Rethinking Value Function Learning for
Generalization in Reinforcement Learning

Seungyong Moon':2, JunYeong Lee!-2, Hyun Oh Song!2:3*
1Seoul National University, 2Neural Processing Research Center, *DeepMetrics
{symoonl 1,mascheroni99 ,hyunoh}@mllab .snu.ac.kr

Abstract

Our work focuses on training RL agents on multiple visually diverse environments
to improve observational generalization performance. In prior methods, policy and
value networks are separately optimized using a disjoint network architecture to
avoid interference and obtain a more accurate value function. We identify that a
value network in the multi-environment setting is more challenging to optimize and
prone to memorizing the training data than in the conventional single-environment
setting. In addition, we find that appropriate regularization on the value network is
necessary to improve both training and test performance. To this end, we propose
Delayed-Critic Policy Gradient (DCPG), a policy gradient algorithm that implicitly
penalizes value estimates by optimizing the value network less frequently with
more training data than the policy network. This can be implemented using a single
unified network architecture. Furthermore, we introduce a simple self-supervised
task that learns the forward and inverse dynamics of environments using a single
discriminator, which can be jointly optimized with the value network. Our proposed
algorithms significantly improve observational generalization performance and
sample efficiency on the Procgen Benchmark.

1 Introduction

In recent years, deep reinforcement learning (RL) has achieved remarkable success in various domains,
such as robotic controls and games [27}19,132]. To apply RL algorithms to more practical scenarios,
such as autonomous vehicles or healthcare systems, they should be robust against the non-stationarity
of real-world environments and capable of performing well on unseen situations during deployment.
However, current state-of-the-art RL algorithms often fail to generalize to unseen test environments
with visual variations, even if they achieve high performance in their training environments [[14} 41} [9].
This problem is referred to as observational overfitting [36].

Training RL agents on a finite number of visually diverse environments and testing them on unseen
environments is the standard protocol for evaluating observational generalization in RL [10]]. Several
methods have attempted to improve generalization in this framework by adopting the regularization
techniques that originate from supervised learning or training robust state representations via self-
supervised learning [9, 20} 30, 26]. However, these methods have mainly focused on developing new
auxiliary objectives on the existing RL algorithms intended for the conventional single-environment
setting such as PPO [34]. Some recent works have investigated the interference between policy and
value function optimization arising from the multiple training environments and proposed new training
schemes that decouple the policy and value network training with a separate network architecture to
obtain an accurate value function [11, 29]].

*Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

In this paper, we argue that learning an accurate value function on multiple training environments is
more challenging than on a single training environment and requires sufficient regularization. We
demonstrate that a value network trained on multiple environments is more likely to memorize the
training data and cannot generalize to unvisited states within the training environments, which can be
detrimental to not only training performance but also test performance on unseen environments. In
addition, we find that regularization techniques that penalize large estimates of the value network,
originally developed for preventing memorization in the single-environment setting, are also beneficial
for improving both training and test performance in the multi-environment setting. However, this
benefit comes at the cost of premature convergence, which hinders further performance enhancement.

To address this, we propose a new model-free policy gradient algorithm named Delayed-Critic Policy
Gradient (DCPG), which trains the value network with lower update frequency but with more training
data than the policy network. We find that the value network with delayed updates suffers less from
the memorization problem and significantly improves training and test performance. In addition, we
demonstrate that it provides better state representations to the policy network using a single unified
network architecture, unlike the prior methods. Moreover, we introduce a simple self-supervised task
that learns the forward and inverse dynamics of environments using a single discriminator on top of
DCPG. Our algorithms achieve state-of-the-art observational generalization performance and sample
efficiency compared to prior model-free methods on the Procgen benchmark [10].

2 Preliminaries

2.1 Observational Generalization in RL

We consider a collection of environments M formulated as Markov Decision Processes (MDPs). Each
environment m € M is described as a tuple (Sy,, A, Trn, "m, Pm,), Where S, is the image-based
state space, A is the action space shared across all environments, Ty, : S, X A — P(S,,) is the
transition function, r,, : S,, x A — R is the reward function, p,, is the initial state distribution, and
~ € [0, 1] is the discount factor. We assume that the state space has visual variations between different
environments. While the transition and reward functions are defined as specific to an environment, we
assume that they exhibit some common structures across all environments. A policy 7 : S — P(A)
is trained on a finite number of training environments Mi,q;n = {m;}7_;, where S is the set of all
possible states in M. Our goal is to learn a generalizable policy that maximizes the expected return
on unseen test environments Myesy = M \ Mrain.

