K and α > 0, we have∥∥Z̄i∥∥∗ ≤ 1

2
√
α

(
‖W ‖2F + α ‖Hi‖2F

)
. (11)

Here,
∥∥Z̄i∥∥∗ denotes the nuclear norm of Z̄i:∥∥Z̄i∥∥∗ :=

K∑
k=1

σk(Z̄i) = trace (Σ) , with Z̄i = UΣV >,

where {σk}Kk=1 denotes the singular values of Z̄i, and Z̄i = UΣV > is the singular value decom-
position (SVD) of Z̄i.

Proof of Lemma 2. Let Z̄i = UΣV > be the SVD of Z̄i. For anyWHi = Z̄i, we have∥∥Z̄i∥∥∗ = trace (Σ) = trace
(
U>Z̄iV

)
= trace

(
U>WHiV

)
≤ 1

2
√
α

∥∥U>W∥∥2

F
+

√
α

2
‖HiV ‖2F ≤

1

2
√
α

(
‖W ‖2F + α ‖Hi‖2F

)
,

where the first inequality utilize the Young’s inequality in Lemma 1 that |trace(AB)| ≤ 1
2c ‖A‖

2
F +

c
2 ‖B‖

2
F for any c > 0 andA,B of appropriate dimensions, and the last inequality follows because

‖U‖ = 1 and ‖V ‖ = 1. Therefore, we have∥∥Z̄i∥∥∗ ≤ 1

2
√
α

(
‖W ‖2F + α ‖Hi‖2F

)
.

We complete the proof.
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Lemma 3 (Eigenvalues of Diagonal-Plus-Rank-One Matrices). Let τ < 0, z ∈ Rn, and D be an
n×n diagonal matrix with diagonals d1, . . . , dn. Let λ1, . . . , λn be the eigenvalues of the diagonal-
plus-rank-one matrixD + τzz>.

• Case 1: If d1 > d2 > · · · > dn and zi 6= 0 for all i = 1, · · · , n, then the eigenvalues {λi}
are equal to the n roots of the rational function [65, 66]

w(λ) = 1 + τz> (D − λI)
−1
z = 1 + τ

n∑
j=1

z2
j

dj − λ
,

and the diagonals {di} strictly separate the eigenvalues as following:

d1 > λ1 > d2 > λ2 > · · · > dn > λn. (12)

• Case 2:If zi = 0 for some i, then di is an eigenvalue of D + τzz> with corresponding
eigenvector ei since

(D + τzz>)ei = diei + τzzi = diei.

The remaining n− 1 eigenvalues ofD+ τzz> are equal to the eigenvalues of the smaller
matrixD′+ τz′z

′>, whereD′ ∈ R(n−1)×(n−1) and z′ ∈ Rn−1 are obtained by removing
the i-th rows and columns fromD and the i-th element from z, respectively. One can repeat
this process if z′ still has zero element.

• Case 3: If there are m mutually equal diagonal elements, say di+1 = · · · = di+m = d,
then for any orthogonal m×m matrix P ,D + τzz> has the same eigenvalues as

TDT> + τ(Tz)(Tz)> = D + τ ẑẑ>, where T =

[
Ii

P
In−i−m

]
, ẑ = T ẑ.

We can then choose P as a Householder transformation such that

P [zi+1 zi+2 · · · zi+m]
>

=
[
0 0 · · ·

√∑i+m
j=i+1 z

2
j

]>
.

Thus, according to Case 2, d is an eigenvalue ofD + τ ẑẑ> repeated m− 1 times and the
remaining eigenvalues can be computed by checking the smaller matrix.

Based on Lemma 3, we can prove the following Lemma.
Lemma 4. Let K ≥ 3 and Z = −

(
IK − 1

K11>
)

diag (ρ1, ρ2, · · · , ρK) with |ρ1| ≥ |ρ2| ≥ · · · ≥
|ρK | and |ρ1| > 0. Also let σi ≥ 0 be the i-th largest singular value of Z. Suppose there exists k
with 1 ≤ k ≤ K − 1 such that

σ1 = · · · = σk = σmax > 0 and σk+1 = · · · = σK = 0. (13)

Then |ρ1|, · · · , |ρK | must satisfy either

|ρ1| = |ρ2| = · · · = |ρK |, with σmax = |ρ1|,
or

ρ2 = · · · = ρK = 0, with σmax =

√
K − 1

K
|ρ1|.

Proof of Lemma 4. Because

Z>Z = diag (ρ1, ρ2, · · · , ρK)

(
IK −

1

K
11>

)
diag (ρ1, ρ2, · · · , ρK)

= diag
(
ρ2

1, ρ
2
2, · · · , ρ2

K

)
− 1

K
ρρ>

where ρ = [ρ1 ρ2 · · · ρK ]
>, Z>Z satisfies the form of Diagonal-Plus-Rank-One in Lemma 3

with D = diag
(
ρ2

1, ρ
2
2, · · · , ρ2

K

)
, z = ρ and τ = − 1

K . Let λ1 ≥ λ2 ≥ · · ·λK ≥ 0 denote the n
eigenvalues of Z>Z. Due to 1>Z = 0>, we can have λK = 0.
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• If |ρ1| = |ρ2| = · · · = |ρK |: we have

ρ2
1 = λ1 = · · · = λK−1 = ρ2

K > λK = 0.

Thus, σmax =
√
λ1 = |ρ1|.

• If |ρ1| > |ρ2| = · · · = |ρK | = 0: according to Case 2 in Lemma 3, we have

λ1 = (1− 1/K) ρ2
1 > ρ2

2 = λ2 · · · = ρ2
K = λK = 0.

Thus, σmax =
√

(1− 1/K) ρ2
1 =

√
(K − 1)/K|ρ1|.

• If |ρ1| > |ρ2| = · · · = |ρK | 6= 0: according to Case 3 in Lemma 3, we have

λ2 · · · = λK−1 = ρ2
2

and the remaining two eigenvalues are the same to those of
[
ρ2

1

ρ2
K

]
+

(− 1
K )

[
ρ1√

K − 1ρK

] [
ρ1

√
K − 1ρK

]
. According to (12) in Lemma 3, we can obtain

ρ2
1 > λ1 > ρ2

K > λK = 0.

