
DP-Mix: Mixup-based Data Augmentation for
Differentially Private Learning

Wenxuan Bao1 Francesco Pittaluga2

1 University of Florida

Vijay Kumar B G2

2 NEC Labs America

Vincent Bindschaedler1

Abstract

Data augmentation techniques, such as image transformations and combinations,
are highly effective at improving the generalization of computer vision models,
especially when training data is limited. However, such techniques are funda-
mentally incompatible with differentially private learning approaches, due to the
latter’s built-in assumption that each training image’s contribution to the learned
model is bounded. In this paper, we investigate why naive applications of multi-
sample data augmentation techniques, such as mixup, fail to achieve good per-
formance and propose two novel data augmentation techniques specifically de-
signed for the constraints of differentially private learning. Our first technique,
DP-MIXSELF, achieves SoTA classification performance across a range of datasets
and settings by performing mixup on self-augmented data. Our second technique,
DP-MIXDIFF, further improves performance by incorporating synthetic data from a
pre-trained diffusion model into the mixup process. We open-source the code at
https://github.com/wenxuan-Bao/DP-Mix.

1 Introduction

Differential privacy (DP) [11, 12] is a well-established paradigm for protecting data privacy, which
ensures that the output of computation over a dataset does not reveal sensitive information about
individuals in the dataset. However, training models with DP often incur significant performance
degradation, especially when strong privacy guarantees are required or the amount of training data
available is limited.

One class of techniques to overcome limited training data in classical (non-private) learning is data
augmentation. Unfortunately, the analysis of differentially private learning mechanisms requires that
the influence of each training example be limited, so naively applying data augmentation techniques
is fundamentally incompatible with existing differential private learning approaches. Therefore, new
approaches are required to leverage data augmentation.

Recently, De et al. [9] showed one way to incorporate simple data augmentation techniques, such
as horizontal flips and cropping, into differentially private training. Their approach creates several
self-augmentations of a training example and averages their gradients before clipping. This procedure
is compatible with differential privacy because each training example only impacts the gradients of
the self-augmentations which are aggregated together before clipping, thus preserving the sensitivity
bound. However, this requires using data augmentation techniques that operate on a single input
example, thus excluding large classes of multi-sample techniques such as mixup [46, 16, 38, 47, 6]
and cutmix [44, 8]. Furthermore, as shown in [9] their approach quickly hits diminishing returns after
8 or 16 self-augmentations.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/wenxuan-Bao/DP-Mix

Figure 1: Approach Overview. Illustration of ur proposed methods for applying mixup under
differential privacy: DP-MIXSELF and DP-MIXDIFF.

In this paper, we leverage multi-sample data augmentation techniques, specifically mixup, to improve
differentially private learning1. We first show empirically that the straightforward application of
mixup, i.e., using microbatching, fails to improve performance, even for modest privacy budgets.
This is because microbatching inherently requires a higher noise level for the same privacy guarantee.

To overcome this, we propose a technique to apply mixup in the per-example DP-SGD setting
by applying mixup to self-augmentations of a training example. This technique achieves SoTA
classification performance when training models from scratch and when fine-tuning pre-trained
models. We also show how to further enhance classification performance, by using a text-to-image
diffusion-based model to produce class-specific synthetic examples that we can then mixup with
training set examples at no additional privacy cost.

2 Background & Related Work

2.1 Differential Privacy & DP-SGD

Differential privacy (DP) [11] has become the standard framework for provable privacy guarantees.
Definition 1 ((ε, δ)-Differential Privacy). A mechanism M (randomized algorithm) satisfies (ε, δ)-
differential privacy if for any neighboring datasets D, D′ and any output set S ⊆ Range(M), we
have: Pr(M(D ∈ S) ≤ exp(ε) Pr(M(D′ ∈ S) + δ .

In the definition ε > 0 is called the privacy budget and 0 < δ < 1. Datasets D,D′ are neighboring if
one can be obtained from the other by adding or removing one data point.

DP-SGD. To train a machine learning model with differential privacy (Definition 1), we use
Differentially Private Stochastic Gradient Descent (DP-SGD). DP-SGD was proposed by Abadi
et al. [2] as a direct replacement for SGD. Informally, for differential privacy to be satisfied, each
weight update must hide the presence or absence of any example in the training set (and thus the
minibatch). Consider a minibatch B with n examples. The weight update equation of (minibatch)
SGD is: wj+1 = wj − ηgj(B), where gj(B) = ∇wl(B;wj) is the gradient of the loss on B with

1We open-source code at https://github.com/wenxuan-Bao/DP-Mix.

2

https://github.com/wenxuan-Bao/DP-Mix

respect to the parameters w and η is the learning rate. Remark that inclusion or exclusion of a single
example in minibatch B can completely change the minibatch aggregate gradient gj(B). To avoid
this and satisfy differential privacy, DP-SGD first clips individual gradients and then adds Gaussian
noise to the average gradient:

ĝ(B) =
1

n

[
n∑

i=1

clipC{gi}+N (0, C2σ2)

]
, (1)

where gi is the gradient of the loss on example i of minibatch B with respect to the parameters and
clipC{g} = g ·min{1, C

||g||2 }, where C > 0 is a constant. By clipping individual example gradients
to norm C, the sensitivity of the gradient sum to adding or removing an example is guaranteed to be
at most C. After that, adding Gaussian noise with standard deviation Cσ satisfies DP because it is an
application of the Gaussian mechanism [12]. The noise level σ is calibrated to the privacy parameters
ε and δ.

Since the gradient update only touches the minibatch B, which was sampled from the entire training
dataset, we can use amplification by sampling theorems [3] with a sampling rate of n/N where N is
the size of the dataset and n = |B|. To obtain a differential privacy guarantee over the entire training
procedure (which potentially touches each training example multiple times), we apply composition
results [2]. The full procedure is presented in Algorithm 2 in the supplementary material.

Microbatch DP-SGD. Abadi et al. [2] proposed DP-SGD with per-example gradient clipping. But
other researchers have proposed microbatch clipping instead [23], which views a minibatch B as
composed of m microbatches, each of n/m examples. With microbatch clipping, we clip the average
of the microbatch’s gradients instead of the per-example gradients. Note that using microbatches of
size 1 is equivalent to per-example clipping.

The noisy gradient for a microbatch of size b > 1 (assuming b divides n) is:

ĝ =
b

n

n/b∑
i=1

clipC

1

b

b∑
j=1

gi,j

+N (0, C2σ2)

 , (2)

where gi,j denotes the gradient vector the jth example in the ith microbatch.

The drawback of this approach is that despite clipping microbatches gradients with a clipping norm
of C, the sensitivity of adding or removing one example is actually 2C (as pointed out recently by
Ponomareva et al. [29]). On a per-example basis, more noise is added.

Data Augmentation and DP. Data augmentation cannot be straightforwardly applied with differ-
ential privacy because the privacy analysis requires a bound on the sensitivity of any example in the
training set. For example, naively applying data augmentation prior to training, by say creating k
augmentations of each training set example, compromises the privacy guarantee. Existing privacy
analyses do not apply because adding or removing an example in the training set now potentially
affects the gradients of k examples in each training epoch.