In this paper, we utilize the Procgen benchmark as a testbed for observational generalization [10]. It is
a collection of 16 video games with high diversity comparable to the ALE benchmark [5]]. Each game
consists of procedurally generated environment instances with visually different layouts, backgrounds,
and game entities (e.g., the spawn locations and times for enemies), also called levels. The standard
evaluation protocol on the Procgen benchmark is to train a policy on a finite set of training levels and
evaluate its performance on held-out test levels [10].

2.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a powerful model-free policy gradient algorithm that learns a
policy 7y and value function V,, parameterized by deep neural networks [34]. For training, PPO first
collects trajectories 7 using the old policy network my_,, right before the update. Then, the policy
network is trained with the collected trajectories for several epochs to maximize the following clipped
surrogate policy objective J; designed to constrain the size of policy update:

Jo(0) = By, oy [mm <<|>A clip <<|>) a1t) Aﬂ ,

T 0014 (at | St) 014 (a‘t ‘ St

where A, is an estimate of the advantage function at timestep ¢. Concurrently, the value network is
trained with the collected trajectories to minimize the following value objective Jy:

Jv(¢) = Eg,or E (V¢(St) - Rt)? ,

where R, = A, + Vg (s¢) is the value function target. It is used to compute the advantage estimates
via generalized advantage estimator (GAE) [133]].

Policy phase J(0) Jv (0) J=(0) Jv(9)

Cr(0) Jaux(0) Jv(9)

J=(0) Cv(0)

Aux phase C=(0) Jv(0) Jr(0)

Policy Value Policy Aux value Value Policy Value Dynamics
mo(-[s) Vo(s) 1 mo(-|s) Va(s) Vi(s) mo(-|s) Val(s) Jols.a,5)

NSNS L L

a
Policy Value
Encgder encoder encoder Encgder
9 ¢
S S S s, .‘7'/
(a) PPO network (b) PPG network (c) DDCPG network

Figure 1: Network architectures for PPO, PPG, and DDCPG. The objectives J, Jy, Jaux, and Jy
denote the policy, value, auxiliary value, and dynamics objectives, respectively. The regularizers
Cr and Cy denote the policy and value regularizers, respectively. The blue and red terms represent
optimization problems during the policy and auxiliary phases, respectively.

In practice, the policy and value networks are jointly optimized with shared parameters (i.e., = ¢),
especially in image-based RL [13}139]. For example, they can be implemented using a shared encoder
followed by separate linear heads, as shown in Figure[Ta] Sharing parameters is advantageous in that
representations learned by each objective can be beneficial to the other. It also reduces memory costs
and accelerates training time. However, a shared network architecture complicates the optimization
as a single encoder should be optimized over multiple objectives whose gradients may have varying
scales and directions. It also constrains the policy and value networks to be optimized under the same
training hyperparameter setting, such as batch size and the number of epochs, severely limiting the
flexibility of PPO.

2.3 Phasic Policy Gradient

Phasic Policy Gradient (PPG) is an algorithm built upon PPO that significantly improves observational
generalization by addressing the problems of sharing parameters [11]]. More specifically, PPG employs
separate encoders for the policy and value networks, as shown in Figure[Tb| In addition, it introduces
an auxiliary value head Vy on top of the policy encoder in order to distill useful representations from
the value network into the encoder. For training, PPG alternates between policy and auxiliary phases.
During the policy phase, which is repeated IV times, the policy and value networks are trained with
newly-collected trajectories to optimize the policy and value objectives from PPO, respectively. Then,
all states and value function targets in the trajectories are stored in a buffer B. During the auxiliary
phase, the auxiliary value head and the policy network are jointly trained with all data in the buffer to
optimize the following auxiliary value objective J,,x and policy regularizer C’;:

Fsl8) = Bupes 5 (Vi) = 80) [Col6) = Bupos [Drs s 5) I ol 5]

where mg_,, is the policy network right before the auxiliary phase and Dy, denotes the KL divergence.
In other words, the value network is distilled into the policy encoder while maintaining the outputs of
the policy network unchanged. Moreover, the value network is additionally trained with all data in the
buffer to optimize the value objective from PPO to obtain a more accurate value function. It is worth
noting that the training data size in the auxiliary phase is V,; times larger than the policy phase. It has
been claimed that the distillation of a better-trained value network with a separate architecture and
the additional training for a more accurate value network can improve observational generalization
performance and sample efficiency [11].