Combing them together, we can have

ρ2
1 > λ1 > ρ2

2 = λ2 · · · = ρ2
K > λK = 0

thus, 0 = λK < λ2 < λ1 = λmax, which violates the assumption (13).

• If |ρ1| = · · · = |ρi| > |ρi+1| = · · · = |ρK | = 0 and 1 < i < K: according to the Case 2
and Case 3 in Lemma 3, we can have

λ1 = · · · = λi−1 = ρ2
1

λi+1 = · · · = λK = 0

and 0 < λi = ρ2
1 − i

K ρ
2
1 < ρ2

1 = λmax, which violates the assumption (13).

• If |ρ1| = · · · = |ρi| > |ρi+1| = · · · = |ρK | 6= 0 and 1 < i < K: according to Case 3 in
Lemma 3, we have

λ1 = · · · = λi−1 = ρ2
1

λi+1 = · · · = λK−1 = ρ2
K

and the remaining two eigenvalues are the same to those of D =

[
ρ2

1

ρ2
K

]
+

(− 1
K )

[ √
iρ1√

K − iρK

] [√
iρ1

√
K − iρK

]
. According to (12) in Lemma 3, we can obtain

ρ2
1 = ρ2

i > λi > ρ2
K > λK = 0.

Combing them together, we can have

ρ2
1 = λ1 = · · · = ρ2

i > λi > ρ2
i+1 = λi+1 = · · · = ρ2

K > λK = 0

thus, 0 = λK < λi < λ1 = λmax, which violates the assumption (13).

• If |ρ1| > |ρi| > |ρK | for some 1 < i < K: Suppose |ρ1| = · · · = |ρm|, |ρi| = · · · =
|ρi+n−1| and |ρK−t+1| = · · · = |ρK |, wherem < i, i+n−1 < K−t+1 andm,n, t ≥ 1.
According to the (12), Case 2 and Case 3 in Lemma 3, we can find

ρ2
m > λm > ρ2

i ≥ λi+n−1 > ρ2
K ≥ λK = 0

thus, 0 = λK < λi+n−1 < λm ≤ λmax, which violates the assumption (13).

We complete the proof.
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(a)NC1 (CE) (b)NC1 (MSE) (c)NC1 (FL) (d)NC1 (LS)

(e) Test (CE) (f) Test (MSE) (g) Test (FL) (h) Test (LS)

Figure 4: Illustration of NC1 and test accuracy across different iterations-width configurations. The
figure depicts the NC1 and test accuracy of various iteration-width configurations for different loss functions
on CIFAR10.

A Experiments

In this section, we first describe more details about the datasets and the computational resource
used in the paper. Particularly, all CIFAR10, CIFAR100 and miniImageNet are publicly available
for academic purpose under the MIT license, and we run all experiments on a single RTX3090
GPU with 24GB memory. Moreover, additional experimental results on CIFAR10, CIFAR100 and
miniImageNet are presented in Section A.1, Section A.2, and Section A.3, respectively.

A.1 Additional experimental results on CIFAR10

In Section 4, we present the test accuracy for different losses function across various different
iteration-width configurations. Moreover, we further show the NC1 for different loss functions
across different iteration-width configurations , and we reuse the results of test accuracy in Figure 3
for better investigation. The experiment results in Figure 4 consistently show that the value ofNC1

of training WideResNet50-0.25 for 100 epochs is around three orders of magnitude larger than it
of training WideResNet50-2 for 800 epochs, which indicates that the previous configuration setting
is much less collapsed than the latter one. In terms of test accuracy, the maximal difference across
different losses for width = 0.25 and epochs = 100 configuration is 1.037%, which is larger than
0.36% for width = 2 and epochs = 800 configuration. These results support our claim that all
losses lead to identical performance, as long as the network has sufficient approximation power and
the number of optimization is enough for the convergence to the NC global optimality.

A.2 Additional experimental results on CIFAR100

In this parts, we show the additional results on CIFAR100 dataset.

Prevalence of NC Across Varying Training Losses We show that all loss functions lead to NC
solutions during the terminal phase of training on CIFAR100 dataset. The results on CIFAR100
using WideResNet50-2 and different loss functions is provided in Figure 5. We consistently observe
that all three NC metrics of FL and MSE converge to a small value as training progresses, and
metrics of CE and FL still continue to decrease at the last iteration, because CIFAR100 is more
difficult than CIFAR10 and requires networks to be optimized longer. The decreasing speed of FL
is slowest, which is consistent with our global landscape analysis that FL has benign landscape in
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(a)NC1 (CIFAR100) (b)NC2 (CIFAR100) (c)NC3 (CIFAR100)

Figure 5: The evolution of NC metrics across different loss functions. We train the WideResNet50-2 on
CIFAR100 dataset for 800 epochs using different loss function. From left to right: NC1 (variability collapse),
NC2 (convergence to simplex ETF) and NC3 (convergence to self-duality).

(a) Train Acc (CIFAR100) (b) Val Acc (CIFAR100) (c) Test Acc (CIFAR100)

Figure 6: The evolution of performance across different loss functions. We train the WideResNet50-2 on
CIFAR100 dataset for 800 epochs using different loss function. From left to right: training accuracy, validation
accuracy and test accuracy.

the local region near optimality. These results imply that all losses exhibitNC at the end, regardless
of the choice of loss functions.

