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Definition A.1. Let X and Y be sets, let X = {x1, . . . , xt} ⊆ X , and let H ⊆ YX . We say that335

X is threshold-shattered by H if there exist distinct y0, y1 ∈ Y and functions h1, . . . , ht ∈ H such336

that hi(xj) = y1(j≤i). The threshold dimension of H, denoted TD(H), is the supremum of the set of337

integers t for which there exists a threshold-shattered set of cardinality t.338

We introduce the following generalization of the threshold dimension.339

Definition A.2. Let X and Y be sets, let X = {x1, . . . , xt} ⊆ X , and let H ⊆ YX . We say that X340

is multi-class threshold-shattered by H if there exist y1, y′1 . . . , yt, y
′
t ∈ Y such that yi ̸= y′j for all341

i, j ∈ [t], and there exist functions h1, . . . , ht ∈ H such that342

hi(xj) =

{
yi (j ≤ i)
y′j (j > i).

The multi-class threshold dimension of H, denoted MTD(H), is the supremum of the set of integers t343

for which there exists a threshold-shattered set of cardinality t.344

Claim A.3. Let X and Y be sets, k = |Y| < ∞, and let H ⊆ YX . Then TD(H) ≥ ⌊MTD(H)/k2⌋.345

Proof of Claim A.3. The proof follows from two applications of the pigeonhole principle.346

Claim A.4. Let X and Y be sets, let H ⊆ YX such that d = TD(H) < ∞, and let n ∈ N. Then347

M(H, n) ≥ min {⌊log(d)⌋ , ⌊log(n)⌋} .

The proof of Claim A.4 is similar to that of Claim 3.4.348

Theorem A.5. Let X and Y be sets with k = |Y| < ∞, let H ⊆ YX . If LD(H) = ∞ then349

MTD(H) = ∞.350

Following is a lemma from Ramsey theory used for proving Theorem A.5, and a generalized notion351

of subtrees used in that lemma.352

Definition A.6. Let X be a finite set and let (X,⪯) be a partial order relation. For p, c ∈ X , we353

say that c is a child of p if p ⪯ c and there does not exist m ∈ X such that p ⪯ m ⪯ c. We say that354

z ∈ X is a leaf if there exists no x ∈ X such that z ⪯ x. (X,⪯) is a binary tree every non-leaf355

x ∈ X has precisely 2 children. The depth of z ∈ X is the largest d ∈ N for which there exist356

distinct x1, . . . , xd ∈ X such that x1 ⪯ x2 ⪯ · · · ⪯ xd ⪯ z. For d ∈ N, we say that (X,⪯) is a357

complete binary tree of depth d if (X,⪯) is a binary tree and all the leaves in X have depth d. We say358

that a partial order (X ′,⪯′) is a subtree of (X,⪯) if X ′ ⊆ X , and ∀a, b ∈ X ′ : a ⪯′ b ⇐⇒ a ⪯ b.359

The following lemma follows from Lemma 16 in Appendix B of [ALMM19].360

Lemma A.7. Let k, d ∈ N, and let Y be a set, |Y| = k. Let T = (X,⪯) be a complete binary tree361

of depth d ∈ N, and let g : X → Y . Then T has a monochromatic complete binary tree subtree362

T ′ = (X ′,⪯′) of depth d/k, namely there exists T ′ such that T ′ is a subtree of T , T ′ is a complete363

binary tree of depth d/k, and |g(X ′)| = |{g(a) : a ∈ X ′}| = 1.364

Proof of Theorem A.5. Let fk(d) be the largest number such that every class with Littlestone dimen-365

sion d has multi-class threshold dimension at least fk(d). We show by induction on d that fk satisfies366

the following recurrence relation: fk(d) ≥ 1 + fk(⌈d/k⌉ − 1).367

For the base case, if d = LD(H) = 0, H and X are non-empty and therefore MTD(H) ≥ 1. For368

the induction step d = LD(H) ≥ 1, let T be a Littlestone tree of depth d that is shattered by H. Let369

h ∈ H. Then h is a k-cloring of the nodes of T . By Lemma A.7, there exists an h-monochromatic370
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subtree T ′ ⊆ T of depth at least d/k. Let y1 be the color assigned by h to all nodes of T ′. T ′ is371

shattered by H, so there exists a child x1 of the root r of T ′ such that the label of the edge leading372

to it is some y′1 ̸= y1. Let H1 = {h ∈ H : h(x1) = y′1}. Notice that LD(H1) ≥ d/k − 1,373

so by the induction hypothesis, there exist x2, . . . , xs for s = fk(⌈d/k⌉ − 1) that are multi-class374

threshold shattered. By construction, the set {x1, . . . , xs} is multi-class threshold shattered by H, as375

desired.376

B Multiclass Trichotomy377

The Natarajan dimension is one popular generalization of the VC dimension to the multiclass setting.378

Definition B.1 ([Nat89]). Let X and Y be sets, let H ⊆ YX , let d ∈ N, and let X = {x1, . . . , xd} ⊆379

X . We say that H Natarajan-shatters X if there exist f0, f1 : X → Y such that:380

1. ∀x ∈ X : f0(x) ̸= f1(x); and381

2. ∀A ⊆ X ∃h ∈ H ∀x ∈ X : h(x) = f1(x∈A)(x).382

The Natarajan dimension of H is ND(H) = sup {|X| : X ⊆ X finite ∧ H Natarajan-shatters X}.383

We show the following generalization of Theorem 4.1 for the multiclass setting.384

Theorem B.2 (Formal Version of Theorem 5.1). Let X and Y be sets with k = |Y| < ∞, let385

H ⊆ YX , and let n ∈ N such that n ≤ |X |.386

1. If ND(H) = ∞ then M(H, n) = n.387

2. Otherwise, if ND(H) = d < ∞ and LD(H) = ∞ then388

max{min{d, n}, ⌊log(n)⌋} ≤ M(H, n) ≤ O(d log(nk/d)). (5)

The Ω(·) and O(·) notations hide universal constants that do not depend on X , Y or H.389

3. Otherwise, there exists a number C(H) ∈ N (that depends on X , Y and H but does not390

depend on n) such that M(H, n) ≤ C(H).391

The proof of Theorem B.2 uses the following generalization of the Sauer–Shelah–Perles lemma.392

Theorem B.3 ([Nat89]; Corollary 5 in [HL95]). Let d, n, k ∈ N, let X and Y be sets of cardinality393

n and k respectively, and let H ⊆ YX such that ND(H) ≤ d. Then394

|H| ≤
d∑

i=0

(
n

i

)(
k + 1

2

)i

≤
(
enk2

d

)d

.

Proof of Theorem B.2. Items 1 and 3 and the min{d, n} lower bound in Item 2 follow similarly to395

the corresponding items in Theorem 4.1. The upper bound in Item 2 also follows similarly to the396

corresponding item in Theorem 4.1, except that it uses Theorem B.3 instead of the Sauer–Shelah–397

Perles lemma.398

The ⌊log(n)⌋ lower bound in Item 2 follows from Theorem A.5 and Claim A.4.399
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