—e— PPG —— DCPG

BigFish Chaser Climber StarPilot
0.6 &
q q 0.6
0.4 |- 0.4
2 04 2 » 2 2
5] 5} 5] o 04 [
£ X0 = = 1
2 A 02 - 5 0.2 |- 3
ZEp « 0.2 %)) 1] 02 L
I H—\——o—._.-a' »\'_.\“'\H—‘
] i r
0 | | 0 | | | 0 | | | 0 | | |
12 10 50 200 12 10 50 200 12 10 50 200 12 10 50 200
training levels # training levels # training levels # training levels

Figure 2: Average stiffness of value networks for PPG and DCPG on 4 Procgen games while varying
the number of training levels.

3 Motivation

3.1 Difficulty of Training Value Network on Multiple Training Environments

We begin by investigating the difficulty of obtaining an accurate value network across multiple training
environments. Indeed, learning a value network that better approximates the true value function on
the given training environments can result in improved training performance [37]. However, even in
a simple setting where an agent is trained on a single environment, it has been shown that a value
network is likely to memorize the training data and unable to extrapolate well to unseen states even in
the same training environment [23| 21}, 12} [15]]. This problem can be exacerbated when the number of
training environments increases. Intuitively, given the fixed number of environment steps, the value
network will be provided fewer training samples per environment and rely more on memorization.

To corroborate this claim, we measure the stiffness of the value network between states (s, s') while
varying the number of training environments [16} 6], which is defined by

N Vedv(9;8)TVyJv(g;s)
P& 5) = G T s)2V oy (B8

Low stiffness indicates that updating the network parameters toward minimizing the value objective
for one state will have a negative effect on the minimization of the value objective for other states [6].
That is, the value network is less able to adjust its parameter to predict the true value function across
different states and instead tends to memorize only the states it has encountered. More specifically,
we train PPG agents on the Procgen games while increasing the number of training levels from O
to 200 and compute the average stiffness across all state pairs in a mini-batch of size 2'4 (=16,384)
throughout training. The detailed experimental settings and results can be found in Appendix A.

The green lines in Figure 2] show that the stiffness of the value network decreases as the number of
training environments increases, as expected. It implies that the value network trained on multiple
environments is more likely to memorize the training data and cannot accurately predict the values of
unvisited states from the training environments. This memorization problem brings us to train a value
network with sufficient regularization.

3.2 Training Value Network with Explicit Regularization

Next, we examine the effectiveness of value network regularization in the multi-environment setting.
We consider applying two existing regularization techniques developed to prevent the memorization
problem in the single-environment setting, especially when training data is limited. The first method
is discount regularization (DR), which trains a myopic value network with a lower discount factor ~'
[28]. The second method is activation regularization (AR), which optimizes a value network with Lo
penalty on its outputs:

Jxr/eg(@ =Es~r B (V¢>(3t) - Rt)Q + §V¢(st)2] ,

——PPG —— PPG+DR —— PPG+AR —— True —— Predicted

BigFish, Train BigFish, Test PPG+DR, BigFish PPG+AR, BigFish

30 | 30 [10 10 [~
£ £
Z20 g20| . Y

= =

2 g el sp
§ 10 § 10
z z r/p—»f"""'“

U o e —— LS o e —— ob—t 1 | | ob—t
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Environment step (106) Environment step (106) Environment step (106) Environment step (106)

(a) Average training and test returns. (b) True and predicted values.

Figure 3: (a) Training and test performance curves of PPG, PPG+DR, and PPG+AR on BigFish. (b)
True and predicted values measured at the initial states of training environments for PPG+DR and
PPG+AR on BigFish. The mean is computed over 10 different runs.

where o > 0 is the regularization coefficient [3]]. We train PPG agents with each of these two methods
using 200 training levels on the Procgen games. We reduce the discount factor from v = 0.999 to
~' = 0.995 for PPG+DR and use o = 0.05 for PPG+AR. We measure the average training and test
returns to evaluate the training performance and its transferability to unseen test environments.

As shown in Figure [3a] the value network regularization improves the training and test performance
of PPG on BigFish to some extent. It implies that explicitly suppressing the value network also helps
to mitigate memorization in the multi-environment setting. We also observe that these regularization
methods improve the training and test performance across all Procgen games on average. The detailed
experimental setting and results can be found in Appendix B.

