Appendices

Organizations and Basic. The appendix is organized as follows. We first introduce the basic
definitions and inequalities used throughout the appendices. In Appendix A, we provide more details
about the datasets, computational resources, and more experiment results on CIFAR10, CIFAR100
and minilmageNet datasets. In Appendix B, we prove that CE, FL and LS satisfy the contrastive
property in Definition 1. In Appendix C, we provide a detailed proof for Theorem 1, showing that the
Simplex ETFs are the only global minimizers, as long as the loss function satisfies the Definition 1.
Finally, in Appendix D, we present the whole proof for Theorem 2 that the FL function is a locally
strict saddle function with no spurious local minimizers existing locally and LS function is a globally
strict saddle function with no spurious local minimizers existing globally.

Definition 2 (K -Simplex ETF). A standard Simplex ETF is a collection of points in R specified

by the columns of
K 1
M = \|—— (Ix — —1g1j

where Iy € REXE js the identity matrix, and 1 € RX is the all ones vector. In the other words,
we also have

K 1
MM = MM' = 1 (IK—KlKlI{).

As in [5,12], in this paper we consider general Simplex ETF as a collection of points in R? specified
by the columns of 4 / %P (IK - %IKIIT(), where P € R X (d > K) is an orthonormal matrix,
ie, PTP =Ig.
Lemma 1 (Young’s Inequality). Let p, q be positive real numbers satisfying % + % = 1. Then for
any a,b € R, we have
p b q
lab] < Jal” + L7
p q

where the equality holds ifand only if |a|’ = |b|?. The case p = q = 2 is just the AM-GM inequality
fora?, b%: |ab| < 1 (a® + b?), where the equality holds if and only if |a| = [b].

The following Lemma extends the standard variational form of the nuclear norm.
Lemma 2. For any fixed W € RE*? H;, 6 R*K Z. = WH,; ¢ REXE gnd o > 0, we have
2. < 5= (Wl +alm). (1

3|l denotes the nuclear norm of Z;:
*

HZH* = Zak(zi):trace(ﬁ), with Z; = USV",

where {O'k};{:l denotes the singular values of Z;, and Z; = UV " is the singular value decom-
position (SVD) of Z;.

Proof of Lemma 2. Let Z; =UZXV be the SVD of Z,. For any WH,; = Z;, we have
|Zi]|, = trace(X) = trace (UTZ;V) = trace (UTWHxV)

e L P mVE < 5o (W1 + o ).

where the first inequality utilize the Young’s inequality in Lemma 1 that |trace(AB)| < 5 ||AH I

2
W[+

5 ||BH w forany ¢ > 0 and A, B of appropriate dimensions, and the last inequality follows because
ﬁUH = 1 and |V|| = 1. Therefore, we have

|z IWIL + o | HT)

< 25

We complete the proof. O
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Lemma 3 (Eigenvalues of Diagonal-Plus-Rank-One Matrices). Let 7 < 0, z € R", and D be an
n X n diagonal matrix with diagonals d1, . . . ,d,,. Let A1, ..., A\, be the eigenvalues of the diagonal-
plus-rank-one matrix D + 122"

Case 1: Ifdy >ds > -+ >dy,and z; # 0 foralli =1,--- ,n, then the eigenvalues {\;}
are equal to the n roots of the rational function [65, 66]

<0

n 22
A) =1 T(D-))"'z=1
wA\) =147z ( )z +T;dj_x

and the diagonals {d;} strictly separate the eigenvalues as following:

diy > XM >do >N > >dy, > Ay (12)

Case 2:If z; = 0 for some i, then d; is an eigenvalue of D + Tzz" with corresponding
eigenvector e; since

(D + TzzT)ei =d;e; +Tzz; = d;e;.
The remaining n — 1 eigenvalues of D + T7zz " are equal to the eigenvalues of the smaller
matrix D' +12'2' T, where D' € R"=D*(=1) gng 2" € R"=1 are obtained by removing
the i-th rows and columns from D and the i-th element from z, respectively. One can repeat
this process if z' still has zero element.

Case 3: If there are m mutually equal diagonal elements, say d;11 = -+ = dipm = d,
then for any orthogonal m x m matrix P, D + 72z has the same eigenvalues as

I;
TDT' +7(Tz2)(Tz)" = D+ 122", where T = [ P ] ,2=Tz.
Infifm
We can then choose P as a Householder transformation such that
T i+m
Plzit1 Ziq2 - Zigm] = {0 0o - Z;Hl 2]2

Thus, according to Case 2, d is an eigenvalue of D + 722" repeated m — 1 times and the
remaining eigenvalues can be computed by checking the smaller matrix.

Based on Lemma 3, we can prove the following Lemma.