De et al. [9] proposed a way to use single-sample data augmentation. Their idea is to do per-example
clipping but to create augmentations of each example (e.g., horizontal flip and cropping) and average
the corresponding gradient before clipping. This is compatible because each training set example still
only affects one term of the sum of Eq. (1). However, this idea cannot be used for more sophisticated
multi-sample data augmentations techniques like mixup [46] that take two or more examples as input
to create each augmentation.

2.2 Related work.

SoTA performance in Differential Privacy Machine Learning. Recent studies [9, 5, 34, 22, 27]
achieve new SoTA performance in differentially private learning using diverse methods. De et al. [9]
modified a Wide-ResNet model’s training method, advocating large batches, group normalization,
weight standardization, and self-augmentation, achieving SoTA performance on CIFAR-10 with
DP-SGD. Sander et al. [34] introduced a technique using Total Amount of Noise (TAN) and a scaling
law to reduce the computational expense of hyperparameter tuning in DP-SGD, achieving SoTA

3

performance on ImageNet and computational cost reductions by a factor of 128. Bu et al. [5] presented
mixed ghost gradient clipping, which eliminates per-sample gradient computations, approximates
non-private optimization, and achieves SoTA performance on the CIFAR-10 and CIFAR-100 datasets
by fine-tuning pre-trained transformer models. Panda et al. [27] propose an accelerated fine-tuning
method, which enables them to achieve SoTA performance on the CIFAR-10 and CIFAR-100 datasets.

Mixup techniques. Mixup was initially proposed by Zhang et al. [46]. This technique is applied
to raw input data and its corresponding one-hot encoded labels. Experimental results presented
in their work indicate that Mixup enhances model performance and robustness. However, Guo et
al. [16] discovered that input mixup may encounter the manifold intrusion problem when a mixed
example coincides with a real sample. To address this, they proposed Adaptive Mixup, which they
demonstrated outperforms the original method. To mitigate the incongruity in Mixup data, Yun et
al. [44] proposed Cutmix, which replaces a portion of one sample with another. Instead of applying
mixup at the input level, Verma et al. [39] implemented mixup within the intermediate layers of
the model. Several works have utilized Mixup in the context of Differential Privacy (DP), such as
Borgnia et al. [4], which used it as a defense against backdoor attacks, and Xiao et al. [40], which
used it to introduce randomness into the training process, or in other settings such as Split learning
[26]. To the best of our knowledge, no previous work has employed Mixup as a data augmentation
strategy to enhance model performance in differentially private learning.

Diffusion models. Diffusion models [36, 19, 37, 10, 24] have emerged as a powerful class of
generative models that leverage the concept of stochastic diffusion processes to model complex data
distributions, offering a promising alternative to traditional approaches such as Generative Adversarial
Networks (GANs) [14] and Variational Autoencoders (VAEs) [20]. By iteratively simulating the
gradual transformation of a simple initial distribution into the desired target distribution, diffusion
models provide a principled framework for generating high-quality samples however, the implicit
guidance results in a lack of user control over generated images. Recently there has been a lot of
interest in text-to-image models [31, 33, 32, 13, 25, 30] due to their ability to generate entirely new
scenes with previously unseen compositions solely based on natural language. In this work, we
use class labels as text input to the text-to-image diffusion model [13] to generate diverse synthetic
samples for augmenting the dataset.

3 Method

Given two examples (x0, y0) and (x1, y1) and mixing parameter λ, mixup creates augmentations as:

x = λ · x0 + (1− λ) · x1 and y = λ · y0 + (1− λ) · y1 . (3)

In our experiments, λ is sampled from a β distribution with α = 0.2. In other words, the augmented
example image x is simply a linear combination of two individual examples x0, x1 and its label y is
also a linear combination of the two individual examples’ labels (one-hot encoded). Typically the
two examples (x0, y0) and (x1, y1) are selected randomly from the training data. To use mixup while
preserving differential privacy, we must find a way to account for its privacy impact.

For DP training, we cannot use Eq. (3) to create an augmented training set (e.g., by repeatedly taking
two input examples from the sensitive training set and mixing them up) without affecting the privacy
budget, as the sensitivity of the clipped-gradients sum of the augmented minibatch would then be (at
least) 2C (and not C). To see why, observe that an original example z would impact multiple terms
of the sum in Eq. (1) (the one involving the gradient of z and also the one(s) involving the gradient of
any mixed-up pair(s) involving z). Even with exactly one mixed-up pair per original example, adding
or removing an example from the training set would impact two terms in the clipped-gradients sum,
potentially changing the aggregated gradient by 2C. In a pathological case, the sum could go from
Ce⃗ for some e⃗ to −Ce⃗. The sensitivity being 2C means that the scale of Gaussian noise added must
be doubled to obtain the same privacy guarantee as we would have without mixup.

We empirically investigate the impact of doubling the noise for training a WRN-16-4 model on
CIFAR-10. Specifically, we use a microbatch size of 2 and do input mixup by applying Eq. (3) to the
two examples in each microbatch. We then add the mixed up example to the microbatch or let the
microbatch consist only of the mixed up example. Then, following microbatch DP-SGD, we clip the
gradient of the microbatch and add Gaussian noise to the aggregated gradient sum. Nevertheless, it

4

Table 1: Test accuracy (%) of a WRN-16-4 model on CIFAR-10 trained from scratch with
(ε = 8, δ = 10−5)-differential privacy. Using a microbatch of size 2 yields much worse results than
per-example clipping.

Method Microbatch Size = 1 Microbatch Size = 2
DP-SGD 72.5 (.5) 49.7 (.7)
DP-SGD w/ Mixup N/A 50.1 (.4)
DP-SGD w/ Self-Aug 78.7 (.5) 52.8 (.1)

could be that empirically, the benefits of mixup outweigh the additional noise. Results in Table 1 show
that despite mixup providing a clear benefit (compared to traditional DP-SGD) the microbatch size 2
setting is inherently disadvantaged. Better performance is obtained without mixup for per-example
DP-SGD. The negative impact of noise due to the increased sensitivity dwarfs any benefits of mixup.

3.1 DP-Mixup

We propose a technique to apply mixup with per-example DP-SGD. The challenge is that with
per-example DP-SGD we only have a single example to work with — else we again violate the
sensitivity bound required for privacy analysis.

DP-MIXSELF and DP-MIXDIFF. The basic observation behind our technique is that we can freely
apply mixup to any augmentations derived from a single data point (x, y) or from (x, y) and synthetic
samples obtained independently from a diffusion model. If we apply all augmentations, including
mixup, before gradient clipping then the privacy guarantee and analysis holds according to the
augmentation multiplicity insight from [9].

We assume that we have a randomized transformation function T that can be applied to any example’s
features x so that T (x) is a valid single-sample data augmentation of x. We may also have access to a
generative model from which we can produce a set D of synthetic samples ahead of time. For example,
we can use a txt2img diffusion model to create labeled examples (z1, y1), (z2, y2), . . . , (zm, ym)
using unguided diffusion. In experiments, we generate these samples using the text prompt ‘a
photo of a <class name>’. Since these “synthetic” examples are generated without accessing
the (sensitive) training dataset, they can be used with no additional privacy cost.