Despite its effectiveness, explicit value network regularization can lead to a suboptimal solution as
the number of environment steps increases. Figure [3b|shows the true and predicted values measured
at the initial states of the training environments for PPG+DR and PPG+AR on BigFish. The predicted
values with explicit regularization reach a plateau too quickly, suggesting that excessive regularization
later hinders the value network from learning an accurate value function. This motivates us to develop
a more flexible regularization method that boosts training and test performance while allowing the
value network to converge to true values.

4 Delayed-Critic Policy Gradient

In this section, we present a novel model-free policy gradient algorithm called Delayed-Critic Policy
Gradient (DCPG), which effectively addresses the memorization problem of the value network in a
simple and flexible manner. The key idea is that the value network should be optimized with a larger
amount of training data to avoid memorizing a small number of recently visited states, based on the
stiffness analysis in Section[3.1} Furthermore, the value network should be optimized with a delay
compared to the policy network to implicitly suppress the value estimate, based on the regularization
analysis in Section[3.2]

4.1 Algorithm

DCPG follows a similar procedure to PPG by alternating policy and auxiliary phases. Still, it employs
a shared network architecture in the same way as PPO and does not require any additional auxiliary
head, as shown in Figure During the policy phase, which occurs more frequently but with less
training data than the auxiliary phase, the policy network is trained with newly-collected trajectories
to optimize the policy objective from PPO. In contrast, the value network is constrained to preserve
its outputs by optimizing the following value regularizer C'y:

Cv(6) = Bayor | 5 (Vals2) — Via (5002

10 F
10 |- 10 |- L
[} [} (5] () |-
Z 5| z s Z 50 |
s s s Ea
0 | | | | 0 | | | | 0 | | | | | | | |
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

DCPG, BigFish

Environment step (106)

——— True

—— Predicted

DCPG, Chaser

DCPG, Climber

DCPG, Dodgeball

Environment step (1 06)

Environment step (1 06)

Environment step (106)

Figure 4: True and predicted values measured at the initial states of training environments for DCPG
agents on 4 Procgen games. The mean is computed over 10 different runs.

where Vj_,, is the old value network right before the policy phase. Then, all states and value function
targets in the trajectories are stored in a buffer.

During the auxiliary phase, the value network is trained with a larger number of data in the buffer
to optimize the value objective from PPO. In contrast, the policy network is constrained to preserve
its outputs by optimizing the policy regularizer. Note that since the value network shares the same
encoder as the policy network, optimizing the value objective directly plays the role of representation
learning for the policy network. Thus, unlike PPG, DCPG does not require an additional auxiliary
head for feature distillation. The overall procedure of DCPG can be found in Algorithm T}

Algorithm 1 Dynamics-aware Delayed-Critic Policy Gradient (DDCPG)

Require: Policy network 7y, value network Vj, dynamics discriminator fy
1: for phase=1,2,...do
2: Initialize buffer B
3: foriter=1,2,..., N do > Policy phase
4: Sample trajectories 7 using 7 and compute value function target Ry for each state s; € T
5: for epoch=1,2,... E; do
6: Optimize policy objective J () and value regularizer Cy (6) with 7
7: end for)
8: Add (St7(l/,Rt) to B
9: end for
10: foriter=1,2,..., Faux do > Auxiliary phase
11: Optimize value objective Jy (6), dynamics objective .J¢(0), and policy regularizer C (6) with B
12: end for
13: end for

4.2 Value Network Analysis of Delayed Critic Update

The delayed critic update in DCPG can function as implicit regularization of the value network. Since
the policy improvement is not immediately reflected in the value network, it encourages smaller value
estimates than the true values. To validate this claim, we train DCPG agents using 200 training levels
on the Procgen games and measure the true and predicted values at the initial states of the training
levels. Figure [] shows the value estimates are kept lower than the true values at the early stage of
training but recover the true values as training progresses. More results can be found in Appendix C.

We also evaluate the effectiveness of the delayed critic update in mitigating the memorization problem
by measuring the stiffness of the value network as done in Section[3.1] The blue lines in Figure [2]show
that DCPG has higher stiffness than PPG, implying that the value network of DCPG is more robust
against memorization. We conclude that the delayed critic update serves as an effective regularizer
for the value network. More results can be found in Appendix A.