Lemmad. Let K > 3and Z = — (Ix — +117) diag (p1,p2,- -+ , pr) with |p1]| > |pa| > -+ >
lpx| and |p1| > 0. Also let o; > 0 be the i-th largest singular value of Z. Suppose there exists k
withl < k < K — 1 such that

0] ="-"+=0} =0Omax > 0andog41 =---=0g =0. (13)
Then |p1|,- - , |px | must satisfy either
lprl = lp2| = -+~ = lpkl, with  omax = |p1],

or

. K-1
po=-=pg =0, Wwith opax = \/7|Pl|~

Proof of Lemma 4. Because

. 1 .
Z'Z = diag (p1,p2," , pK) <IK - KllT) diag (p1,p2, -, PK)

. 1
= diag (p3, 03, k) — gppT

wherep=[p1 p2 -+ p K]T, Z " Z satisfies the form of Diagonal-Plus-Rank-One in Lemma 3
with D = diag (p3,03,- -+ ,p%). 2 = pand 7 = —%. Let Ay > Xy > --- Ag > 0 denote the n
eigenvalues of Z7Z. Duetol"Z =0T, we can have Ax = 0.
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* If |p1] = [p2| = -+ = |px|: we have

p%:)\lz"':)\K_lzpi(>)\K:O.
ThU.S, Omax — \/)\1 = |p1|.
o If |p1]| > |p2| = -+ = |pk| = 0: according to Case 2 in Lemma 3, we have

M= (1=1/K)pi>ps=Xo- = pie = Ag = 0.

Thus, o = /(1= 1/K) 57 = /(K — /K |pu].

o If |p1| > |p2| = -+ = |pk| # 0: according to Case 3 in Lemma 3, we have

AQ"':AK—lng
2
and the remaining two eigenvalues are the same to those of {1 p2:| +
K

(,

==

) [\/%PK} [pl vK — 1pK]. According to (12) in Lemma 3, we can obtain

P> A > pr > Ag = 0.
Combing them together, we can have
p%>)\1>p§:)\2~--:p%<>)\;(=0

thus, 0 = Ag < A2 < A1 = Apax, which violates the assumption (13).

o If|p1| = =|pi| > |pix1l = =|px| =0and 1 < i < K: according to the Case 2
and Case 3 in Lemma 3, we can have
Al ==X :P%

and 0 < \; = p? — %pf < p? = Amax, Which violates the assumption (13).

o If [p1] = -+ = |pil > |pix1l = - = |pr| # 0and 1 < i < K: according to Case 3 in
Lemma 3, we have
A== A1 2,0?
)\iJrl :.-.:)\K71 :p%(
2
and the remaining two eigenvalues are the same to those of D = {p ! pg] +
K

1 ﬂpl - - . . .
(—%) [mpK] [Vipr VK —ipr]. According to (12) in Lemma 3, we can obtain

pi=p; > Xi > pk > Ak =0.
Combing them together, we can have
pPl=M=-=p>N>pl=dip1==pk>Ag =0
thus, 0 = Ag < A\; < A1 = Amax, Which violates the assumption (13).

o If |p1]| > |pi| > |pk]| for some 1 < i < K: Suppose [p1| = -+ = |pm], |ps| = -+ =
|pitn—1|and |pg—t41| =+ = |pk]|, wherem < i,i+n—1 < K —t+1andm,n,t > 1.
According to the (12), Case 2 and Case 3 in Lemma 3, we can find

P3n>)\m>0122/\i+n—1>0§(2/\f(=0

thus, 0 = Ax < Ajtn—1 < Am < Amax, Which violates the assumption (13).

We complete the proof. O
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Figure 4: Illustration of A'C'; and test accuracy across different iterations-width configurations. The
figure depicts the N'C'y and test accuracy of various iteration-width configurations for different loss functions
on CIFAR10.

A Experiments

In this section, we first describe more details about the datasets and the computational resource
used in the paper. Particularly, all CIFAR10, CIFAR100 and minilmageNet are publicly available
for academic purpose under the MIT license, and we run all experiments on a single RTX3090
GPU with 24GB memory. Moreover, additional experimental results on CIFAR10, CIFAR100 and
minilmageNet are presented in Section A.1, Section A.2, and Section A.3, respectively.

A.1 Additional experimental results on CIFAR10

In Section 4, we present the test accuracy for different losses function across various different
iteration-width configurations. Moreover, we further show the A/C'; for different loss functions
across different iteration-width configurations , and we reuse the results of test accuracy in Figure 3
for better investigation. The experiment results in Figure 4 consistently show that the value of N'C
of training WideResNet50-0.25 for 100 epochs is around three orders of magnitude larger than it
of training WideResNet50-2 for 800 epochs, which indicates that the previous configuration setting
is much less collapsed than the latter one. In terms of test accuracy, the maximal difference across
different losses for width = 0.25 and epochs = 100 configuration is 1.037%, which is larger than
0.36% for width = 2 and epochs = 800 configuration. These results support our claim that all
losses lead to identical performance, as long as the network has sufficient approximation power and
the number of optimization is enough for the convergence to the A'C global optimality.

A.2 Additional experimental results on CIFAR100

In this parts, we show the additional results on CIFAR100 dataset.