Given a single data point (x, y), our technique consists of three steps to produce a set of augmentations.
The gradients of each augmentation are then computed and aggregated, and the aggregated gradient
is clipped and noised as in DP-SGD. The first step takes x and repeatedly applies to it the randomized
transformation function T , resulting in a set S = {(x1, y), (x2, y), . . . , (xKBASE

, y)} of “base” self-
augmentations. The second step (optionally) augments the set S with KDIFF randomly selected
synthetic examples from the set D created using the diffusion model. If no diffusion model is
available, we omit this step, which is equivalent to setting KDIFF = 0. In the third and final step, we
repeatedly apply Eq. (3) KSELF > 0 times to two randomly selected samples from the augmentation
set S, thereby obtaining a set S′ of KSELF mixed up examples. The final set of augmentations is then
the concatenation of the base augmentations and the mixup augmentations, i.e., S ∪ S′.

From this final set of augmentations, we perform DP-SGD training. That is, we compute the noisy
gradient as:

ĝ =
1

n

[
n∑

i=1

clipC

{
1

K

K∑
k=1

gi,k

}
+N (0, C2σ2)

]
, (4)

where K = KBASE +KDIFF +KSELF is the total number of augmentations and gi,k denotes the gradient
of the kth augmentation of the ith training example. The same privacy analysis and guarantee are
obtained in this case as in vanilla DP-SGD because the influence of each training example x on the
noisy gradient ĝ is at most C (observe that the gradients of all augmentations’ are clipped together).

The method is described in Algorithm 1. An important remark is that the self-augmentation method
of De et al. [9] is a special case of our method, corresponding to setting KDIFF = 0 and KSELF = 0,
i.e., one only uses the base augmentation set and no mixup.

5

Algorithm 1 DP-SGD with mixup (DP-MIXSELF and DP-MIXDIFF).

Require: Training data (x1, y1), ..., (xN , yN), loss function L(θ) = 1
N

∑
i L(fθ(xi), yi). Parameters: learn-

ing rate ηt, noise scale σ, group size B, gradient norm bound C, number of augmentations KBASE, number of
mixup KSELF and number of text-to-image samples KDIFF. Let K = KBASE +KSELF +KDIFF.
Generate txt2img samples: D = (z1, y1), (z2, y2), . . . , (zm, ym)
Initialize θ0 randomly
for t ∈ [T] do

Take a random sample Bt with sampling probability B
N

for each (xi, yi) ∈ Bt do
Generate S = {(xi1, yi), (xi2, yi), . . . , (xiKBASE , yi)} // Self-Aug
if KDIFF > 0 then

Randomly select KDIFF samples from D and add them to S // DP-MixDiff
end if
Generate S′ consisting of KSELF mixup samples from randomly selected pairs from S // DP-MixSelf
for each (x∗, y∗) ∈ S ∪ S′ do

gt(x
∗)← ∇θL(fθ(x∗), y∗)

end for
gt(xi)

′ ← 1
K

∑
(gt(x

∗))

ḡt(xi)← gt(xi)
′/max(1, ||gt(xi)

′||2
C

)
end for
g̃t ← 1

B

∑
i(ḡt(xi) +N (0, σ2C2I))

θt+1 ← θt − ηtg̃t

end for
Ensure: θT and compute the overall privacy cost (ε, δ) using a privacy accounting method

We define two variants of our method based on the availability of diffusion samples. If we have
access to a diffusion model so that KDIFF > 0, we call the method DP-MIXDIFF. In that case, the pool
from which examples are selected for mixup includes synthetic samples from the diffusion samples.
Otherwise, KDIFF = 0 and the proposed method has the effect of applying mixup on randomly selected
self-augmentations of a single original example, thus we call this variant DP-MIXSELF. Interestingly,
DP-MIXSELF is not completely faithful to classical mixup because there is only one original example
being mixed up and the label is unchanged.

Finally, we point out that although our focus is on mixup, other multi-sample data augmentation
techniques such as cutmix and others [44, 8] can be applied in the third step.

4 Experimental Setup

Datasets. We use CIFAR-10, CIFAR-100, EuroSAT, Caltech 256, SUN397 and Oxford-IIIT Pet.
The details of these datasets are in Appendix C in Supplemental materials.

Models. We use the following models/model architectures.

• Wide ResNet (WRN) [45] is a variant of the well-known ResNet (Residual Network) model [17],
which is commonly used for image classification tasks. It increases the number of channels in
convolutional layers (width) rather than the number of layers (depth). WRN-16-4 is used in De et
al. [9] and we use the same model to ensure a fair comparison.

• Vit-B-16 and ConvNext are pre-trained on the LAION-2B dataset [35], the same pre-trained
dataset as for our diffusion models, which we obtained from Open Clip2. We add a linear layer as
a classification layer. We only fine-tune this last layer and freeze the weights of other layers.

Setup. To implement DP-SGD, we use Opacus [1] and make modifications to it. For training from
scratch experiments, we set the batch size to 4096, the number of self-augmentation to 16, the clip
bound to C = 1, and the number of epochs to 200. For fine-tuning experiments, we change the batch
size to 1000 and the number of epochs to 20 for EuroSAT and 10 for all other datasets. Reported
test accuracies are averaged based on at least three independent runs and we also report the standard
deviation. We provide additional details on our experimental setups in supplementary materials.

2https://github.com/mlfoundations/open_clip

6

https://github.com/mlfoundations/open_clip

Selection of pre-training data, diffusion model, and fair comparisons. We take great care to
ensure that our experiments lead to a fair comparison between our methods and alternatives such as
Self-Aug (prior SoTA). In particular, all methods have access to the exact same training data. We
also tune the hyperparameters of each method optimally (e.g., KBASE for Self-Aug). We use the same
pre-trained models (Vit-B-16 and ConvNext from Open Clip) to compare our methods to others
(Self-Aug and Mixed Ghost Clipping).

Since DP-MIXDIFF uses a diffusion model to generate synthetic examples, this could make the
comparison unfair because other methods do not use synthetic samples. To avoid this, we purposefully
use the exact same pre-training data (i.e., LAION-2B) to pre-train models as was used to train the
diffusion model. This avoids the issue of the synthetic examples somehow “containing” data that
other methods do not have access to. Moreover, we conducted experiments (check Table 6) to show
that the synthetic examples themselves do not boost performance. It is the way they are used by
DP-MIXDIFF that boosts performance. Finally, out of the six datasets we used for evaluation, none of
them overlap with the LAION-2B dataset (to the best of our knowledge).

5 Experiments

5.1 Training from Scratch with DP

Since DP-MIXDIFF relies on synthetic samples from diffusion models, it would not be fair to compare
it to prior SoTA methods that do not have access to those samples in the training from scratch
setting. Therefore, we focus this evaluation on DP-MIXSELF. For this, we use a WRN-16-4 model.
Our baseline from this experiment is De et al. [9] who use a combination of techniques to improve
performance, but mostly self-augmentation. Results in Table 2 show that DP-MIXSELF consistently
provides improvements across datasets and privacy budgets.