4.3 Learning Forward and Inverse Dynamics with Single Discriminator

In the context of multi-task learning, learning an auxiliary task can operate as a good regularizer that
prevents memorization in the main task [31]. Motivated by this, we consider learning an auxiliary task
using the representations from the encoder and jointly learning the value network with the auxiliary
objective. Suppose the buffer 5 used in the auxiliary phase contains a transition tuple (s, at, St+1).
Since the transition function from each environment is assumed to have the same underlying structure,
it is natural to train a neural network that models the forward dynamics of environments in the latent
space of the encoder. Concretely, a dynamics head fy takes the embedding of the current state s,
and the current action a; as inputs and predicts the embedding of the next state s;. However, it is
well known that a forward dynamics model using a neural network tends to overfit a small number of
training data and make poor predictions on unseen states [8]. To address this, we consider learning
the forward dynamics by training a discriminator that determines whether the next state is valid, given
the current state and action:

fo(stsar, sey1) =1, fo(sesat,8e41) =0, 8141 € B\ {8141}
Such a discriminator might discard information about the action to distinguish whether a transition is
valid. For example, the discriminator can predict the valid transition by using only the proximity of
the current and next states (see Appendix F for more details). To avoid this, we train the discriminator
to jointly distinguish whether the current action is valid, given the current and next states (i.e., inverse
dynamics):

fo(stsae, se1) =1, fo(se,ar,s8641) =0, ar € B\ {ar}.
Finally, we optimize the following dynamics objective during the auxiliary phase:

Jg(0) = E8t7at,5t+1""8|:log (fo(sts ar, se41)) +10g (1= fo(se, ar, 3141))
+nlog (1 — f&(stadtvst+1))]7

where §;11 ~ U(B\{st+1}), ar ~ U(B\{a.}), and n > 0 is the coefficient for the inverse dynamics.
We name the resulting algorithm Dynamics-aware Delayed-Critic Policy Gradient (DDCPG). The
network architecture and algorithm for DDCPG are shown in Figure[Ic|and Algorithm ([T} respectively
(the differences with DCPG are marked in cyan).

S Experiments

5.1 Experimental Settings

We evaluate the observational generalization performance of our methods on the Procgen benchmark.
We use the “easy” difficulty mode, which most prior works have focused on. We train agents on 200
training levels generated by seeds from 0 to 200 for 25M environment steps and test them on held-out
test levels, following the practice in Cobbe et al. [10]. We measure the average return of 100 test
episodes and report its mean and standard deviation over 10 runs with different initialization.

We compare our methods with PPO and 4 other baselines that use PPO as the backbone algorithm:
UCB-DrAC, PLR, PPG, and DAAC [30} 22, [11,[29]. UCB-DrAC is a data augmentation algorithm
for training policy and value networks to be robust against various transformations. PLR is a sampling
algorithm for the procedural generation that selects the next training level based on its future learning
potential. PPG is the previous state-of-the-art method on the Procgen benchmark. DAAC is motivated
by PPG and distills the advantage function into the policy network instead. For each method, we use
the same set of hyperparameters across all games, following the standard protocol in the ALE and
Procgen benchmarks [27, [10]. For our methods, we use the same hyperparameter setting as PPG for
a fair comparison. To compare the performance of each method with a single score, we calculate the
PPO-normalized score averaged over all Procgen games, which is computed by dividing the average
return of each method by PPO, following the practice in Jiang et al. [22], Raileanu et al. [30]. For the
implementation details and hyperparameters, please refer to Appendix D. The code can be found at
https://github.com/snu-mllab/DCPG,

5.2 Observational Generalization Performance on Procgen Benchmark

Table[T]shows the average test returns of each method on all 16 Procgen games. DCPG significantly
outperforms all the baselines, yielding a 24%p improvement on average compared to the previous

https://github.com/snu-mllab/DCPG

PPO —— DAAC ——PPG ——DCPG —— DDCPG
BigFish Chaser Climber
30 [- 10 FE
10 [~
£ £ M\;i“l“‘vm" £ 8 I
g 20 |- ‘q": ‘-A“h ‘q"z
%) o / o 6 [
& & 5 &
3 10 3 A 3 4
2 2 / 2
2
LU s B — ok I S
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Environment step (106) Environment step (106) Environment step (106)
Dodgeball Miner StarPilot
10 [~
g g0 g
2 2 240 -
B B B
S 5| & o
< < <
O e e s b0l ' | | (V1 s — —
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Environment step (106) Environment step (106) Environment step (106)

Figure 5: Test performance curves of each method on 6 Procgen games. Each agent is trained on 200
training levels for 25M environment steps and evaluated on 100 unseen test levels. The mean and
standard deviation are computed over 10 different runs.