Prevalence of A'C Across Varying Training Losses We show that all loss functions lead to N'C
solutions during the terminal phase of training on CIFAR100 dataset. The results on CIFAR100
using WideResNet50-2 and different loss functions is provided in Figure 5. We consistently observe
that all three N'C metrics of FL and MSE converge to a small value as training progresses, and
metrics of CE and FL still continue to decrease at the last iteration, because CIFAR100 is more
difficult than CIFAR10 and requires networks to be optimized longer. The decreasing speed of FL.
is slowest, which is consistent with our global landscape analysis that FL has benign landscape in
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Figure 5: The evolution of A'C metrics across different loss functions. We train the WideResNet50-2 on
CIFAR100 dataset for 800 epochs using different loss function. From left to right: NC'; (variability collapse),
N> (convergence to simplex ETF) and NC3 (convergence to self-duality).
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Figure 6: The evolution of performance across different loss functions. We train the WideResNet50-2 on
CIFAR100 dataset for 800 epochs using different loss function. From left to right: training accuracy, validation
accuracy and test accuracy.

the local region near optimality. These results imply that all losses exhibit A'C at the end, regardless
of the choice of loss functions.

All Losses Lead to Largely Identical Performance Same as the results on CIFAR10 dataset, the
conclusion on CIFAR100 also holds that all loss functions have largely identical performance once
the training procedure converges to the A/C global optimality. In Figure 6, we plot the evolution
of the training accuracy, validation accuracy and test accuracy with training progressing, where all
losses are optimized on the same WideResNet50-2 architecture and CIFAR100 for 800 epochs. To
reduce the randomness, we average the results from 3 different random seeds per iteration-width
configuration, and the test accuracy is reported based on the model with best accuracy on valida-
tion set, where we organize the validation set by holding out 10 percent data from the training set.
The results consistently shows that the training accuracy trained by different losses all converge to
one hundred percent (reaching to terminal phase), and the validation accuracy and test accuracy
across different losses are largely same, as long as the optimization procedure converges to the A'C
global solution. In Figure 7, we plot the average N'C; and test accuracy of different losses under
different pairs of width and iterations for CIFAR100 dataset. The three phenomenon mentioned in
Section 4.2 also exist on CIFAR100 in most cases. Moreover, the values of A'C; for width=0.25
and epochs=100 configuration are also around three orders magnitude larger than them for width=2
and epochs=800 configuration and the less collapsed configuration leads to larger difference gap
across different loss functions. While there are some small difference between different losses in
width = 2 and epochs = 800 configurations, We guess that it is because CIFAR100 is much harder
than CIFAR10 datasets, and network is not sufficiently large and trained not long enough for all
losses to achieve a global solution.

A.3 Additional experimental results on minilmageNet
In this parts, we show the additional results on minilmageNet dataset. We trained WideResNet18-

0.25 and WideResNet18-2 on minilmageNet for 100 epochs and 800 epochs, respectively. To reduce
the randomness, we average the results from 3 different random trials. The N'C and test accu-
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Figure 7: Illustration of A'C'; and test accuracy across different iterations-width configurations. The
figure depicts the N'C'y and test accuracy of various iteration-width configurations for different loss functions

on CIFAR100.
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Figure 8: The evolution of A'C; and test accuracy across different loss functions. We train the
WideResNet18-0.25 for 100 epochs and WideResNet18-2 for 800 epochs on minilmageNet using different
loss functions.

racy of different loss functions are provided in Figure 8 for comparison. We consistently observe
that the A/C'; metric of all losses converges to a small value as training progress, when the neural
network has sufficient approximation power and the training is performed for sufficiently many it-
erations, such as WideResNet18-2 for 800 epochs. Additionally, the conclusion on minilmageNet
also holds that all loss functions have largely identical performance once the training procedure con-
verges to the N'C global optimality. Specifically, while the last-iteration test accuracy of training
WideResNet18-0.25 for 100 epochs is 0.7195, 0.6915, 0.7020 and 0.7040, respectively, the last-
iteration test accuracy of training WideResNet18-2 for 800 epochs is 0.7930, 0.7962, 0.7932 and
0.8020 for CE, MSE, FL and LS, respectively. The experiment results on minilmageNet also sup-
port our claim that (7) the test performance may be different across different loss functions when
the network is not large enough and is optimized with limited number of iterations, but (i) the test
accuracy across different loss are largely identical, once the networks has sufficient capacity and the
training is optimized to converge to the N'C global solution.

B Proof of CE, FL and LS included in GL

In this section, we prove that CE, FL and LS belong to GL in Section B.1, Section B.2 and Sec-
tion B.3, respectively. Before starting the proof for each loss, let us restate the definition of the GL
in Definition 1:
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Definition 3 (Contrastive property). We say a loss function Lc1,(z,yx) satisfies the contrastive
property if there exists a function ¢ such that Lg1,(z, yx) can be lower bounded by

Lo(z,uk) 2 ¢ [ Y (2 — =) (14)
J#k

where the equality holds only when z; = zg Sorall j,j' # k. Moreover, (t) satisfies

t* = arg mtin¢ (t) + c|t| is unique for any ¢ > 0,and t* < 0. (15)

B.1 CEisin GL

In this section, we will show that the CE defined in (3) belongs to the GL defined in Definition 3.
First, let us rewrite the CE definition in GL form as following:

K
= log |1+ Zexp(zj - 2k)
Ji#k

Lce(z,yx) = —log (Z:;Xp(Zk)>

i1 exp(z;)