We observed differences between the results reported by De et al. [9] using JAX and the reproduction
by Sander et al. [34] on Pytorch. In our supplemental materials, Table 11 presents our reproduction
of De et al. [9] using their original JAX code alongside the DP-MIXSELF implementation.

Table 2: Test accuracy (%) of a WRN-16-4 model trained from scratch: Our proposed
DP-MIXSELF technique significantly outperforms De et al. [9] Self-Aug method (baseline and prior
SoTA) in all privacy budget settings and all three datasets considered.

Dataset Method ε = 1 ε = 2 ε = 4 ε = 8

CIFAR-10 Self-Aug 56.8 (.5) 62.9 (.3) 69.5 (.4) 78.7 (.5)
DP-MIXSELF 57.2 (.4) 64.6 (.4) 70.47 (.4) 79.8 (.3)

CIFAR-100 Self-Aug 13.3 (.5) 20.9 (.4) 31.8 (.2) 39.2 (.4)
DP-MIXSELF 14.1 (.4) 21.5 (.4) 33.3 (.3) 40.6 (.3)

EuroSAT Self-Aug 75.4 (.3) 81.1 (.1) 85.8 (.2) 89.7 (.3)
DP-MIXSELF 75.7 (.2) 82.8 (.3) 87.4 (.2) 90.8 (.2)

5.2 Finetuning with DP

We consider two pretrained models Vit-B-16 and ConvNext. As baselines/prior SoTA we consider
De et al. [9] and the Mixed Ghost Clipping technique of Bu et al. [5]. Results are shown in Table 3.

We observe that our proposed DP-MIXSELF method yields significant improvements over all prior
methods across datasets and privacy budgets. We also observe that DP-MIXDIFF, which uses samples
from the diffusion model, significantly outperforms DP-MIXSELF on datasets such as Caltech256,
SUN397, and Oxford-IIIT Pet. Notably, when the privacy budget is limited, such as ε = 1, we observe
remarkable improvements compared to DP-MIXSELF (e.g., 8.5% on Caltech256 using Vit-B-16).
This shows the benefits of incorporating diverse images from the diffusion model via mixup.

On the other hand, we observe that diffusion examples do not provide a benefit for datasets such as
CIFAR-10 and EuroSAT. We investigate the cause of this empirically in Appendix B (supplementary
materials). On these datasets, DP-MIXDIFF only sometimes outperforms the prior baselines, but
DP-MIXSELF provides a consistent improvement, suggesting that samples from the diffusion model

7

Table 3: Test accuracy (%) of fine-tuned Vit-B-16 and ConvNext: We fine-tune Vit-B-16 and
ConvNext models on CIFAR-10, CIFAR-100, EuroSAT, Caltech256, SUN397 and Oxford-IIT Pet
datasets using different ε with δ = 10−5, and report the test accuracy and standard deviation. Our
proposed methods, DP-MIXSELF and DP-MIXDIFF, outperform the baselines in all cases.

Dataset Method Vit-B-16 ConvNext
ε = 1 ε = 2 ε = 4 ε = 8 ε = 1 ε = 2 ε = 4 ε = 8

CIFAR-10

Mixed Ghost 95.0 (.1) 95.0 (.2) 95.3 (.4) 95.3 (.2) 94.6 (.1) 94.6 (.1) 94.7 (.0) 94.7 (.1)
Self-Aug 96.5 (.1) 97.0 (.0) 97.1 (.0) 97.2 (.0) 95.9 (.0) 96.4 (.1) 96.5 (.1) 96.5 (.0)

DP-MIXSELF 97.2 (.3) 97.4 (.2) 97.4 (.2) 97.6 (.3) 96.8 (.1) 96.9 (.1) 96.9 (.1) 97.3 (.1)
DP-MIXDIFF 97.0 (.2) 97.1 (.1) 97.2 (.1) 97.3 (.1) 96.3 (.1) 96.5 (.1) 96.6 (.1) 96.7 (.1)

CIFAR-100

Mixed Ghost 78.2 (.4) 78.5 (.1) 78.4 (.3) 78.4 (.1) 74.9 (.3) 75.1 (.1) 75.5 (.2) 75.8 (.1)
Self-Aug 79.3 (.2) 83.2 (.3) 83.5 (.3) 84.2 (.1) 75.8 (.3) 80.0 (.1) 81.4 (.2) 82.2 (.2)

DP-MIXSELF 81.8 (.2) 83.5 (.1) 84.5 (.1) 84.6 (.2) 78.2 (.3) 80.9 (.2) 82.3 (.1) 82.3 (.1)
DP-MIXDIFF 82.0 (.1) 83.8 (.1) 84.0 (.1) 84.3 (.1) 79.4 (.2) 81.4 (.2) 81.6 (.1) 81.8 (.2)

EuroSAT

Mixed Ghost 84.0 (.1) 84.8 (.2) 84.9 (.1) 85.0 (.2) 85.5 (.2) 86.9 (.1) 87.0 (.6) 87.6 (.3)
Self-Aug 93.3 (.2) 94.1 (.2) 95.4 (.2) 95.5 (.2) 93.5 (.2) 94.5 (.4) 95.2 (.1) 95.2 (.1)

DP-MIXSELF 94.3 (.1) 94.9 (.2) 95.6 (.2) 95.6 (.1) 94.6 (.1) 94.7 (.1) 95.4 (.2) 95.5 (.1)
DP-MIXDIFF 92.6 (.1) 93.4 (.1) 93.9 (.2) 93.9 (.1) 92.8 (.2) 93.2 (.1) 93.6 (.2) 93.8 (.1)

Caltech256

Mixed Ghost 79.7 (.2) 88.2 (.2) 91.4 (.2) 92.3 (.2) 79.2 (.2) 87.4 (.2) 88.0 (.1) 88.2 (.2)
Self-Aug 80.4 (.1) 89.7 (.2) 92.0 (.1) 93.2 (.2) 80.0 (.2) 88.2 (.1) 91.0 (.1) 92.2 (.1)

DP-MIXSELF 81.2 (.2) 90.1 (.2) 92.2 (.2) 93.4 (.1) 81.0 (.1) 88.7 (.1) 91.3 (.1) 92.4 (.1)
DP-MIXDIFF 89.7 (.2) 91.8 (.2) 92.9 (.1) 93.9 (.1) 88.7 (.2) 91.8 (.2) 92.6 (.2) 93.3 (.1)

SUN397

Mixed Ghost 70.7 (.2) 71.2 (.1) 72.2 (.2) 72.5 (.2) 64.3 (.2) 65.0 (.2) 65.3 (.1) 65.3 (.1)
Self-Aug 72.7 (.1) 76.0 (.1) 78.0 (.1) 79.6 (.2) 72.2 (.1) 76.5 (.1) 78.0 (.2) 78.9 (.1)