Table 1: Average test returns of each method on all 16 Procgen games. Each agent is trained on 200
training levels for 25M environment steps and evaluated on 100 unseen test levels. The mean and

standard deviation are computed over 10 different runs.

Environment \ PPO UCB-DrAC PLR DAACT] PPG | DCPG DDCPG
BigFish 34£10 66+25 108+25 153£30 164+20| 23.1+23 259+23
BossFight 74+£07 72410 88407 95408 104406 | 102+04 106+05
CaveFlyer 52406 44408 63407 51406 77407 | 63+04 60+03
Chaser 55+£08 67+05 75408 63+08 89+09| 97+04 99+06
Climber 55406 62406 64+05 74+05 81+04| 85+07 93+07
CoinRun 8.8+0.3 86+04 89+03 93402 89+03| 85+04 84+03
Dodgeball 19+£03 45+14 22404 32+05 3.6+07| 67+04 90*16
FruitBot 275+ 15 269+17 27.7+13 285+14 291+10| 290+£12 28806
Heist 26+£06 34+10 3.1+06 3.0+£05 28+05| 33+05 44+08
Jumper 57+£04 56+04 59+04 5804 6004 | 6205 64+04
Leaper 5615 3.6+07 73+02 8211 72x24| 69+17 68*15
Maze 53£07 57+11 5605 5606 53£04| 57+£07 65+06
Miner 9206 10.1+07 9407 4411 76£07| 91£08 10605
Ninja 57405 57405 71405 67407 67404 | 63+06 66+05
Plunder 50+05 §1+15 87+13 56406 137+17| 137+13 129425
StarPilot 258420 27.0+£32 249436 359433 448426 | 461+21 46.6+4.1
PPO-norm score (%) | 100.0 £3.1 1207 £10.7 130.0+£6.0 1367+7.6 160.3+6.3 | 184552 202.2+10.2

state-of-the-art PPG. Adding dynamics learning to DCPG can further improve the test performance
with an 18%p increase in the PPO-normalized score. We also provide the average training returns
on all Procgen games in Appendix E, showing that our methods achieve better sample efficiency
in the multi-environment setting. Furthermore, we evaluate the performance of our methods using
the Min-Max normalized score and report mean, median, and interquartile mean (IQM) scores in
Appendix G, following the recent practice in Agarwal et al. [[2]]. We observe that the performance
improvements of our methods are statistically significant for all the metrics we consider.

Figure 5] shows the test performance curves of each method on 6 Procgen games throughout training.
Our methods achieve superior final test performance and acquire generalization ability with fewer
environment interactions. For example, our methods reach the final performance of PPG using only

2Results reported in the original paper use a different hyperparameter setting for each game.

—— PPG —— Separate DCPG —— DCPG

BigFish Chaser Climber Dodgeball
10 =
10 - 81
£ £ E 8| £
220 - 2 2 2 6
e = e e
o) o 6 o
& g 50 & 24
£ 10 |- £ £ £
g g g 4y g
< < / < < 25
Jy 2
LU o —— ob—r 1 | N B ob—t 1 |
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Environment step (106)

Environment step (1 06)

Environment step (1 06)

Environment step (106)

Figure 6: Test performance curves of PPG, Separate DCPG, and DCPG on 4 Procgen games. Each
agent is trained on 200 training levels for 25M environment steps and evaluated on 100 unseen test
levels. The mean and standard deviation are computed over 10 different runs.

20% of total environment steps on BigFish and Climber and 10% on Dodgeball and Miner. More
experimental results can be found in Appendix E.

5.3 Ablation Study for Delayed Critic Update

The delayed critic update not only alleviates the memorization problem but also provides better state
representations for generalization to the policy network. To validate this, we train DCPG agents with
an additional value network V,, using a separate encoder (Separate DCPG). The separate value network
Vi is aggressively optimized in the same way as PPG and only used for calculating advantages in the
policy objective. The original value network Vj is only used for learning representations for the policy
network with delayed updates. Figure [f] shows that Separate DCPG achieves better test performance
than PPG, implying that the delayed critic update produces more generalizable representations. For
the detailed experimental settings and results, please refer to Appendix F.

5.4 Ablation Study for Dynamics Learning

We conduct an ablation study to show the effectiveness of training forward and inverse dynamics
using a single discriminator. We train DCPG agents with only forward dynamics learning (DCPG+F)
and only inverse dynamics learning (DCPG+I). In addition, we train DCPG agents with forward and
inverse dynamics learning using two separate discriminators (DCPG+FI). Table 2] shows that DDCPG,
which jointly optimizes the forward and inverse dynamics with a single discriminator, achieves better
test performance than the other methods with dynamics learning. Note that inverse dynamics provides
performance gain only when jointly trained with forward dynamics using a single discriminator. We
provide the detailed experimental settings and results in Appendix F.