Y

log <1 (K —1)exp (ﬂ)) = e | > (2 — )

i#k
where the inequality is due to the log is an increasing and function and exp is a strictly convex

function, and it achieves equality only when z; = z;: for all j, j' # k. Therefore, there exists such
a function @cg to lower bound original CE loss Lcog(z, y) as following:

de(t) = tog (14 (5 = Dewp () ).

which satisfies the condition of (14). Next, we will show ¢cg(t) satisfies the condition (15). The
first-order gradient of ¢cg(¢) is following:
exp (—Kt_l)

14+ (K —1)exp (ﬁ)

Vocg(t) =

which is an increasing function and greater than 0 for ¢ € R. Let denote ¢cg(t) = ¢cg(t) + clt|,
then

* Whent > 0: Vicg(t) = Ve (t) + ¢ > 0, thus the ¢cg(¢) is an increasing function w.r.t.
t, and the minimizer is achieved when ¢ = 0.

* When t < 0: Vi¢ce(t) = Véce(t) — ¢, and Vécg(t) is an increasing function, which
achieves minimizer when ¢ = 0 such that Vocg(t) = +.

- ife> %, Vipee(t) < 0, and ¢(t) is a decreasing function for ¢ < 0, and the minimizer
is achieved when ¢ = 0;

- if 0 < ¢ < £, there exist such ¢* such that Vi)cg(t) = 0. When ¢ < t*, dcg(t)
is a decreasing function; and when t* < t < 0, ¢cg(t) is an increasing function.
Therefore, the minimizer is achieved when ¢t = ¢t* < 0

Combing them together, we can prove that ¢cg satisfies the condition of (15).
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B.2 FLisin GL

In this section, we will show that the FL defined in (4) belongs to the GL defined in Definition 3. let
us rewrite the FL definition in GL form as following:

Con(e ) = — 1_exp<2k>>710 <Xm>>
FL(Z, Yk) ( ZleeXp(Zj) g ZleeXp(zj)

- (1—2’“’(2’“) )Vlog 3 espls =)
> (2) j=1

j=1€Xp

v K
1
1- log | 1+ g exp(z; — zx)
K J
( 1+ 3 exp(z — Zk)) £k

K
7 (1 + Zexp(zj — zk))

7k
where the function 7(t) = (1 — )7 log () is an increasing function for ¢ > 1 because

Vn(t) = 2() (1~ 3) " og(t) + (1 - 1) >0

Thus, we can find the lower bound function by

K
LrL(z,yk) > 7 (1 + (K —1)exp ( Z[j(__zlk))
J#k
K
=7 (5 (Z(Zj Zk)))
J#k

K
= ¢rL (Z(Z] - Zk))

J#k

where ¢p(t) =1 (£ (t)) and {(t) = 14 (K — 1) exp -5 € [1, K], which satisfies the condition
of (14). Next, we will show ¢y () satisfies the condition (15). The first-order gradient of ¢gy () is
following:

Ver(t) = Vi (@) +clt]) = Ve (€ (1) Vet (1) + ﬁ

() (eta) s g (i) ) (o (w52)) e
2 N1 N _
(” () (-em) s g (1 e) ) (5=7)
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Similarly, by chain rule, the second-order derivation is:

Vi(t) = Vig(t) = Vews (€(1) Ve(t)

1 1 5
=(v+1) Ok (1— @)
- - 2y (ot - BED) Y (L -
cor" @ (roste) ~17g6 "7 —) (e gte )

log(£(1)) v+l
-1 T
9(E(L))

—log(&(t)) + v

When t > 0: VgL (t) = ﬁf(t) + ¢ > 0, thus the ¥cg(t) is an increasing function w.r.t.
t, and the minimizer is achieved when x = 0.

« When t < 0: Vip(t) = 225£(t) — ¢ > 0. Moreover, we can find 9(£(t)) is a decreas-
ing function w.r.t. £(t) and £(¢) is an increasing function w.r.t. ¢, therefore, ¥(£(t)) is a
decreasing function w.r.t. .

- If 9(£(0)) = ¥(K) > 0, then V21)(z) > 0 for z < 0, which means that V,£(¢) is an
increasing function. Because ¢(£(—00)) = ¢(1) = 0, here we need to consider two
cases(Please refer to Figure 9):

% if ¢(€(0) = ¢(K) < e(K —1), then Viippr(t) > 0, thatis, ¥y (t) is a decreasing
function. Therefore, the global minimizer is achieved when x = 0 (the blue curve
in Figure 9).

% if ¢(£(0) = ¢(K) > ¢(K — 1), so ¢pr(x) will first decrease and then increase.
Therefore the global minimizer is unique (the red curve in Figure 9).

- If 9(£(0)) = J(K) < 0, then for t € [—o0,t], Vitbpr () is an increasing function
wrt. t; fort € [t',0), Vi@ pp(t) is a decreasing function w.r.t. t. Here we need to
consider three cases(please refer to Figure 10):

# if ¢(€(t')) < (K — 1), then Vyppp(t) < 0, that is, ¥pr(t) is a decreasing
function. Therefore, the global minimizer is achieved when x = 0 (the green
curve in Figure 10).