DP-MIXSELF 73.2 (.1) 76.5 (.2) 78.7 (.2) 79.6 (.1) 72.5 (.1) 76.8 (.1) 78.5 (.0) 79.5 (.1)
DP-MIXDIFF 75.1 (.2) 77.8 (.1) 79.5 (.2) 80.6 (.1) 75.0 (.2) 77.5 (.1) 79.3 (.1) 80.0 (.1)
Mixed Ghost 71.2 (.2) 79.1 (.2) 80.4 (.2) 81.0 (.2) 65.2 (.2) 78.2 (.2) 79.1 (.2) 79.9 (.2)

Oxford Self-Aug 72.2 (.2) 82.1 (.2) 85.8 (.3) 88.2 (.1) 68.1 (.2) 81.3 (.2) 85.5 (.1) 87.0 (.1)
Pet DP-MIXSELF 72.5 (.2) 82.5 (.2) 86.8 (.2) 88.7 (.2) 68.8 (.2) 81.7 (.2) 86.3 (.2) 87.7 (.2)

DP-MIXDIFF 83.2 (.3) 86.3 (.2) 88.3 (.2) 89.4 (.2) 80.5 (.2) 86.2 (.2) 88.2 (.2) 88.8 (.2)

can inhibit performance. On CIFAR-100, DP-MIXDIFF outperforms other methods only at low privacy
budgets (ε ≤ 2), with DP-MIXSELF providing the best performance in the high privacy budget regime.

6 Ablation Study: Why Does DP-MIX Improve Performance?

We perform ablation experiments to better understand why our methods consistently and significantly
outperform the prior SoTA techniques.

6.1 Understanding Self-Augmentations

Since DP-MIXSELF does not alter the label and involves applying mixup to (augmentations of) a
single original training example, the method could be viewed as just another single-sample data aug-
mentation technique. The question then becomes what augmentation techniques improve performance
when using differential privacy and why.

De et al. [9] use flipping and cropping as self-augmentation (Self-Aug). We perform experiments using
several widely used augmentation techniques (based on Chen et al. [7] — Colorjitter, Translations
and Rotations, Cutout, Gaussian Noise, Gaussian Blur, and Sobel Filter) in addition to Self-Aug to
compare them to DP-MIXSELF. We set KBASE = 16 as in previous experiments. Results are shown
in Table 4, where the second to last column combines all augmentations together (randomly chosen).
We observe that these augmentations do not enhance performance to the same degree as DP-MIXSELF.
In a few cases, the augmentations improve performance slightly above Self-Aug, but some of them
also diminish performance.

6.2 Number of Self-Augmentations

Increasing the number of self-augmentations beyond 16 does not improve performance [9]. This
was also pointed out recently by Xiao et al. [41]. In fact, sometimes increasing the number of

8

Table 4: Test accuracy (%) of Self-Aug with other Augmentations: Vit-B-16 model performance
on CIFAR-10 and CIFAR-100 with ε = 1 with different augmentations. We observe that these
augmentations do not enhance performance to the same degree as DP-MIXSELF.

Dataset Self-Aug +Jitter +Affine +Cutout +Noise +Blur +Sobel +All DP-MIXSELF

CIFAR-10 96.5 (.1) 96.3 (.1) 96.2 (.1) 96.5 (.1) 95.8 (.2) 96.7 (.2) 72.5 (.1) 96.5 (.2) 97.2 (.3)
CIFAR-100 79.3 (.2) 78.1 (.2) 73.9 (.2) 79.6 (.1) 73.5 (.2) 80.0 (.1) 9.5 (.2) 79.4 (.1) 81.8 (.2)

self-augmentations hurts performance. We perform experiments by varying the number of self-
augmentations (KBASE) on CIFAR-10. Results are shown in Table 5. We observe that KBASE = 16 is
optimal for the self-augmentations proposed by De et al. [9]. However, we obtain significantly better
performance DP-MIXSELF for K = 32 (KBASE = 16, KSELF = 16 and KDIFF = 0). Recall that setting
KDIFF = KSELF = 0 in Algorithm 1 recovers the Self-Aug method of [9].

Table 5: Increase KBASE from 16 to 36 for Self-Aug. We conduct experiments on CIFAR-10 with
ε = 8 and δ = 10−5 in two settings: train a WRN-16-4 model from scratch and fine-tune a pre-trained
Vit-B-16. We can observe that for both cases, there are no substantial performance improvements
when increasing KBASE.

Training method Total # of Aug WRN-16-4 Vit-B-16 (pretrained)

Self-Aug

16 78.8 (.5) 97.2 (.0)
24 78.5 (.4) 97.0 (.1)
32 78.4 (.3) 97.0 (.1)
36 78.6 (.4) 97.0 (.1)

DP-MIXSELF 32 79.8 (.3) 97.6 (.3)

6.3 Pretraining or DP-MIXDIFF?

Since DP-MIXDIFF uses synthetic samples from a diffusion model, we consider pretraining the
model on the synthetic samples D from the diffusion model with SGD prior to fine-tuning with
DP. The results, presented in Table 6, indicate that pretraining on D does not improve the model’s
performance. This indicates that the improved performance of DP-MIXDIFF results from the way it
uses the diffusion samples, not just from having access to diffusion samples.

Table 6: Test accuracy (%) with and without pretraining on synthetic diffusion samples: We
compare the performance of fine-tuned Vit-B-16 and ConvNext with DP on Caltech256 with versus
without pretraining on D (using SGD). We set ε = 2 and δ = 10−5.

Pretrained on D Vit-B-16 ConvNext
Yes 81.5 (.0) 80.9 (.1)

No (Ours) 91.8 (.2) 91.8 (.2)

6.4 Effect of DP-MIX on Training Data

In Table 7, we compare the distributions of the effective train sets produced by different data
augmentation techniques against those of the original train and test sets, i.e., we measure the Fréchet
Inception Distance (FID), where lower FID values indicate more similarity between the datasets.
Note, the FIDs are consistent with test accuracy across datasets and methods. For example, the FID of
Self-Aug + Colorjitter is significantly larger than FID of Self-Aug, explaining why adding Colorjitter
decreases test accuracy: it results in data less similar to train and test sets. Similarly, the FID for
DP-MIXDIFF for EuroSAT is much larger compared to the other datasets, which explains reduced test
accuracy relative to the other methods. In Table 8, we compare the FID between the original train
and test sets with the FID between the original train set and the synthetic samples generated by the
text-to-image diffusion model that we employ for DP-MIXDIFF. Note the much greater FID between
the train set and the diffusion samples. This large domain gap may explain why, as shown in Table 6,

9

Table 7: FID for different methods’ generated images compared to training set and test set.

Dataset Train Test
Self-Aug +Jitter DP-MIXSELF DP-MIXDIFF Self-Aug +Jitter DP-MIXSELF DP-MIXDIFF

CIFAR-10 2.6 6.0 3.1 3.3 3.1 6.4 3.5 3.7
CIFAR-100 3.1 6.1 3.3 3.5 3.5 6.5 3.8 3.9
EuroSAT 2.2 6.1 3.0 6.6 4.1 8.3 6.1 10.9

Caltech256 1.0 2.9 1.3 1.5 2.5 4.2 2.8 2.9

Table 8: FID between datasets for different FID models. We compute FID values between the
training set and test set, and training set and text-to-images diffusion model generated images based
on different FID models (InceptionV3 and Vit-B-16).