All Losses Lead to Largely Identical Performance Same as the results on CIFAR10 dataset, the
conclusion on CIFAR100 also holds that all loss functions have largely identical performance once
the training procedure converges to the NC global optimality. In Figure 6, we plot the evolution
of the training accuracy, validation accuracy and test accuracy with training progressing, where all
losses are optimized on the same WideResNet50-2 architecture and CIFAR100 for 800 epochs. To
reduce the randomness, we average the results from 3 different random seeds per iteration-width
configuration, and the test accuracy is reported based on the model with best accuracy on valida-
tion set, where we organize the validation set by holding out 10 percent data from the training set.
The results consistently shows that the training accuracy trained by different losses all converge to
one hundred percent (reaching to terminal phase), and the validation accuracy and test accuracy
across different losses are largely same, as long as the optimization procedure converges to the NC
global solution. In Figure 7, we plot the average NC1 and test accuracy of different losses under
different pairs of width and iterations for CIFAR100 dataset. The three phenomenon mentioned in
Section 4.2 also exist on CIFAR100 in most cases. Moreover, the values of NC1 for width=0.25
and epochs=100 configuration are also around three orders magnitude larger than them for width=2
and epochs=800 configuration and the less collapsed configuration leads to larger difference gap
across different loss functions. While there are some small difference between different losses in
width = 2 and epochs = 800 configurations, We guess that it is because CIFAR100 is much harder
than CIFAR10 datasets, and network is not sufficiently large and trained not long enough for all
losses to achieve a global solution.

A.3 Additional experimental results on miniImageNet

In this parts, we show the additional results on miniImageNet dataset. We trained WideResNet18-
0.25 and WideResNet18-2 on miniImageNet for 100 epochs and 800 epochs, respectively. To reduce
the randomness, we average the results from 3 different random trials. The NC1 and test accu-
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(a)NC1 (CE) (b)NC1 (MSE) (c)NC1 (FL) (d)NC1 (LS)

(e) Test (CE) (f) Test (MSE) (g) Test (FL) (h) Test (LS)

Figure 7: Illustration of NC1 and test accuracy across different iterations-width configurations. The
figure depicts the NC1 and test accuracy of various iteration-width configurations for different loss functions
on CIFAR100.

(a)NC1 and Test (CE) (b)NC1 and Test (MSE) (c)NC1 and Test (FL) (d)NC1 and Test (LS)

Figure 8: The evolution of NC1 and test accuracy across different loss functions. We train the
WideResNet18-0.25 for 100 epochs and WideResNet18-2 for 800 epochs on miniImageNet using different
loss functions.

racy of different loss functions are provided in Figure 8 for comparison. We consistently observe
that the NC1 metric of all losses converges to a small value as training progress, when the neural
network has sufficient approximation power and the training is performed for sufficiently many it-
erations, such as WideResNet18-2 for 800 epochs. Additionally, the conclusion on miniImageNet
also holds that all loss functions have largely identical performance once the training procedure con-
verges to the NC global optimality. Specifically, while the last-iteration test accuracy of training
WideResNet18-0.25 for 100 epochs is 0.7195, 0.6915, 0.7020 and 0.7040, respectively, the last-
iteration test accuracy of training WideResNet18-2 for 800 epochs is 0.7930, 0.7962, 0.7932 and
0.8020 for CE, MSE, FL and LS, respectively. The experiment results on miniImageNet also sup-
port our claim that (i) the test performance may be different across different loss functions when
the network is not large enough and is optimized with limited number of iterations, but (ii) the test
accuracy across different loss are largely identical, once the networks has sufficient capacity and the
training is optimized to converge to the NC global solution.

B Proof of CE, FL and LS included in GL

In this section, we prove that CE, FL and LS belong to GL in Section B.1, Section B.2 and Sec-
tion B.3, respectively. Before starting the proof for each loss, let us restate the definition of the GL
in Definition 1:
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Definition 3 (Contrastive property). We say a loss function LGL(z,yk) satisfies the contrastive
property if there exists a function φ such that LGL(z,yk) can be lower bounded by

LGL(z,yk) ≥ φ

∑
j 6=k

(zj − zk)

 (14)

where the equality holds only when zj = z′j for all j, j′ 6= k. Moreover, φ(t) satisfies

t∗ = arg min
t
φ (t) + c|t| is unique for any c > 0, and t∗ ≤ 0. (15)

B.1 CE is in GL

In this section, we will show that the CE defined in (3) belongs to the GL defined in Definition 3.
First, let us rewrite the CE definition in GL form as following:

LCE(z,yk) = − log

(
exp(zk)∑K
j=1 exp(zj)

)
= log

1 +

K∑
j 6=k

exp(zj − zk)


≥ log

(
1 + (K − 1) exp

(
zj − zk
K − 1

))
= φCE

∑
j 6=k

(zj − zk)

 .

where the inequality is due to the log is an increasing and function and exp is a strictly convex
function, and it achieves equality only when zj = zj′ for all j, j′ 6= k. Therefore, there exists such
a function φCE to lower bound original CE loss LCE(z,yk) as following:

φCE(t) = log

(
1 + (K − 1) exp

(
t

K − 1

))
,

which satisfies the condition of (14). Next, we will show φCE(t) satisfies the condition (15). The
first-order gradient of φCE(t) is following:

∇φCE(t) =
exp

(
t

K−1

)
1 + (K − 1) exp

(
t

K−1

)
which is an increasing function and greater than 0 for t ∈ R. Let denote ψCE(t) = φCE(t) + c|t|,
then

• When t ≥ 0: ∇ψCE(t) = ∇φCE(t) + c > 0, thus the ψCE(t) is an increasing function w.r.t.
t, and the minimizer is achieved when t = 0.

• When t ≤ 0: ∇ψCE(t) = ∇φCE(t) − c, and ∇φCE(t) is an increasing function, which
achieves minimizer when t = 0 such that∇φCE(t) = 1

K .