% if ¢(£(0)) = ¢(K) > ¢(K — 1), so ¢ pr(z) will first decrease and then increase.
Therefore the global minimizer is unique (the red curve in Figure 10).

x if ¢(£(t)) > ¢(K — 1) and ¢(£(0)) = ¢(K) < ¢(K — 1), then Vi¢pp () = 0 has
two solutions ¢; and ¢5. For t € [—o0, t1], ¥ (t) is an decreasing function w.r.t.
t; for t € [t1,t2], Prp(t) is an increasing function w.r.t. ¢; and for ¢ € [tg,0),
Y1 (t) is a decreasing function w.r.t. ¢. The unique minimizer is achieved when
either ¢t = 0 or t = t1, as long as ¥ pr(0) # Ypr(t1). As for the minor case
Yrr(0) = ¥rL(t1), it requires carefully chosen penalized parameters, which can
be omitted (the blue curve in Figure 10).

In conclusion, for focal loss, ¥y, (t) has a unique minimum in terms of ¢ < 0, which satisfies the
condition of (15).
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Figure 10: Illustration of the case of J(£(0)) < 0, where c = Kv/nAw Ax.

B.3 LSisin GL

In this section, we will show that the LS defined in (5) belongs to the GL defined in Definition 3.
First, let us rewrite the LS definition in GL form as following:

ey = (1o W=Dy (o) ) as el
Lis(z,yr) = <1 = >1g<ZKZ1eXp(Zj)> KZIg(Z]K:lexp(zj)>

J Z;élc
_(,_E=1a), (S ewn() ¥ exp(z)
N <1 K >log< exp(zx) > #Zklo ( exp(z¢) )
(o E=nay i explz; = 2)
= (1 = >log ]Z:;exp(zj #Zkl ( " p— )
K 0 K
= log Zexp(zj —zi) | — Ve Z(Zz — 2k)
=1 £k

K
> log (1 + (K —1)exp (ﬂ)) - % #k(ze — 2k)

where the inequality is due to the log is an increasing and function and exp is a strictly convex
function, and it achieves equality only when z; = z;: for all j, j' # k. Therefore, there exists such
a function ¢ to lower bound original LS loss L1,5(z, yx) as following:

Pus(t) = log (1 + (K —1)exp (t)) _ 2y

K-1 K"
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which satisfies the condition of (14). Next, we will show ¢1s(t) satisfies the condition (15). The
first-order gradient of ¢y s(t) is following:

Vois(t) = -

Let denote ¢s(t) = ¢rs(t) + clt], then

* Whent > 0: Vis(t) = Vors(t) + ¢ > 0due to Vgrs(t) > 0 for ¢ > 0, thus the
s (t) is an increasing function w.r.t. ¢, and the minimizer is achieved when x = 0.

* When ¢t < 0: V¢Ls( ) = Vérs(t) — ¢, and V¢ s(t) is an increasing function, which
achieves minimizer when ¢ = 0 such that ¢rs(t) = 122.

- if ¢ > 122, Viis(t) < 0, and ¢(t) is a decreasing function for ¢ < 0, and the
minimizer is achieved when t = 0;

- if 0 < ¢ < 122 there exist such t* such that Vi s(t) = 0. When ¢ < t*, ¢rs(t)
is a decreasmg functlon and when t* < ¢t < 0, ¢rs(t) is an increasing function.
Therefore, the minimizer is achieved when ¢t = t* < 0

Combing them together, we can prove that ¢ g satisfies the condition of (14).

C Proof of Theorem 1 for GL

In this part of appendices, we prove Theorem 1 in Section 3 that we restate as follows.

Theorem 3 (Global Optimality Condition of GL). Assume that the number of classes K is smaller
than feature dimension d, i.e., K < d, and the dataset is balanced for each class, n =n, = --- =
ng. Then any global minimizer (W*, H* b*) of

A
: — T w AH b
ynin, fW,H,b) := g(WH +b1 ) + — W ||F+ ||H||F+ ® |1b]]3,

(16)
with

gWH +b1"): Zg (WH; +b1"): NZZE Why,; + b, yp); (17)
i=1 k=11i=1

LW hy; +b,yr) = L(2k,:, Yi) satisfying the the Contrastive property in Definition 3;  (18)

obeys the following
lw*lly = [lw]], = fw™|, = - = [lw and b =b"1,
s AW Vke|K],i€[n], and h, := iih* =0, Vie[n
kg — )\Hn ) ) ) i K,,_ gy ) )

where either b* = 0 or \p = 0, and the matrix W*" is in the form of K-simplex ETF structure
defined in Definition 2 in the sense that

K 1
T 2 T
W*'w* = ||w*||2m (IK—K1K1K>.