Dataset InceptionV3 Vit-B-16
Train vs Test Train vs Diffusion Train vs Test Train vs Diffusion

CIFAR-10 3.2 30.5 0.4 30.1
CIFAR-100 3.6 19.8 0.5 21.9
EuroSAT 7.4 164.0 7.3 82.9

Caltech256 6.8 25.1 1.6 37.4

pretraining on the diffusion samples result in much worse performance compared to our proposed
DP-MIXDIFF.

6.5 Influence of KBASE, KSELF and KDIFF

Recall, KBASE is the number of base self-augmentations, KSELF is the number of mixups, and KDIFF

is the number of synthetic diffusion samples used. We vary KBASE, KSELF and KDIFF values and
report their performance in Table 9. We observe that selecting KDIFF = 2 or KDIFF = 4 and setting
KSELF ≤ KBASE gives good results overall. In this paper, we used KBASE = 16, KSELF = 18 and
KDIFF = 2 for most cases as it provides good overall results across many datasets and settings 3.

Table 9: Influence of KBASE, KSELF , and KDIFF for fine-tuning Vit-B-16 model on Caltech256
with ε = 1 and δ = 10−5.

KBASE 8 8 8 8 8 8 8 8 8 16 16 16 16 16
KSELF 8 8 8 16 16 16 24 24 24 8 8 8 16 16
KDIFF 0 2 4 0 2 4 0 2 4 0 2 4 0 2

Acc. (%) 80.4 85.0 87.2 77.1 84.5 87.2 77.2 84.2 86.4 77.7 84.2 86.7 81.2 83.8

KBASE 16 16 16 16 24 24 24 24 24 24 24 24 24
KSELF 16 24 24 24 8 8 8 16 16 16 24 24 24
KDIFF 4 0 2 4 0 2 4 0 2 4 0 2 4

Acc. (%) 86.3 77.3 82.6 85.8 77.9 82.7 85.5 77.9 82.1 85.1 80.1 81.5 84.5

7 Conclusions

We studied the application of multi-sample data augmentation techniques such as mixup for differ-
entially private learning. We show empirically that the most obvious way to apply mixup, using
microbatches, does not yield models with low generalization errors as microbatching is at an inherent
disadvantage. We then demonstrate how to harness mixup without microbatching by applying it to
self-augmentations of a single training example. This provides a significant performance increase
over the prior SoTA. Finally, we demonstrate that producing some augmentations using text-to-image
diffusion models further enhances performance when combined with mixup.

3We use larger KDIFF i.e. 24 for Caltech256 and Oxford Pet as it provides better performance.

10

Acknowledgments

This work was supported in part by the National Science Foundation under CNS-2055123. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References
[1] Opacus. https://github.com/pytorch/opacus.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, pages 308–318, 2016.

[3] B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification by subsampling: Tight analyses via couplings
and divergences. Advances in Neural Information Processing Systems, 31, 2018.

[4] E. Borgnia, J. Geiping, V. Cherepanova, L. Fowl, A. Gupta, A. Ghiasi, F. Huang, M. Goldblum, and
T. Goldstein. Dp-instahide: Provably defusing poisoning and backdoor attacks with differentially private
data augmentations. arXiv preprint arXiv:2103.02079, 2021.

[5] Z. Bu, J. Mao, and S. Xu. Scalable and efficient training of large convolutional neural networks with
differential privacy. In Advances in Neural Information Processing Systems.

[6] L. Carratino, M. Cissé, R. Jenatton, and J.-P. Vert. On mixup regularization. The Journal of Machine
Learning Research, 23(1):14632–14662, 2022.

[7] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual
representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.

[8] H.-P. Chou, S.-C. Chang, J.-Y. Pan, W. Wei, and D.-C. Juan. Remix: rebalanced mixup. In Computer
Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16, pages 95–110.
Springer, 2020.

[9] S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle. Unlocking high-accuracy differentially private image
classification through scale. arXiv preprint arXiv:2204.13650, 2022.

[10] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. In Advances in Neural
Information Processing Systems, volume 34, pages 8780–8794, 2021.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.

[12] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

[13] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or. An image is
worth one word: Personalizing text-to-image generation using textual inversion, 2022.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680, 2014.

[15] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[16] H. Guo, Y. Mao, and R. Zhang. Mixup as locally linear out-of-manifold regularization. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 3714–3722, 2019.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[18] P. Helber, B. Bischke, A. Dengel, and D. Borth. Eurosat: A novel dataset and deep learning benchmark for
land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 12(7):2217–2226, 2019.

[19] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural Information
Processing Systems, volume 33, pages 6840–6851, 2020.

11

https://github.com/pytorch/opacus

[20] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,
2014.

[21] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[22] Y. Li, Y.-L. Tsai, X. Ren, C.-M. Yu, and P.-Y. Chen. Exploring the benefits of visual prompting in
differential privacy. arXiv preprint arXiv:2303.12247, 2023.

[23] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov, N. Papernot, and P. Kairouz. A general
approach to adding differential privacy to iterative training procedures. arXiv preprint arXiv:1812.06210,
2018.

[24] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Proceedings of the
38th International Conference on Machine Learning, pages 8162–8171, 2021.

[25] A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen.
GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. In Interna-
tional Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, pages
16784–16804, 2022.

[26] S. Oh, J. Park, S. Baek, H. Nam, P. Vepakomma, R. Raskar, M. Bennis, and S.-L. Kim. Differentially
private cutmix for split learning with vision transformer. arXiv preprint arXiv:2210.15986, 2022.

[27] A. Panda, X. Tang, V. Sehwag, S. Mahloujifar, and P. Mittal. Dp-raft: A differentially private recipe for
accelerated fine-tuning. arXiv preprint arXiv:2212.04486, 2022.

[28] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats and dogs. In 2012 IEEE conference on
computer vision and pattern recognition, pages 3498–3505. IEEE, 2012.

[29] N. Ponomareva, H. Hazimeh, A. Kurakin, Z. Xu, C. Denison, H. B. McMahan, S. Vassilvitskii, S. Chien,
and A. G. Thakurta. How to dp-fy ml: A practical guide to machine learning with differential privacy.
Journal of Artificial Intelligence Research, 77:1113–1201, 2023.

[30] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image generation
with CLIP latents. CoRR, 2022.

[31] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022.

[32] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine tuning text-
to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 22500–22510, 2023.

[33] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes,
B. Karagol Ayan, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi. Photorealistic text-to-image diffu-
sion models with deep language understanding. In Advances in Neural Information Processing Systems,
volume 35, pages 36479–36494, 2022.

[34] T. Sander, P. Stock, and A. Sablayrolles. Tan without a burn: Scaling laws of dp-sgd. In International
Conference on Machine Learning, pages 29937–29949. PMLR, 2023.

[35] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta,
C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text
models. Advances in Neural Information Processing Systems, 35:25278–25294, 2022.