Table 2: PPO-normalized score of each method with dynamics learning on all 16 Procgen games.
Each agent is trained on 200 training levels for 25M environment steps and evaluated on 100 unseen
test levels. The mean and standard deviation are computed over 10 different runs.

| DCPG DCPG+F DCPG+I DCPG+FI
PPO-norm score (%) | 184.5+£52 1959+7.7 1855+£6.5 194.6+62

DDCPG
202.2 £10.2

6 Related Works

Observational generalization in RL. One prominent approach for improving observational gener-
alization in model-free RL is to employ regularization techniques developed for supervised learning,
such as batch normalization, weight regularization, and information bottleneck [[14, 19, 20]. Several
works adopt data augmentation strategies commonly used in computer vision to address the general-
ization problem [24,[38]]. For example, UCB-DrAC proposes a method that automatically finds an
effective augmentation and introduces new regularization terms to learn robust state representations

under various image transformations [30]. Recently, it has been shown that MuZero Reanalyse, the
state-of-the-art model-based RL algorithm, achieves better observational generalization performance
than model-free approaches, though it requires a larger network architecture [4]].

Another line of work uses self-supervised learning to learn invariant representations that can generalize
to unseen environments. Some methods attempt to learn state representations that capture long-term
behavior proximity between states using bisimulation or policy similarity metrics to discard irrelevant
information for generalization [40, [1} 26]. The idea of learning dynamics as a self-supervised task,
originally developed for sample efficiency, has also been used to improve observational generalization
[18,135]. DIM learns a state representation that can predict the representations of successive timesteps
using self-supervised learning [25]. It has also been tested that predicting future state representations
conditioned on the current state and action improves the generalization performance of MuZero [4].
Our work aims to enhance dynamics learning further by jointly modeling the forward and inverse
dynamics objectives using a single discriminator.

PPG is most closely related to our work, which proposes a better training algorithm to improve both
observational generalization and sample efficiency in the multi-environment setting [[11]]. It trains the
policy and value networks independently using a separate architecture and different levels of sample
reuse to avoid interference and obtain a better-trained value network. DAAC also uses decoupled
policy and value networks for a more accurate value function but distills the advantage function into
the policy encoder under the assumption that it is less prone to overfitting to environment-specific
features than the value function [29]. In contrast, we focus on regularizing the value network while
obtaining better representation, which distinguishes our work from the prior methods.

Learning value networks with regularization Discount regularization is one common regulariza-
tion method to mitigate overfitting in the value network [7]. A lower discount factor can lead to better
performance in approximated dynamic programming when the approximation error is large [28]. It is
also helpful for preventing overfitting when dealing with limited data in POMDPs [[17]. Activation
regularization penalizes the outputs of the value network and has a regularization effect similar to
that of discount regularization [3]]. It has been shown that activation regularization is equivalent to
discount regularization in batch TD learning and also effective in online RL [3].

7 Conclusion

We have investigated the difficulty of learning an accurate value network in the multi-environment
setting and shown that suppressing the value network with appropriate regularization can be helpful to
improve both the training and test performance. Based on this observation, we propose Delayed-Critic
Policy Gradient (DCPG), where the value network is implicitly regularized to have lower predicted
values at the early stage of training with delayed updates compared to the policy network. We find that
the delayed value update prevents the memorization of training data and produces more generalizable
representations that can be extended to unseen test environments. Furthermore, we introduce a simple
self-supervised task that jointly learns forward and inverse dynamics using a single discriminator,
which can be easily combined with DCPG. Our algorithms exhibit state-of-the-art performance in
observational generalization on the challenging Procgen benchmark.

Acknowledgements

This work was supported in part by Samsung Advanced Institute of Technology, Samsung Electronics
Co., Ltd., Institute of Information & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2019-0-01371, Development of brain-inspired
Al with human-like intelligence, No. 2020-0-00882, (SW STAR LAB) Development of deployable
learning intelligence via self-sustainable and trustworthy machine learning, and No. 2022-0-00480,
Development of Training and Inference Methods for Goal-Oriented Artificial Intelligence Agents),
and a grant of the Korea Health Technology R&D Project through the Korea Health Industry
Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea
(grant number: HI21C1074). This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA2386-22-1-4010. Hyun Oh Song is the corresponding
author.