– if c ≥ 1
K ,∇ψCE(t) < 0, andψ(t) is a decreasing function for t ≤ 0, and the minimizer

is achieved when t = 0;

– if 0 < c ≤ 1
K , there exist such t∗ such that ∇ψCE(t) = 0. When t < t∗, φCE(t)

is a decreasing function; and when t∗ < t ≤ 0, φCE(t) is an increasing function.
Therefore, the minimizer is achieved when t = t∗ < 0

Combing them together, we can prove that φCE satisfies the condition of (15).
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B.2 FL is in GL

In this section, we will show that the FL defined in (4) belongs to the GL defined in Definition 3. let
us rewrite the FL definition in GL form as following:

LFL(z,yk) = −

(
1− exp(zk)∑K

j=1 exp(zj)

)γ
log

(
exp(zk)∑K
j=1 exp(zj)

)

=

(
1− exp(zk)∑K

j=1 exp(zj)

)γ
log

 K∑
j=1

exp(zj − zk)


=

(
1− 1

1 +
∑K
j 6=k exp(zj − zk)

)γ
log

1 +

K∑
j 6=k

exp(zj − zk)


= η

1 +

K∑
j 6=k

exp(zj − zk)


where the function η(t) = (1− 1

t )
γ log (t) is an increasing function for t ≥ 1 because

∇η(t) = γ(
1

t2
)(1− 1

t
)γ−1 log(t) +

1

t
(1− 1

t
)γ > 0

Thus, we can find the lower bound function by

LFL(z,yk) ≥ η

1 + (K − 1) exp

 K∑
j 6=k

zj − zk
K − 1


= η

ξ
 K∑
j 6=k

(zj − zk)


= φFL

 K∑
j 6=k

(zj − zk)


where φFL(t) = η (ξ (t)) and ξ(t) = 1 + (K − 1) exp t

K−1 ∈ [1,K], which satisfies the condition
of (14). Next, we will show φFL(t) satisfies the condition (15). The first-order gradient of φFL(t) is
following:

∇tψFL(t) = ∇t (φFL(t) + c|t|) = ∇ξ(t)η (ξ (t))∇tξ (t) + c
t

|t|

=

(
γ

(
1

ξ (t)

)2(
1− 1

ξ (t)

)γ−1

log (ξ (t)) +
1

ξ (t)

(
1− 1

ξ (t)

)γ)(
exp

(
t

K − 1

))
+ c

t

|t|

=

(
γ

(
1

ξ (t)

)2(
1− 1

ξ (t)

)γ−1

log (ξ (t)) +
1

ξ (t)

(
1− 1

ξ (t)

)γ)(
ξ (t)− 1

K − 1

)
+ c

t

|t|

=
1

K − 1

(ξ (t)− 1)
γ

ξ (t)
γ+1 (ξ (t)− 1 + γ log (ξ (t)))︸ ︷︷ ︸

ς(ξ(t))≥0

+c
t

|t|
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Similarly, by chain rule, the second-order derivation is:

∇2
tψ(t) = ∇2

tφ(t) = ∇ξ(t)ς (ξ(t))∇t(t)

=(γ + 1)
1

(ξ(t))
2 (1− 1

ξ(t)
)γ

− γ

(ξ(t))
2 (1− 1

ξ(t)
)γ
(

log(ξ(t))− γ log (ξ(t))

ξ(t)− 1
− γ
)(

1

(K − 1)2
(ξ(t)− 1)

)

=
1

(K − 1)2

γ(ξ(t)− 1)γ+1

(ξ(t))
γ+2

− log(ξ(t)) + γ
log(ξ(t))

ξ(t)− 1
+ γ +

γ + 1

γ︸ ︷︷ ︸
ϑ(ξ(t))



• When t ≥ 0: ∇tψFL(t) = 1
K−1ξ(t) + c ≥ 0, thus the ψCE(t) is an increasing function w.r.t.

t, and the minimizer is achieved when x = 0.

• When t ≤ 0: ∇tψFL(t) = 1
K−1ξ(t) − c ≥ 0. Moreover, we can find ϑ(ξ(t)) is a decreas-

ing function w.r.t. ξ(t) and ξ(t) is an increasing function w.r.t. t, therefore, ϑ(ξ(t)) is a
decreasing function w.r.t. t.

– If ϑ(ξ(0)) = ϑ(K) ≥ 0, then ∇2
xψ(x) > 0 for x ≤ 0, which means that ∇xξ(t) is an

increasing function. Because ς(ξ(−∞)) = ς(1) = 0, here we need to consider two
cases(Please refer to Figure 9):

* if ς(ξ(0) = ς(K) ≤ c(K−1), then∇tψFL(t) ≥ 0, that is, ψFL(t) is a decreasing
function. Therefore, the global minimizer is achieved when x = 0 (the blue curve
in Figure 9).

* if ς(ξ(0) = ς(K) ≥ c(K − 1), so ψFL(x) will first decrease and then increase.
Therefore the global minimizer is unique (the red curve in Figure 9).

– If ϑ(ξ(0)) = ϑ(K) < 0, then for t ∈ [−∞, t′], ∇tψFL(x) is an increasing function
w.r.t. t; for t ∈ [t′, 0), ∇tΦFL(t) is a decreasing function w.r.t. t. Here we need to
consider three cases(please refer to Figure 10):

* if ς(ξ(t′)) ≤ c(K − 1), then ∇tψFL(t) ≤ 0, that is, ψFL(t) is a decreasing
function. Therefore, the global minimizer is achieved when x = 0 (the green
curve in Figure 10).

* if ς(ξ(0)) = ς(K) ≥ c(K − 1), so ψFL(x) will first decrease and then increase.
Therefore the global minimizer is unique (the red curve in Figure 10).

* if ς(ξ(t′)) ≥ c(K − 1) and ς(ξ(0)) = ς(K) ≤ c(K − 1), then∇tψFL(t) = 0 has
two solutions t1 and t2. For t ∈ [−∞, t1], ψFL(t) is an decreasing function w.r.t.
t; for t ∈ [t1, t2], ΦFL(t) is an increasing function w.r.t. t; and for t ∈ [t2, 0),
ψFL(t) is a decreasing function w.r.t. t. The unique minimizer is achieved when
either t = 0 or t = t1, as long as ψFL(0) 6= ψFL(t1). As for the minor case
ψFL(0) = ψFL(t1), it requires carefully chosen penalized parameters, which can
be omitted (the blue curve in Figure 10).

In conclusion, for focal loss, ψFL(t) has a unique minimum in terms of t ≤ 0, which satisfies the
condition of (15).
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(a) ς(ξ(t)) w.r.t. ξ(t) (b) ψ(t) w.r.t. t

Figure 9: Illustration of the case of ϑ(ξ(0)) ≥ 0, where c = −K
√
nλW λH .

(a) ς(ξ(t)) w.r.t. ξ(t) (b) ψ(t) w.r.t. t

Figure 10: Illustration of the case of ϑ(ξ(0)) < 0, where c = K
√
nλW λH .