[36] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Proceedings of the 32nd International Conference on Machine Learning,
pages 2256–2265, 2015.

[37] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. ICLR, 2021.

[38] S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhattacharya, and S. Michalak. On mixup training:
Improved calibration and predictive uncertainty for deep neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

[39] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and Y. Bengio. Manifold mixup:
Better representations by interpolating hidden states. In International conference on machine learning,
pages 6438–6447. PMLR, 2019.

12

[40] H. Xiao and S. Devadas. Towards understanding practical randomness beyond noise: Differential privacy
and mixup. Cryptology ePrint Archive, 2021.

[41] H. Xiao, Z. Xiang, D. Wang, and S. Devadas. A theory to instruct differentially-private learning via
clipping bias reduction. In 2023 IEEE Symposium on Security and Privacy (SP), pages 2170–2189. IEEE
Computer Society, 2023.

[42] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. Sun database: Exploring a large collection of
scene categories. International Journal of Computer Vision, 119:3–22, 2016.

[43] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition
from abbey to zoo. In 2010 IEEE computer society conference on computer vision and pattern recognition,
pages 3485–3492. IEEE, 2010.

[44] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6023–6032, 2019.

[45] S. Zagoruyko and N. Komodakis. Wide residual networks. british machine vision conference (bmvc),
2016.

[46] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In
International Conference on Learning Representations, 2018.

[47] L. Zhang, Z. Deng, K. Kawaguchi, A. Ghorbani, and J. Zou. How does mixup help with robustness and
generalization? 2020.

13

A Algorithm: DP-SGD

Algorithm 2 DP-SGD from Abadi et al. [2]

Require: Training data x1, ..., xN , loss function L(θ) = 1
N

∑
i L(θ, xi). Parameters: learning rate ηt, noise

scale σ, group size B, gradient norm bound C.
Initialize θ0 randomly
for t ∈ [T] do

Take a random sample Bt with sampling probability B/N
for each i ∈ Bt do

Compute gt(xi)← ∇θL(θt, xi)

ḡt(xi)← gt(xi)/max(1, ||gt(xi)||2
C

)
end for
g̃t ← 1

B

∑
i(ḡt(xi) +N (0, σ2C2I))

θt+1 ← θt − ηtg̃t

end for
Ensure: θT and compute the overall privacy cost (ε, δ) using a privacy accounting method

B Additional Experimental Results

B.1 How useful is the synthetic data?

Let S1 and S2 denote equally sized disjoint subsets of the private dataset, and D an equally sized set
of synthetic samples generated via diffusion, as described in Section 3.1.

For this experiment, we consider three different training methods.

• Method A: Fine-tune on S1 using DP-MIXSELF.
• Method B: Fine-tune on S1 using DP-MIXDIFF with mixup images sampled from D.
• Method C: Same as Method B, but replace set D with set S2. Note, we assume that S2 is publicly

available, so accessing it during training does not incur a privacy cost.

The intuition behind this experiment is that method C provides an upper bound for both A and B,
since, in the best case, the distribution of the synthetic data would exactly match that of the private
data. The experimental results, presented in Table 10, validate this intuition.

For CIFAR-100, Caltech256, SUN397, and Oxford Pet, method C outperforms method A. Consistent
with this, method B, our proposed DP-MIXDIFF, also provides a performance boost. On the other
hand, for CIFAR-10 and EuroSAT, method C, despite directly using private data for mixup, does not
meaningfully improve performance. Similarly, method B also does not improve performance. For
EuroSAT, method B slightly decreases performance, due to the large domain gap (large FID) between
the synthetic and private data.

Table 10: Test accuracy (%) using different training methods with Vit-B-16 and ConvNext on
various datasets after fine-tuning. We set the ε = 2 and δ = 10−5.

Vit-B-16 ConvNext
Dataset A B C A B C

CIFAR-10 96.9 (.1) 96.9 (.0) 97.0 (.1) 96.2 (.1) 96.1 (.1) 96.2 (.1)
CIFAR-100 81.3 (.3) 82.0 (.2) 82.1 (.1) 76.7 (.3) 78.0 (.1) 78.4 (.1)
EuroSAT 93.7 (.1) 91.4 (.1) 93.9 (.2) 93.8 (.2) 92.3 (.1) 93.9 (.2)

Caltech 256 76.0 (.4) 81.9 (.1) 82.3 (.2) 76.4 (.3) 81.1 (.1) 81.6 (.3)
SUN397 70.8 (.2) 72.4 (.1) 73.8 (.1) 70.1 (.2) 72.3 (.1) 73.6 (.2)

Oxford Pet 65.1 (.3) 68.3 (.1) 68.3 (.1) 64.6 (.2) 66.0 (.1) 68.1 (.1)

B.2 Reproducing De et al. [9] and DP-MIXSELF in JAX

For completeness, we train WRN-16-4 on CIFAR10 using Self-Aug and our proposed DP-MIXSELF

using [9]’s official JAX code (https://github.com/deepmind/jax_privacy). As in [9], we
repeat each experiment 5 times and report median test accuracy in Table 11. The results are consistent

14

https://github.com/deepmind/jax_privacy

with those presented in the rest of our paper — DP-MIXSELF outperforms Self-Aug for different
privacy budgets.

Table 11: Performance comparison on JAX.

Method ε = 1 ε = 8

Self-Aug 56.3 (.3) 79.4 (.1)
DP-MIXSELF 57.1 (.4) 80.0 (.2)

B.3 Pure-DP-MIXDIFF

To demonstrate the influence of KBASE in our method, we set KBASE = 0 and call it Pure-DP-MIXDIFF.
In effect Pure-DP-MIXDIFF is simply mixing up the synthetic examples themselves. We test it on
CIFAR-100 and represent it in Table 12. We can see that Pure-DP-MIXDIFF offers much worse
performance than both DP-MIXSELF and DP-MIXDIFF, although it still offers better performance than
Self-Aug due to the beneficial effects of mixup. More generally, we think that Pure-DP-MIXDIFF will
tend to worsen an overfitting problem whenever there is a large domain gap between the original
training data and the diffusion samples. DP-MIXDIFF does not suffer from this problem because it
ensures that (augmented versions) of the original training data samples are seen during training.

Table 12: Test accuracy (%) of Pure-DP-MIXDIFF (KBASE = 0) on CIFAR-100 with Vit-B-16
model. We set δ = 10−5 and ε = 1. We can observe that Pure-DP-MIXDIFF does not improve
performance, which shows the necessity of using base augmentations (KBASE > 0).

Method Test accuracy
Self-Aug 79.3 (.2)

DP-MIXSELF 81.8 (.2)
DP-MIXDIFF 82.0 (.1)

Pure-DP-MIXDIFF 80.9 (.2)

B.4 Running time

We provide the running time for different methods in Table 13. All experimental runs utilized a single
A100 GPU and were based on the same task of finetuning the Vit-B-16 model on the Caltech256
dataset for 10 epochs. Due to additional augmentation steps, the training time of our methods is
longer than prior work.