C.1 Main Proof

At a high level, we lower bound the general loss function based on the contrastive property (14),
then check the equality conditions hold for the lower bounds and these equality conditions ensure
that the global solutions (W™*, H*, b*) are in the form as shown in Theorem 3.
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Proof of Theorem 3. First by Lemma 5, Lemma 6 and Lemma 7, we know that any critical point
(W, H,b) of fin (16) satisfies

Ww = )\—HHHT;

Aw
AgH; = —WTVZi:WHi gWH,; + blT);
H+b1"
b= —vg(W)\ o)y
b

For the rest of the proof, let G; = Vz,—wr, g(WH;+bl1")and T = —%;MT)

the notations, and thus ||H||f, = i‘—v“"/ HW||§, AgH;, = -W'TG;andb = 71.

to simplify

We will first provide a lower bound for the general loss term g(W H + b1 ") according to the
Definition 3, and then show that the lower bound is attained if and only if the parameters are in the
form described in Theorem 3. By Lemma 8, we have

Aw AH Ab
J(W,H.b) = gWH +b17) + S5 WL+ =5 [ H 5 + 5 (bl

= ¢(p") + Kv/nAw Au|p”|
where ¢ is lower bound function satisfying the Definition 3, p* = arg min, ¢ (p) +
Kv/nAwAmlpl < 0. Furthermore, by Lemma 8, we know that Z; = W*H} =

—p* (I K — %1 KIIT(), which satisfies the K -simplex ETF structure defined in Definition 2. In
Lemma 9, we show the any minimizer (W>*, H*, b*) of f(W, H,b) has following properties via
check the equality conditions hold for the lower bounds in Lemma 8:

@ fwrlly = [, = [l = - = [l

(b) b* = b*1, where either b* = 0 or Ay = 0;

*K‘

9

© h, = %Zjil hi, = 0, Vi€ [n], and Aw_ gk — hi. Vke[K] i€[n];

AHN
) WWT = |Jw| 522 (Ix — L1x1%);
The proof is complete. O

C.2 Supporting Lemmas

We first characterize the following balance property between W and H for any critical point
(W, H,b) of our loss function:

Lemma 5. Let p = ||WH§, Any critical point (W, H, b) of (16) obeys

A A
WTW = ﬁHHT and p = |W|% = ﬁnﬂui. (19)

Proof of Lemma 5. By definition, any critical point (W', H  b) of (16) satisfies the following:
Vwf(W,H,b) = Vz_wu gWH+b1l")H" + \wW = 0, (20)
Vaf(W,H,b) = W Vz_wu gWH +b1") + \gH = 0. (21)

Left multiply the first equation by W T on both sides and then right multiply second equation by
H T on both sides, it gives

WiVeewua gWH+b1T)H™ = AW W,
WiVeewng gWH+b1")H' = - A\gH'"H.
Therefore, combining the equations above, we obtain

MWW = \yHH'.
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Moreover, we have

AH AH A
= [W|3% = trace (WTw) = Etrace (HH') = Etraee (H'H) = ﬁHHH?,,
as desired. O

Next, we characterize the following relationship per group between W and H; for i € [n] for any
critical (W, H, b) of (16) satisfies the following:

Lemma 6. Let G; = Vz,—wr, g(WH; +bl"). Any critical point (W, H,b) of (16) obeys

W'G, = —\gH,. (22)
Proof of Lemma 5. By definition, any critical point (W', H | b) of (16) satisfies the following:
Vi, f(W,H,b) = WIVz_wu, gWH; +b1") + A\gH; = 0; (23)
W'G, = —\gH,. (24)
as desired. O

We then characterize the following isotropic property of b for any critical point (W, H, b) of our
loss function:

Lemma 7. Let 7 = —%})H’IT). Any critical point (W, H,b) of (16) obeys
b =Tl (25)

Proof of Lemma 7. By definition, any critical point (W, H , b) of (16) satisfies the following:
Vof(W,H,b) = VgWH +bl")1+ b =

-
p— VOWHIO ), (26)
Ab
as desired. O
(wh)"
Lemma 8. Let W = : e REXd H = [H Hy --- H, € R*N H; =
(w)"
[hii - hii €R>*E Z=WH ¢ R>N N =nK, and b= 71. Given g(W H + blIT()
defined in (17), for any critical point (W , H b) of (16), it satisfies
FW,H,b) > ¢ (p" — DV w Ao 27)
_ 1
Zr=—p* <IK — KlKlfo) I (28)

where ¢ is lower bound function satisfying the Definition 3, p* = arg min, ¢ (p) NAW AH

and Z* = W*H™.

Proof of Lemma 8. With Z; = W H;, and || Z; ||, = o}, we have the following lower bound for
f(W,H,b) as

f(W,H,b)

I
2
N
&
_|_

=y
=
_

w 2 | AH 2 Ab 2
2w 2 2

[
(]

>\W 2 )\H 2 )\b 2
<9(WHZ- F1T) o+ S W 4 2B ) + 2 el

%
N
=
N
+
o
[

4‘
+
>
N
>
T

~
=
N
NI
+

|

=

%
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where the first inequality is from Lemma 2, and the second inequality becomes equality only when
Z; # 0 and

Vk,on(Z;) =0 or0

_ 2
I k0n(Z:) £ 0 29

where 0 (Z;) is the k-th singular value of Z;. While we only consider Z; # 0, we will show the
Z; = 0 can be included in an uniform form as following proof. We can further bound f(W, H,b)
by