B.3 LS is in GL

In this section, we will show that the LS defined in (5) belongs to the GL defined in Definition 3.
First, let us rewrite the LS definition in GL form as following:

LLS(z,yk) = −
(

1− (K − 1)α

K

)
log

(
exp(zk)∑K
j=1 exp(zj)

)
− α

K

K∑
` 6=k

log

(
exp(z`)∑K
j=1 exp(zj)

)

=

(
1− (K − 1)α

K

)
log

(∑K
j=1 exp(zj)

exp(zk)

)
+
α

K

K∑
` 6=k

log

(∑K
j=1 exp(zj)

exp(z`)

)

=

(
1− (K − 1)α

K

)
log

 K∑
j=1

exp(zj − zk))

+
α

K

K∑
` 6=k

log

(∑K
j=1 exp(zj − zk)

exp(z` − zk)

)

= log

 K∑
j=1

exp(zj − zk))

− α

K

K∑
` 6=k

(z` − zk)

≥ log

(
1 + (K − 1) exp

(
zj − zk
K − 1

))
− α

K

K∑
` 6=k

(z` − zk)

where the inequality is due to the log is an increasing and function and exp is a strictly convex
function, and it achieves equality only when zj = zj′ for all j, j′ 6= k. Therefore, there exists such
a function φLS to lower bound original LS loss LLS(z,yk) as following:

φLS(t) = log

(
1 + (K − 1) exp

(
t

K − 1

))
− α

K
t,
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which satisfies the condition of (14). Next, we will show φLS(t) satisfies the condition (15). The
first-order gradient of φLS(t) is following:

∇φLS(t) =
exp

(
t

K−1

)
1 + (K − 1) exp

(
t

K−1

) − α

K

Let denote ψLS(t) = φLS(t) + c|t|, then

• When t ≥ 0: ∇ψLS(t) = ∇φLS(t) + c > 0 due to ∇φLS(t) ≥ 0 for t > 0, thus the
ψLS(t) is an increasing function w.r.t. t, and the minimizer is achieved when x = 0.

• When t ≤ 0: ∇ψLS(t) = ∇φLS(t) − c, and ∇φLS(t) is an increasing function, which
achieves minimizer when t = 0 such that φLS(t) = 1−α

K .

– if c ≥ 1−α
K , ∇ψLS(t) < 0, and ψ(t) is a decreasing function for t ≤ 0, and the

minimizer is achieved when t = 0;
– if 0 < c ≤ 1−α

K , there exist such t∗ such that ∇ψLS(t) = 0. When t < t∗, φLS(t)
is a decreasing function; and when t∗ < t ≤ 0, φLS(t) is an increasing function.
Therefore, the minimizer is achieved when t = t∗ < 0

Combing them together, we can prove that φLS satisfies the condition of (14).

C Proof of Theorem 1 for GL

In this part of appendices, we prove Theorem 1 in Section 3 that we restate as follows.

Theorem 3 (Global Optimality Condition of GL). Assume that the number of classes K is smaller
than feature dimension d, i.e., K < d, and the dataset is balanced for each class, n = n1 = · · · =
nK . Then any global minimizer (W ?,H?, b?) of

min
W ,H,b

f(W ,H, b) := g(WH + b1>) +
λW

2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 ,

(16)

with

g(WH + b1>) :=

n∑
i=1

g(WHi + b1>) :=
1

N

K∑
k=1

n∑
i=1

L(Whk,i + b,yk); (17)

L(Whk,i + b,yk) = L(zk,i,yk) satisfying the the Contrastive property in Definition 3; (18)

obeys the following

‖w?‖2 =
∥∥w?1

∥∥
2

=
∥∥w?2

∥∥
2

= · · · =
∥∥w?K

∥∥
2
, and b? = b?1,

h?k,i =

√
λW
λHn

w?k, ∀ k ∈ [K], i ∈ [n], and h
?

i :=
1

K

K∑
j=1

h?j,i = 0, ∀ i ∈ [n],

where either b? = 0 or λb = 0, and the matrix W ?> is in the form of K-simplex ETF structure
defined in Definition 2 in the sense that

W ?>W ? = ‖w?‖22
K

K − 1

(
IK −

1

K
1K1>K

)
.

C.1 Main Proof

At a high level, we lower bound the general loss function based on the contrastive property (14),
then check the equality conditions hold for the lower bounds and these equality conditions ensure
that the global solutions (W ?,H?, b?) are in the form as shown in Theorem 3.
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Proof of Theorem 3. First by Lemma 5, Lemma 6 and Lemma 7, we know that any critical point
(W ,H, b) of f in (16) satisfies

W>W =
λH
λW

HH>;

λHHi = −W>∇Zi=WHi
g(WHi + b1>);

b = −∇g(WH + b1>)

λb
1.

For the rest of the proof, letGi = ∇Zi=WHi
g(WHi+b1

>) and τ = −∇g(WH+b1>)
λb

to simplify
the notations, and thus ‖H‖2F = λH

λW
‖W ‖2F , λHHi = −W>Gi and b = τ1.

We will first provide a lower bound for the general loss term g(WH + b1>) according to the
Definition 3, and then show that the lower bound is attained if and only if the parameters are in the
form described in Theorem 3. By Lemma 8, we have

f(W ,H, b) = g(WH + b1>) +
λW

2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22

≥ φ (ρ?) +K
√
nλWλH |ρ?|

where φ is lower bound function satisfying the Definition 3, ρ? = arg minρ φ (ρ) +
K
√
nλWλH |ρ| ≤ 0. Furthermore, by Lemma 8, we know that Z̄?i = W ?H?

i =
−ρ?

(
IK − 1

K1K1>K
)
, which satisfies the K-simplex ETF structure defined in Definition 2. In

Lemma 9, we show the any minimizer (W ?,H?, b?) of f(W ,H, b) has following properties via
check the equality conditions hold for the lower bounds in Lemma 8:

(a) ‖w?‖2 =
∥∥w?1

∥∥
2

=
∥∥w?2

∥∥
2

= · · · =
∥∥w?K

∥∥
2
;

(b) b? = b?1, where either b? = 0 or λb = 0;

(c) h
?

i := 1
K

∑K
j=1 h

?
j,i = 0, ∀ i ∈ [n], and

√
λW

λHn
wk? = h?k,i, ∀ k ∈ [K], i ∈ [n];

(d) WW> = ‖w?‖22
K−1
K

(
IK − 1

K1K1>K
)
;

The proof is complete.