Table 13: Running time for different methods of the same task (fine-tuning Vit-B-16 on Caltech256
for 10 epochs). We use one A100 GPU for each training method.

Method Self-Aug DP-MIXSELF DP-MIXDIFF

Running time 2h 12min 7h 33min 7h 40 min

B.5 Effect of Mixup on Gradients

We study what happens to gradients and parameter updates during training for our methods versus
Self-Aug. Fig. 2 plots the per-parameter gradient magnitude averaged over samples at each epoch
(prior to clipping and noise adding). The histogram shows the data averaged over all training epochs
and the X% color lines show that data only for the epoch at X% of the total training process. There
are 10 epochs for this experiment – for example, the line for 20% shows the data for epoch 2.

The figure shows more concentrated values for our methods compared to the Self-Aug baseline,
which suggests more stable training and faster convergence. Standard deviations for CIFAR-10 with
Self-Aug, DP-MIXSELF and DP-MIXDIFF are: 2.16 · 10−3, 9.76 · 10−4 and 9.59 · 10−4, respectively.
For Caltech256 they are: 1.43 · 10−3, 1.07 · 10−3 and 9.32 · 10−4, respectively. This is consistent
with experimental results of test accuracies for each method.

15

0.000 0.002 0.004 0.006 0.0080.0

0.2

0.5

0.8

1.0

De
ns

ity

Self-Aug

0.000 0.002 0.004 0.006 0.008

DP MIXSELF

0.000 0.002 0.004 0.006 0.008

DP MIXDIFF

20%
40%
60%
80%
100%

(a) CIFAR-10

0.000 0.002 0.004 0.006 0.0080.0

0.2

0.5

0.8

1.0

1.2

De
ns

ity

Self-Aug

0.000 0.002 0.004 0.006 0.008

DP MIXSELF

0.000 0.002 0.004 0.006 0.008

DP MIXDIFF

20%
40%
60%
80%
100%

(b) Caltech256

Figure 2: Per-parameter gradient magnitude before clipping and adding noise on CIFAR-10(a)
and Caltech256(b) with fine-tuning Vit-B-16 model with ε = 1 and δ = 10−5. The different curves
represent different training stages. Values for our proposed DP-MIXSELF and DP-MIXDIFF are more
concentrated suggesting more stable training and faster convergence.

C Additional Experimental Details

Datasets We use the following datasets:

• CIFAR-10 is a widely-utilized dataset in the field of computer vision, serving as a standard for
evaluating image recognition algorithms. Collected by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton [21], this dataset is a crucial tool for machine learning research. The dataset consists of
60,000 color images, each sized at 32× 32 pixels, and categorized into 10 different classes like
cats, dogs, airplanes, etc. We use 50,000 data points for training, and 10,000 for the test set.

• CIFAR-100 is a well-regarded dataset in the domain of computer vision, typically used for
benchmarking image classification algorithms. This dataset, also collected by Krizhevsky et al.
[21], is a key resource in machine learning studies. CIFAR-100 comprises 60,000 color images,
each of 32x32 pixel resolution. What distinguishes it from CIFAR-10 is the higher level of
categorization complexity; the images are sorted into 100 distinct classes instead of 10. We use
50,000 data points for training, and 10,000 for the test set.

• EuroSAT [18] is a benchmark dataset for deep learning and image classification tasks. This
dataset is composed of Sentinel-2 satellite images spanning 13 spectral bands and divided into ten
distinct classes. It has 27,000 labeled color images which size is 64× 64. We use 21600 as the
training set and 5400 as a test set.

• Caltech 256 [15]. Caltech is commonly used for image classification tasks and comprises of
30607 RGB images of 257 different object categories. For our experiments, we designated 80%
of these images for training and the remaining 20% for testing.

• SUN397 The Scene UNderstanding (SUN) [42, 43] database contains 108,754 RGB images from
397 classes. For our experiments, we use 80% of these images for training and the remaining 20%
for testing.

• Oxford Pet [28] contains 37 classes of cats and dogs and we use 3680 images for training and the
rest 3669 images for testing.

For all our experiments, we maintained the clip norm at C = 1, with the exception of Mix-ghost
clipping where we used C = 0.05 as required by the original paper [5] and its implementation4. The
noise level was automatically calculated by Opacus based on the batch size, target ε, and δ, as well as
the number of training epochs.

Implementation details of Section 3. In this experiment, we set KBASE = 16 and adjust the
hyperparameters according to the recommendations in the original paper [9]. To facilitate the
implementation in PyTorch and enable microbatch processing, we adapt our code based on two
existing code bases 5.

Implementation details of Section 5.1. In training our models from scratch, we adhere to a KBASE

value of 16 and adjust the other hyperparameters in accordance with the guidelines provided in the
original papers [9, 5]. For our fine-tuning experiments, we maintain the same KBASE value and perform
hyperparameter searches in each case to ensure we utilize the optimal learning rate. Importantly, we

4https://github.com/JialinMao/private_CNN
5https://github.com/facebookresearch/tan and https://github.com/ChrisWaites/pyvacy

16

https://github.com/JialinMao/private_CNN
https://github.com/facebookresearch/tan
https://github.com/ChrisWaites/pyvacy

do not incorporate any learning rate schedules, as per the suggestions of other research papers [5, 9]
that indicate such schedules do not yield performance improvements.

Implementation details of Section 5.2 and Appendix B. In order to generate synthetic samples,
we feed the text prompt ’a photo of a <class name>’ to the diffusion model [13]. For each
dataset, the number of synthetic samples we generate is equal to the number of real images in the
dataset.

Source Code. Readers can find further experimental and implementation details in our open-source
code at https://github.com/wenxuan-Bao/DP-Mix.

D Ethical Considerations & Broader Impacts

In this paper, we propose an approach to use multi-sample data augmentation techniques such as
mixup to improve the privacy-utility tradeoff of differentially-private image classification. Since
differential privacy offers strong guarantees, its deployment when training machine learning has
the potential to substantially reduce harm to individuals’ privacy. However, some researchers have
observed that although the guarantee of differential privacy is a worst-case guarantee, the privacy
obtained is not necessarily uniformly spread across all individuals and groups. Further, there is
research suggesting that differential privacy may (in some cases) increase bias and unfairness,
although these findings are disputed by other research.

17

https://github.com/wenxuan-Bao/DP-Mix

	Introduction
	Background & Related Work
	Differential Privacy & DP-SGD
	Related work.

	Method
	DP-Mixup

	Experimental Setup
	Experiments
	Training from Scratch with DP
	Finetuning with DP

	Ablation Study: Why Does DP-Mix Improve Performance?
	Understanding Self-Augmentations
	Number of Self-Augmentations
	Pretraining or DP-MixDiff?
	Effect of DP-Mix on Training Data
	Influence of Kbase, Kself and Kdiff

	Conclusions
	Algorithm: DP-SGD
	Additional Experimental Results
	How useful is the synthetic data?
	Reproducing De et al. de2022unlocking and DP-MixSelf in JAX
	Pure-DP-MixDiff
	Running time
	Effect of Mixup on Gradients

	Additional Experimental Details
	Ethical Considerations & Broader Impacts