_ A AwA - A
fW,H,b) > > <g<zi+bf>+“”"/” ||zi||§> + 5 161l

max
0

L~y i _ AW/ |4 A
ZNZ ¢ Z Zkij — Zkik +b; — by +;\/;‘;n7||Zz||i,+;||b||§,

k=1 i=1 J#k

=0
1 K& N _ KvnAwAmg o Ab oo

= 222 | 9| 2 G = i) |+ = IEally | + 7 Bl (30)
i=1 k=1 j#k i

where the first inequality is from the first condition (14) of loss function £ and the equality achieves
only when Zj, ; ; = Zi; j for j # k,j' # k, and b; — by, = 0 is due to Lemma 7. If we denote by

Pri =Yoo (Frij — Zrin) /(K — 1), then

—_ 2 _ _
||zkr,i||2 = Z ZI%Z] + zl%zk

7k
2
ki, .
> (K-1 |, sl I
Jj#k
2
Z R Zk ik _ _
= (K —-1) . ]“;(7_11 + Zeik |+ Zrik
J#k
= (K = 1) (pri + Znip)” + Zrik
K-1,
2 i Phi
where the first inequality achieves equality only when Zy ; ; = 2k for j # k,j’ # k, and the
last line achieves equality only when 2y, ; , = —£=Lpj, ;, thus 2, ; ; = % py; for j # k. Denoting
pi = [pin pi2 - pix]and diag(p;) is a diagonal matrix using p; as diagonal entries, and

supposing |p1| > |p2| > -+ > |pk|, we can express Z; as:

) 1 .
Z; = —(Ix — 2 1x1)diag(py), 31

and we can extend the expression of (30) as following

n K
1 K —1)vnAwA A
FOWHD) 2 505 oo+ ETILIAWI G Sy, o)
1=1 k=1
Y(pr,i)

which is decouplable if we treat the ¢-th samples per class as a group, thus we only consider the i-th
samples per class. In the next part, denote p* = argmin, ¢ (p) + (K — 1)v/nAw Am|p|.

When K > 3, according to the Z = —(Ix — %11} )diag(p;), the condition of (29) and
Lemma 4, we know Z has only two possible forms corresponding to two different objective value

of Zszl ¥ (py) such that
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o |p1] = |p2| = -+ = |pk|: we can have o = |p1] and

K K
> Wlor) = <¢> (o) + = 13m$(AWAH pi)
k=1 k=1

K

:Z<¢(pk K—1) \/mmk>
k=1

> K (¢ (0) + (K — 1)MIP*I)

where the last line holds equality only when |p1| = |p2| = -+ = |pk]| = p*.
* |p2| =+ =|pk| = 0: we can have opmax = /(K — 1)/K|p1| and

K
> 0o =0 () + (- DVmw | o]+ (K 16 (0)
= ¢ (p1) + (K = 1)vVniwAu|pil

(K= )Vmwn (,/ T 1) lp1] + (K — 1) (0)
> K (6(p") + (K = 1)V/mAwAn|o'])

where the last line holds equality only when |p1| = --- = |px| = [p*| = 0.

2 2
When K = 2, according to the Lemma 3, we can calculate 0. = 1/ pbﬂ, then

2 K — 1)V w A
D blp) =0 (p1) + 6 (p2) + ( im’i 2 (1 + 03)
k=1

( )+¢(P2 —1 VN)\W)\H\/ /)1 +P2
(p1) -1) \/”/\W/\HIP1| + ¢ (p2) — 1)V nAw Arr|p2|
(- 1>¢nAWAH ( 2%+ 2) — orl - |p2|)

> 9 (¢(p*) + (K — wmw)

where the last line holds equality only when |p1| = |p2| = |p*|-

=9
¢

Combining them together, for K > 2, we can further extend the expression of (32) as following

n K
f(W,H,b) > %ZZ (aﬁ (Pri) + CiSut) MWAH,O%,Z-) + % bl

max
i=1 k=1

0,
1< A

= ZK (¢ (0") + (K = )Vmw xalo']) + 5 1l

> ¢ (p* — DVnAw || (33)

where the last equation is ach1eved When b = 0or Ay, = 0. According to the condition (15) of
loss function £ that the minimizer p* of ¢(p) + ¢|p| is unique for any ¢ > 0, and by denoting
It =[Ix - Ig]eREX"E wehave

vV

= 1

Zi=—p" (IK — K1K1£) (34)

- 1

Zr=—p* (IK - KlKl}) I (35)
as desired. O
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Next, we show that the lower bound in (27) is attained if and only if (W', H , b) satisfies the follow-
ing conditions.

Lemma 9. Under the same assumptions of Lemma 8, the lower bound in (27) is attained for any
minimizer (W*, H*, b*) of (16) if and only if the following hold

lw*lly = flw™|l, = [|w?[, = - = [w™[,, and b"=0b"1,
Aw 1 E
ri = THn“’*k’ VkelK],ic[n], and h, := Ej}:l:hﬁi =0, Vieln],

where either b* = 0 or \p = 0, and the matrix W* T is in the form of K -simplex ETF structure (see
appendix for the formal definition) in the sense that

K 1

The proof of Lemma 9 utilizes the Lemma Lemma 5, Lemma 6 and Lemma 7, and the conditions
(33) and the structure of Z* (35) during the proof of Lemma 8.