C.2 Supporting Lemmas

We first characterize the following balance property between W and H for any critical point
(W ,H, b) of our loss function:

Lemma 5. Let ρ = ‖W ‖2F . Any critical point (W ,H, b) of (16) obeys

W>W =
λH
λW

HH> and ρ = ‖W ‖2F =
λH
λW
‖H‖2F . (19)

Proof of Lemma 5. By definition, any critical point (W ,H, b) of (16) satisfies the following:

∇W f(W ,H, b) = ∇Z=WH g(WH + b1>)H> + λWW = 0, (20)

∇Hf(W ,H, b) = W>∇Z=WH g(WH + b1>) + λHH = 0. (21)

Left multiply the first equation by W> on both sides and then right multiply second equation by
H> on both sides, it gives

W>∇Z=WH g(WH + b1>)H> = −λWW>W ,

W>∇Z=WH g(WH + b1>)H> = −λHH>H.

Therefore, combining the equations above, we obtain

λWW
>W = λHHH

>.
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Moreover, we have

ρ = ‖W ‖2F = trace
(
W>W

)
=

λH
λW

trace
(
HH>

)
=

λH
λW

trace
(
H>H

)
=

λH
λW
‖H‖2F ,

as desired.

Next, we characterize the following relationship per group between W and Hi for i ∈ [n] for any
critical (W ,H, b) of (16) satisfies the following:
Lemma 6. LetGi = ∇Zi=WHi

g(WHi + b1>). Any critical point (W ,H, b) of (16) obeys
W>Gi = −λHHi. (22)

Proof of Lemma 5. By definition, any critical point (W ,H, b) of (16) satisfies the following:
∇Hi

f(W ,H, b) = W>∇Zi=WHi
g(WHi + b1>) + λHHi = 0; (23)

W>Gi = −λHHi. (24)
as desired.

We then characterize the following isotropic property of b for any critical point (W ,H, b) of our
loss function:
Lemma 7. Let τ = −∇g(WH+b1>)

λb
. Any critical point (W ,H, b) of (16) obeys

b = τ1. (25)

Proof of Lemma 7. By definition, any critical point (W ,H, b) of (16) satisfies the following:
∇bf(W ,H, b) = ∇ g(WH + b1>)1 + λbb = 0,

b = −∇g(WH + b1>)

λb
1 = τ1 (26)

as desired.

Lemma 8. Let W =

 (w1)>

...
(wK)>

 ∈ RK×d, H = [H1 H2 · · · Hn] ∈ Rd×N , Hi =

[h1,i · · · hK,i] ∈ Rd×K , Z̄ = WH ∈ Rd×N , N = nK, and b = τ1. Given g(WH + b1>K)
defined in (17), for any critical point (W ,H, b) of (16), it satisfies

f(W ,H, b) ≥ φ (ρ?) + (K − 1)
√
nλWλH |ρ?| (27)

Z̄? = −ρ?
(
IK −

1

K
1K1>K

)
InK (28)

where φ is lower bound function satisfying the Definition 3, ρ? = arg minρ φ (ρ)+K
√
nλWλH |ρ|,

and Z̄? = W ?H?.

Proof of Lemma 8. With Z̄i = WHi, and
∥∥Z̄i∥∥2

= σmax
i , we have the following lower bound for

f(W ,H, b) as

f(W ,H, b) = g(WH + b1>) +
λW

2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22

=

n∑
i=1

(
g(WHi + b1>) +

λW
2n
‖W ‖2F +

λH
2
‖Hi‖2F

)
+
λb
2
‖b‖22

≥
n∑
i=1

(
g(Z̄i + b1>) +

√
λWλH/n

∥∥Z̄i∥∥∗)+
λb
2
‖b‖22

≥
n∑
i=1

(
g(Z̄i + b1>) +

√
λWλH/n

∥∥Z̄∥∥2

F∥∥Z̄i∥∥2

)
+
λb
2
‖b‖22

=

n∑
i=1

(
g(Z̄i + b1>) +

√
λWλH/n

σmax
i

∥∥Z̄i∥∥2

F

)
+
λb
2
‖b‖22 ,
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where the first inequality is from Lemma 2, and the second inequality becomes equality only when
Z̄i 6= 0 and

∀ k, σk(Z̄i) = σmax
i or 0

∃ k, σk(Z̄i) 6= 0
(29)

where σk(Z̄i) is the k-th singular value of Z̄i. While we only consider Z̄i 6= 0, we will show the
Z̄i = 0 can be included in an uniform form as following proof. We can further bound f(W ,H, b)
by

f(W ,H, b) ≥
n∑
i=1

(
g(Z̄i + b1>) +

√
λWλH/n

σmax
i

∥∥Z̄i∥∥2

F

)
+
λb
2
‖b‖22 ,

≥ 1

N

K∑
k=1

n∑
i=1

φ

∑
j 6=k

z̄k,i,j − z̄k,i,k + bj − bk︸ ︷︷ ︸
=0

+

n∑
i=1

√
λWλH/n

σmax
i

∥∥Z̄i∥∥2

F
+
λb
2
‖b‖22 ,

=
1

N

n∑
i=1

K∑
k=1

φ
 K∑
j 6=k

(z̄k,i,j − z̄k,i,k)

+
K
√
nλWλH
σmax
i

‖z̄k,i‖22

+
λb
2
‖b‖22 , (30)

where the first inequality is from the first condition (14) of loss function L and the equality achieves
only when z̄k,i,j = z̄k,i,j′ for j 6= k, j′ 6= k, and bj − bk = 0 is due to Lemma 7. If we denote by
ρk,i =

∑K
j 6=k (z̄k,i,j − z̄k,i,k) /(K − 1), then

‖z̄k,i‖22 =
∑
j 6=k

z̄2
k,i,j + z̄2

k,i,k

≥ (K − 1)