10

References

[1] Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G Bellemare. Con-
trastive behavioral similarity embeddings for generalization in reinforcement learning. In ICLR,
2021.

[2] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In NeurIPS, 2021.

[3] Ron Amit, Ron Meir, and Kamil Ciosek. Discount factor as a regularizer in reinforcement
learning. In ICML, 2020.

[4] Ankesh Anand, Jacob C Walker, Yazhe Li, Eszter Vértes, Julian Schrittwieser, Sherjil Ozair,
Theophane Weber, and Jessica B Hamrick. Procedural generalization by planning with self-
supervised world models. In ICLR, 2022.

[5] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

[6] Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. In ICML, 2020.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific, Belmont,
MA, 1996.

[8] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In NeurIPS, 2018.

[9] Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In ICML, 2019.

[10] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In /CML, 2020.

[11] Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In
ICML, 2021.

[12] Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare,
and David Silver. The value-improvement path: Towards better representations for reinforcement
learning. In AAAI 2021.

[13] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[14] Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization
in dqn. arXiv preprint arXiv:1810.00123, 2018.

[15] Yannis Flet-Berliac, reda ouhamma, odalric-ambrym maillard, and Philippe Preux. Learning
value functions in deep policy gradients using residual variance. In ICLR, 2021.

[16] Stanislav Fort, Pawet Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. Stiffness:
A new perspective on generalization in neural networks. arXiv preprint arXiv:1901.09491,
2019.

[17] Vincent Francois-Lavet, Guillaume Rabusseau, Joelle Pineau, Damien Ernst, and Raphael
Fonteneau. On overfitting and asymptotic bias in batch reinforcement learning with partial
observability. Journal of Artificial Intelligence Research, 65:1-30, 2019.

[18] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deep-
mdp: Learning continuous latent space models for representation learning. In /ICML, 2019.

[19] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

11

https://github.com/openai/baselines

[20] Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. In NeurIPS, 2019.

[21] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In /CLR, 2020.

[22] Mingi Jiang, Edward Grefenstette, and Tim Rocktischel. Prioritized level replay. In ICML,
2021.

[23] J Zico Kolter and Andrew Y Ng. Regularization and feature selection in least-squares temporal
difference learning. In ICML, 2009.

[24] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. In NeurIPS, 2020.

[25] Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon
Hjelm. Deep reinforcement and infomax learning. In NeurIPS, 2020.

[26] Bogdan Mazoure, Ahmed M Ahmed, R Devon Hjelm, Andrey Kolobov, and Patrick MacAlpine.
Cross-trajectory representation learning for zero-shot generalization in RL. In /ICLR, 2022.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

[28] Marek Petrik and Bruno Scherrer. Biasing approximate dynamic programming with a lower
discount factor. In NeurIPS, 2008.

[29] Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforce-
ment learning. In ICML, 2021.

[30] Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
data augmentation for generalization in reinforcement learning. In NeurIPS, 2021.

[31] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[32] Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604—609, 2020.

[33] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In /CLR, 2016.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[35] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In /CLR,
2021.

[36] Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational
overfitting in reinforcement learning. In /CLR, 2020.

[37] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NeurIPS, 1999.

[38] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR, 2021.

[39] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. In AAAI 2021.

12

[40] Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.
Learning invariant representations for reinforcement learning without reconstruction. In /CLR,
2021.

[41] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We clearly reflect the main claims in Section [3]and
Section]

(b) Did you describe the limitations of your work? [N/A]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read the ethics review guidelines and checked our paper has no
conflict.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We provide the
code for reproducing the main results in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide the implementation details and hyperparameters of all
baselines and our methods in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We conduct experiments over 10 training seeds and report
mean and standard deviation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We describe the computational
resource in the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the benchmark
used for our experiments.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Preliminaries
	Observational Generalization in RL
	Proximal Policy Optimization
	Phasic Policy Gradient

	Motivation
	Difficulty of Training Value Network on Multiple Training Environments
	Training Value Network with Explicit Regularization

	Delayed-Critic Policy Gradient
	Algorithm
	Value Network Analysis of Delayed Critic Update
	Learning Forward and Inverse Dynamics with Single Discriminator

	Experiments
	Experimental Settings
	Observational Generalization Performance on Procgen Benchmark
	Ablation Study for Delayed Critic Update
	Ablation Study for Dynamics Learning

	Related Works
	Conclusion