Proof of Lemma 9. From the (35), we know that Z; = Z; = .- = Z* and then G} =
Vzi—wem:9(W*H? + bl T) is equivalent for i € [n]. Letdenote G* = G5 = G = --- = G,
the (22) in Lemma 6 can be expressed as:
W*'G* = —\gH}
Therefore, H* = H} = H} = --- = H}, which means the last-layer features from different
classes are collapsed to their corresponding class-mean hj ; = hy, = -+ = hp ., fork € [K].
Furthermore, H*H*T = nH*H *T combining this with (19) in Lemma 5, we know that
AW TW* = \gH*H*T =n\g H*H*"
By denoting W* = Uw Sw V4, and H* = UHEI;-VF;, where Uy, Zw, V4, are the left

singular vector matrix, singular value matrix, and right singular vector matrix of W*, respectively;
and Ug., Xg., Vg* are the left singular vector matrix, singular value matrix, and right singular

vector matrix of H, respectively, we can get

Vi =Ug
Swo= Mlgﬁ
Aw
Therefore, Z* = W*H* = 7;\A—"VHUV[,-E%,VVI:{'—. According to the Z; = —p*(Ix — %IKI})

in (34) and p* < 0, which is symmetric, thus, Uy = Vg, W* = 1/%17{”’ that is, w** =

BIpy o Vke[K], i€ [n]and

Zr = [T = AW ey
’ nAH NAH
* 1 T * 1 T 1 T
=—p"Ix = 71klg) = —p"(Ix — 2 1xlk) Ik — 3-1k1k)
*2
«_ (PPTNARH 1 1 T
=(— Igp — —1x1
W = ( pu- )ik 71K i)
2
r* P )‘W 1 1 T
= I —1x1
( jye )i (I 71K i)
Therefore,
*1 _ *2 _ _ *K
[w ], = [w?|, = = [Jw™],

_ 1 E
h, = ?Zh;i =0, Vieln
j=1

where h; = Zle(h;L) and according to the condition of (33) and Lemma 7, b* = 0 or A\ =
0. ’ O
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D Proof of Corollary 1 and Corollary 2

Following Theorem 2, we only need to prove convexity for label smoothing and local convexity for
focal loss.

For any output (logit) z € R¥, define

exp(z;)
—%
> j=1 exp(z;)

Let y*™°h € RX be the label vector with 0 < yfm°" < 1 and Y, yi™°" = 1. The three loss
functions can be written as
Z ysmooth f

p =o(z) € RE, where p; =

Some useful properties:

! _n2 P —
9:,8(pr) = {f_é/ k;g;kpipk)’ i 4 Z’ = V:&(px) = & (pr)pr(er — p)

D20k = {pk G, —> V.p = V.0(z) = diag(p) — pp"
" —PkPi, Z# ka * i

Therefore, the gradient and Hessian of f(z) are given by

Z YOV € (i) Z Yo £ p(1i - p) (36)
- n(pz)
Vif(z) = Z g™ [ ' (pi)pi (1 — p)(1i — p) " —n(pi) (diag(p) —pp")
~——_— ————
0 >0

Thus, V2 f(2) is PSD when 1(p;) < 0 and n’(p;) > 0 for all i, i.e.,
§'(pi) <0, &'(pi)pi + & (pi) 2 0. 37

Now we consider the following cases:
¢ CE loss with y*™°" = ¢, and £(t) = —log(t). In this case, &'(p;) = 71% and n(p;) =
& (pi)p; = —1, and thus
V2f(2) = diag(p) —pp' = 0,
where the inequality can be obtained by the Gershgorin circle theorem.
* Label smoothing with y*™°" = (1 — a)e; + %1 and £(t) = —log(t). In this case,
¢ (pi) = —- and n(p;) = &' (pi)pi = —1, and thus

V2 £( Zygmo"th diag(p) —pp") = diag(p) —pp' =0

i=1
since S, yimeoth — 1,
* Focal loss with 3™ = e; and £(¢) = —(1 — t)” log(t). In this case,

_ . \B
€(ps) = B(1 — po)*log(p) — L2
n(o7)

bi
' (pi)

& (pi)pi = Bpi(1 — i) og(pi) — (1= p;)? <0, V5> 0,p; €[0,1],
B(
= B(
B(

— i)’ ((1 = Bps) log(p:) + 2(1 — p;))
—p)? 72 (log(pi) +2(1 — py)) -

I \%

31

— pi)? M log(pi) — B(B — 1)pi(1 — pi)? 2 log(ps) + B — i)' + B(1 — p)?

-1



Thus, 7' (p;) > 0 whenever 0.21 < p; < 1. The Hessian becomes

V2f(2) =n'(pe)pk (ex — p)(er — p) " —n(px) (diag(p) —pp ")
—_——————

=0 =0

which is PSD when 0.21 < p;, < 1.
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