∑
j 6=k

z̄k,i,j
K − 1

2

+ z̄k,i,k

= (K − 1)

∑
j 6=k

z̄k,i,j − z̄k,i,k
K − 1

+ z̄k,i,k

2

+ z̄k,i,k

= (K − 1) (ρk,i + z̄k,i,k)
2

+ z̄k,i,k

≥ K − 1

K
ρ2
k,i

where the first inequality achieves equality only when z̄k,i,j = z̄k,i,j′ for j 6= k, j′ 6= k, and the
last line achieves equality only when z̄k,i,k = −K−1

K ρk,i, thus z̄k,i,j = 1
K ρk,i for j 6= k. Denoting

ρi = [ρi,1 ρi,2 · · · ρi,K ] and diag(ρi) is a diagonal matrix using ρi as diagonal entries, and
supposing |ρ1| ≥ |ρ2| > · · · > |ρK |, we can express Z̄i as:

Z̄i = −(IK −
1

K
1K1>K)diag(ρi), (31)

and we can extend the expression of (30) as following

f(W ,H, b) ≥ 1

N

n∑
i=1

K∑
k=1

φ (ρk,i) +
(K − 1)

√
nλWλH

σmax
i

ρ2
k,i︸ ︷︷ ︸

ψ(ρk,i)

+
λb
2
‖b‖2 (32)

which is decouplable if we treat the i-th samples per class as a group, thus we only consider the i-th
samples per class. In the next part, denote ρ? = arg minρ φ (ρ) + (K − 1)

√
nλWλH |ρ|.

When K ≥ 3, according to the Z = −(IK − 1
K1K1>K)diag(ρi), the condition of (29) and

Lemma 4, we know Z has only two possible forms corresponding to two different objective value
of
∑K
k=1 ψ(ρk) such that
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• |ρ1| = |ρ2| = · · · = |ρK |: we can have σmax = |ρ1| and
K∑
k=1

ψ(ρk) =

K∑
k=1

(
φ (ρk) +

(K − 1)
√
nλWλH

σmax
ρ2
k

)

=

K∑
k=1

(
φ (ρk) + (K − 1)

√
nλWλH |ρk|

)
≥ K

(
φ (ρ?) + (K − 1)

√
nλWλH |ρ?|

)
where the last line holds equality only when |ρ1| = |ρ2| = · · · = |ρK | = ρ∗.

• |ρ2| = · · · = |ρK | = 0: we can have σmax =
√

(K − 1)/K|ρ1| and
K∑
k=1

ψ(ρk) = φ (ρ1) + (K − 1)
√
nλWλH

√
K

K − 1
|ρ1|+ (K − 1)φ (0)

= φ (ρ1) + (K − 1)
√
nλWλH |ρ1|

+ (K − 1)
√
nλWλH

(√
K

K − 1
− 1

)
|ρ1|+ (K − 1)φ (0)

≥ K
(
φ (ρ?) + (K − 1)

√
nλWλH |ρ?|

)
where the last line holds equality only when |ρ1| = · · · = |ρK | = |ρ?| = 0.

When K = 2, according to the Lemma 3, we can calculate σmax =

√
ρ21+ρ22

2 , then

2∑
k=1

ψ(ρi) = φ (ρ1) + φ (ρ2) +
(K − 1)

√
nλWλH

σmax

(
ρ2

1 + ρ2
2

)
= φ (ρ1) + φ (ρ2) + (K − 1)

√
nλWλH

√
2(ρ2

1 + ρ2
2)

= φ (ρ1) + (K − 1)
√
nλWλH |ρ1|+ φ (ρ2) + (K − 1)

√
nλWλH |ρ2|

+ (K − 1)
√
nλWλH

(√
2(ρ2

1 + ρ2
2)− |ρ1| − |ρ2|

)
≥ 2

(
φ (ρ?) + (K − 1)

√
nλWλH |ρ?|

)
where the last line holds equality only when |ρ1| = |ρ2| = |ρ?|.
Combining them together, for K ≥ 2, we can further extend the expression of (32) as following

f(W ,H, b) ≥ 1

N

n∑
i=1

K∑
k=1

(
φ (ρk,i) +

(K − 1)
√
nλWλH

σmax
i

ρ2
k,i

)
+
λb
2
‖b‖2

≥ 1

N

n∑
i=1

K
(
φ (ρ?) + (K − 1)

√
nλWλH |ρ?|

)
+
λb
2
‖b‖2

≥ φ (ρ?) + (K − 1)
√
nλWλH |ρ?| (33)

where the last equation is achieved when b = 0 or λb = 0. According to the condition (15) of
loss function L that the minimizer ρ? of φ(ρ) + c|ρ| is unique for any c > 0, and by denoting
InK = [IK · · · IK ] ∈ RK×nK , we have

Z̄?i = −ρ?
(
IK −

1

K
1K1>K

)
(34)

Z̄? = −ρ?
(
IK −

1

K
1K1>K

)
InK (35)

as desired.
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Next, we show that the lower bound in (27) is attained if and only if (W ,H, b) satisfies the follow-
ing conditions.
Lemma 9. Under the same assumptions of Lemma 8, the lower bound in (27) is attained for any
minimizer (W ?,H?, b?) of (16) if and only if the following hold
‖w?‖2 =

∥∥w?1
∥∥

2
=
∥∥w?2

∥∥
2

= · · · =
∥∥w?K

∥∥
2
, and b? = b?1,

h?k,i =

√
λW
λHn

w?k, ∀ k ∈ [K], i ∈ [n], and h
?

i :=
1

K

K∑
j=1

h?j,i = 0, ∀ i ∈ [n],

where either b? = 0 or λb = 0, and the matrixW ?> is in the form of K-simplex ETF structure (see
appendix for the formal definition) in the sense that

W ?>W ? = ‖w?‖22
K

K − 1

(
IK −

1

K
1K1>K

)
.

The proof of Lemma 9 utilizes the Lemma Lemma 5, Lemma 6 and Lemma 7, and the conditions
(33) and the structure of Z̄? (35) during the proof of Lemma 8.

