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A Trichotomy
for Transductive Online Learning

Supplementary Materials

A Multiclass Threshold Bounds

Definition A.1. Let X and Y be sets, let X = {x1,...,2;} C X, and let H C Y. We say that
X is threshold-shattered by H if there exist distinct yo,y1 € YV and functions hy, . .., hy € H such
that hi(xj) = y1(j<q). The threshold dimension of H, denoted TD(H), is the supremum of the set of
integers t for which there exists a threshold-shattered set of cardinality t.

We introduce the following generalization of the threshold dimension.

Definition A.2. Let X and ) be sets, let X = {x1,..., 24} C X, and let H C Y. We say that X
is multi-class threshold-shattered by H if there exist Y1,y . .., yt, ys € Y such that y; # y;- for all

i,7 € [t], and there exist functions hy, . .., hy € H such that
yi (4 <1)
hi(x;) = L

The multi-class threshold dimension of H, denoted MTD(H.), is the supremum of the set of integers t
for which there exists a threshold-shattered set of cardinality t.

Claim A.3. Let X and Y be sets, k = |Y| < oo, and let H C Y. Then TD(H) > |[MTD(H)/k?].
Proof of Claim A.3. The proof follows from two applications of the pigeonhole principle. O

Claim A4. Let X and ) be sets, let H C V¥ such that d = TD(H) < oo, and let n € N. Then
M(H,n) > min {|log(d) ]|, [log(n)]}.

The proof of Claim A.4 is similar to that of Claim 3.4.

Theorem A.5. Let X and ) be sets with k = |Y| < oo, let H C Y*. If LD(H) = oo then
MTD(H) = oc.

Following is a lemma from Ramsey theory used for proving Theorem A.5, and a generalized notion
of subtrees used in that lemma.

Definition A.6. Let X be a finite set and let (X, =) be a partial order relation. For p,c € X, we
say that c is a child of p if p < c and there does not exist m € X such that p < m =< c. We say that
z € X is a leaf if there exists no x € X such that z < z. (X, X) is a binary tree every non-leaf
x € X has precisely 2 children. The depth of z € X is the largest d € N for which there exist
distinct x1,...,xq € X such that t1 X x2 =X -+ S x4 X z. Ford € N, we say that (X, <) is a
complete binary tree of depth d if (X, <) is a binary tree and all the leaves in X have depth d. We say
that a partial order (X', X") is a subtree of (X, =) if X' C X, andVa,be X' : a <" b < a <b.

The following lemma follows from Lemma 16 in Appendix B of [ALMM19].

Lemma A.7. Letk,d € N, and let Y be a set, |Y| = k. Let T = (X, <) be a complete binary tree
ofdepthd € N, and let g : X — Y. Then T has a monochromatic complete binary tree subtree
T = (X', %) of depth d/k, namely there exists T' such that T' is a subtree of T, T' is a complete
binary tree of depth d/k, and |g(X")| = |{g9(a) :a € X'}| = 1.

Proof of Theorem A.5. Let fi,(d) be the largest number such that every class with Littlestone dimen-
sion d has multi-class threshold dimension at least fx(d). We show by induction on d that fj, satisfies
the following recurrence relation: fi(d) > 1+ fi([d/k] —1).

For the base case, if d = LD(#H) = 0, H and X" are non-empty and therefore MTD(#) > 1. For
the induction step d = LD(#H) > 1, let T be a Littlestone tree of depth d that is shattered by H. Let
h € H. Then h is a k-cloring of the nodes of 7. By Lemma A.7, there exists an h-monochromatic
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subtree 77 C T of depth at least d/k. Let y; be the color assigned by h to all nodes of 7. T is
shattered by H, so there exists a child x; of the root r of 7" such that the label of the edge leading
to it is some ¥} # y1. Let Hy = {h € H : h(x1) = y}}. Notice that LD(H;) > d/k — 1,

so by the induction hypothesis, there exist xs, ...,z for s = fr([d/k] — 1) that are multi-class
threshold shattered. By construction, the set {z1, . .., xs} is multi-class threshold shattered by #, as
desired. O

B Multiclass Trichotomy

The Natarajan dimension is one popular generalization of the VC dimension to the multiclass setting.

Definition B.1 ([Nat89]). Let X and ) be sets, let H C Y, letd € N, and let X = {z1,...,24} C
X. We say that H Natarajan-shatters X if there exist fo, f1 : X — Y such that:

1. Vee X : fo(x) # fr(x); and
2 VACX3JheHVz e X Mx)= frmea ()
The Natarajan dimension of H is ND(H) = sup {|X| : X C X finite N H Natarajan-shatters X }.

We show the following generalization of Theorem 4.1 for the multiclass setting.

Theorem B.2 (Formal Version of Theorem 5.1). Let X and Y be sets with k = || < oo, let
H C V¥, and let n € N such that n < |X|.

1. IfND(H) = oo then M (H,n) = n.
2. Otherwise, if ND(H) = d < oo and LD(H) = oo then
max{min{d, n}, [log(n)]} < M(H,n) < O(dlog(nk/d)). 5)
The Q(-) and O(-) notations hide universal constants that do not depend on X, Y or H.

3. Otherwise, there exists a number C(H) € N (that depends on X, Y and H but does not
depend on n) such that M (H,n) < C(H).

The proof of Theorem B.2 uses the following generalization of the Sauer—Shelah—Perles lemma.

Theorem B.3 ([Nat89]; Corollary 5 in [HL95]). Let d,n,k € N, let X and ) be sets of cardinality
n and k respectively, and let H C Y% such that ND(H) < d. Then

s ()5 < (%)

Proof of Theorem B.2. Ttems 1 and 3 and the min{d, n} lower bound in Item 2 follow similarly to
the corresponding items in Theorem 4.1. The upper bound in Item 2 also follows similarly to the
corresponding item in Theorem 4.1, except that it uses Theorem B.3 instead of the Sauer—Shelah—
Perles lemma.

The [log(n)| lower bound in Item 2 follows from Theorem A.5 and Claim A 4. O
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