Proof of Lemma 9. From the (35), we know that Z̄?1 = Z̄?2 = · · · = Z̄?n and then G?
i =

∇Z̄?
i =W ?H?

i
g(W ?H?

i + b1>) is equivalent for i ∈ [n]. Let denote G? = G?
1 = G?

2 = · · · = G?
n,

the (22) in Lemma 6 can be expressed as:

W ?>G? = −λHH?
i

Therefore, H̃? = H?
1 = H?

2 = · · · = H?
n, which means the last-layer features from different

classes are collapsed to their corresponding class-mean h?k,1 = h?k,2 = · · · = h?k,n, for k ∈ [K].
Furthermore,H?H?> = nH̃?H̃?>, combining this with (19) in Lemma 5, we know that

λWW
?>W ? = λHH

?H?> = nλHH̃
?H̃?>

By denoting W ? = UWΣWV
>
W and H̃? = UH̃ΣH̃V

>
H̃

, where UW , ΣW , V >W are the left
singular vector matrix, singular value matrix, and right singular vector matrix of W ?, respectively;
and UH̃? , ΣH̃? , V >

H̃? are the left singular vector matrix, singular value matrix, and right singular
vector matrix of H̃ , respectively, we can get

V >W = UH̃

ΣW =

√
nλH
λW

ΣH̃

Therefore, Z?i = W ?H̃? =
√

λW

nλH
UWΣ2

WV
>
H̃

. According to the Zi = −ρ?(IK − 1
K1K1>K)

in (34) and ρ? ≤ 0, which is symmetric, thus, UW = VH̃ , W ? =
√

nλH

λW
H̃?>, that is, w?k =√

nλH

λW
h?k,i, ∀ k ∈ [K], i ∈ [n] and

Z?i =

√
λW
nλH

W ?W ?> =

√
λW
nλH

W ?W ?

= −ρ?(IK −
1

K
1K1>K) = −ρ?(IK −

1

K
1K1>K)(IK −

1

K
1K1>K)

W ? = (
ρ?2nλH
λW

)
1
4 (IK −

1

K
1K1>K)

H̃? = (
ρ?2λW
λH

)
1
4 (IK −

1

K
1K1>K)

Therefore, ∥∥w?1
∥∥

2
=
∥∥w?2

∥∥
2

= · · · =
∥∥w?K

∥∥
2

h
?

i :=
1

K

K∑
j=1

h?j,i = 0, ∀ i ∈ [n]

where h
?

i =
∑K
k=1(h?k,i) and according to the condition of (33) and Lemma 7, b? = 0 or λb =

0.
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D Proof of Corollary 1 and Corollary 2

Following Theorem 2, we only need to prove convexity for label smoothing and local convexity for
focal loss.

For any output (logit) z ∈ RK , define

p = σ(z) ∈ RK , where pi =
exp(zi)∑K
j=1 exp(zj)

.

Let ysmooth ∈ RK be the label vector with 0 ≤ ysmooth
i ≤ 1 and

∑
i y

smooth
i = 1. The three loss

functions can be written as

f(z) =

K∑
i=1

ysmooth
i ξ(pi).

Some useful properties:

∂ziξ(pk) =

{
ξ′(pk)(pk − p2

k), i = k,

−ξ′(pk)pkpi, i 6= k,
=⇒ ∇zξ(pk) = ξ′(pk)pk(ek − p)

∂zipk =

{
pk − p2

k, i = k,

−pkpi, i 6= k,
=⇒ ∇zp = ∇zσ(z) = diag(p)− pp>

Therefore, the gradient and Hessian of f(z) are given by

∇f(z) =

K∑
i=1

ysmooth
i ∇zξ(pi) =

K∑
i=1

ysmooth
i ξ′(pi)pi︸ ︷︷ ︸

η(pi)

(1i − p) (36)

∇2f(z) = ∇(∇f(z)) =

K∑
i=1

ysmooth
i

η′(pi)pi (1i − p)(1i − p)>︸ ︷︷ ︸
0

−η(pi)
(
diag(p)− pp>

)︸ ︷︷ ︸
�0


Thus,∇2f(z) is PSD when η(pi) ≤ 0 and η′(pi) ≥ 0 for all i, i.e.,

ξ′(pi) ≤ 0, ξ′′(pi)pi + ξ′(pi) ≥ 0. (37)

Now we consider the following cases:

• CE loss with ysmooth = ek and ξ(t) = − log(t). In this case, ξ′(pi) = − 1
pi

and η(pi) =

ξ′(pi)pi = −1, and thus

∇2f(z) = diag(p)− pp> � 0,

where the inequality can be obtained by the Gershgorin circle theorem.
• Label smoothing with ysmooth = (1 − α)ek + α

K1 and ξ(t) = − log(t). In this case,
ξ′(pi) = − 1

pi
and η(pi) = ξ′(pi)pi = −1, and thus

∇2f(z) =

K∑
i=1

ysmooth
i

(
diag(p)− pp>

)
= diag(p)− pp> � 0

since
∑K
i=1 y

smooth
i = 1.

• Focal loss with ysmooth = ek and ξ(t) = −(1− t)β log(t). In this case,

ξ′(pi) = β(1− pi)β−1 log(pi)−
(1− pi)β

pi
,

η(pi) = ξ′(pi)pi = βpi(1− pi)β−1 log(pi)− (1− pi)β ≤ 0, ∀ β ≥ 0, pi ∈ [0, 1],

η′(pi) = β(1− pi)β−1 log(pi)− β(β − 1)pi(1− pi)β−2 log(pi) + β(1− pi)β−1 + β(1− pi)β−1

= β(1− pi)β−2 ((1− βpi) log(pi) + 2(1− pi))
≥ β(1− pi)β−2 (log(pi) + 2(1− pi)) .
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Thus, η′(pi) ≥ 0 whenever 0.21 ≤ pi ≤ 1. The Hessian becomes

∇2f(z) = η′(pk)pk (ek − p)(ek − p)>︸ ︷︷ ︸
�0

−η(pk)
(
diag(p)− pp>

)︸ ︷︷ ︸
�0

which is PSD when 0.21 ≤ pk ≤ 1.
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