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Abstract

We introduce VisIT-Bench (Visual InsTruction Benchmark), a benchmark for
evaluating instruction-following vision-language models for real-world use. Our
starting point is curating 70 “instruction families” that we envision instruction tuned
vision-language models should be able to address. Extending beyond evaluations
like VQAv2 and COCO, tasks range from basic recognition to game playing and cre-
ative generation. Following curation, our dataset comprises 592 test queries, each
with a human-authored instruction-conditioned caption. These descriptions surface
instruction-specific factors, e.g., for an instruction asking about the accessibility
of a storefront for wheelchair users, the instruction-conditioned caption describes
ramps/potential obstacles. These descriptions enable 1) collecting human-verified
reference outputs for each instance; and 2) automatic evaluation of candidate multi-
modal generations using a text-only LLM, aligning with human judgment. We quan-
tify quality gaps between models and references using both human and automatic
evaluations; e.g., the top-performing instruction-following model wins against the
GPT-4 reference in just 27% of the comparison. VisIT-Bench is dynamic to partic-
ipate, practitioners simply submit their model’s response on the project website;
Data, code and leaderboard is available at https://visit-bench.github.io/.

Reasoning Over 
Plots

How much is the 
browser usage for 
Firefox and Safari?

Art Knowledge

Teach me about this 
painting.

Recognition

Where is this?

Location 
Understanding

If you are going for a 
picnic at this location, 
what items should you 

carry with you?

Contextual 
Knowledge of Events

Tell me what is notable 
or important about the 

event in this photo.

Figurative Speech 
Explanation

Someone said that this 
man is an angel. Why?

Chemical 
Identification

Which chemical 
compound does this 

image represent?

Hazard Identification

If you are driving and 
come across this 

scenario, what should 
you do?

Game Playing

What is the poker hand 
shown in the picture? 
Is this a good hand?

Home Renovation

Here is a photo of my 
bathroom. How can I 

design it nicer?

Figure 1: A sample from the 70 instruction families in VisIT-Bench representing tasks we envision
instruction-following vision-language models should be able to follow.
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1 Introduction

A long-standing challenge for artificial intelligence is to build general-purpose assistants that can, in
collaboration with humans, solve diverse and never-before-seen tasks [1]. For textual tasks, several
recent works [2, 3, 4, 5, 6, 7] have shown that fine-tuning language models such as GPT-3 and LLaMA
with supervised instruction+response examples [8, 9, 10] enables them to respond to imperative
requests and questions without task-specific training. Zero-shot generalization is promising not only
for standard academic benchmarks, but – perhaps more-so – for creative, useful, and real-world
queries that downstream users of language technologies are likely to make.

On the multimodal side, recent instruction-following vision-language models also provide a zero-shot
interface. Given an image (or multiple images) and a query (e.g., “how many apples are in this
image?” or “What is this?” or “Write a poem in the style of Robert Frost about this scene.”) a
textual response is provided. Recent works like OpenFlamingo [11, 12], LLaVA [13] and others
[14, 15, 16, 17, 18], have implemented this interface with promising initial results. Although standard
benchmarks like VQAv2 [19] and COCO captioning [20] are commonly used to assess performance,
less is known about how models perform on broader, open-ended queries that resemble real-world
user behavior. Evaluations of such queries typically rely on informal and qualitative approaches.

To support quantitative evaluation for this setting, we present VisIT-Bench (Visual InsTruction
Benchmark), a dynamic benchmark consisting of 592 challenging vision-language instructions. Each
instance contains an instruction, input image(s), a instruction-conditioned caption (a human-crafted
caption for the image(s)/instruction), and a human verified reference (Figure 2). Instructions are
image-contextual imperative requests or questions, e.g., for an image of pancakes, a user asks “how
can I cook this in a healthy way?”. Different from existing zero-shot evaluations, many of the
instructions focus on open-ended generation requests (e.g., “write a poem...” or “what should I bring
if I were to visit here?”).

We created VisIT-Bench to cover a wide array of “instruction families”. Our starting point was a
set of 70 “wish-list” tasks such as “home renovation” and “gardening tips” collected by the authors:
each requiring varied high-level skills from recognition to complex reasoning (Figure 1). We derived
25/70 instruction families from benchmark tasks such as Visual Question Answering (VQA) [21]
and robust change captioning [22] into a chatbot-style format (this reformatting differs from prior
work [14, 17, 13], as we focus on open-ended chatbot style responses.). Notably, 10 of these
repurposed tasks involve multiple images.

We started with 10 images for each instruction family. Our annotators, guided by an example, create
a new instruction, and provide a (permissively licensed) image. For each instruction, we next collect
instruction-conditioned captions – unlike prior work [23, 24] these descriptions are designed not only
to describe the image in general, but also, surface information targeted to the instruction. Finally,
we use instruction-conditioned captions to generate a reference candidate output from GPT-4; an
additional human verification step discards GPT-4 references deemed to be incorrect.

We conduct a large-scale empirical comparison of multimodal instruction-following models using
VisIT-Bench (§4). We first gather predictions for each instance from 7 candidate models. Then, we
collect 5K human judgements of output quality by pitting model outputs head-to-head, and (in a
forced-choice setup) crowd-sourcing pairwise preference judgements. This analysis not only reveals

Instruction 

Create a catchy title 
for a country song 
based upon the 
advice printed on the 
wheel cover.

Instruction-Conditioned Caption 

There is a jeep parked on the street with 
the top down. There is a wheel cover on the 
spare tire in the back with an inscription 
that says, "Quit your Job, Buy a Ticket, Get a 
Tan, Fall in Love, Never Return."

Human-Verified GPT4 Response 

"Tan Lines & Ticket Stubs: A Love Story 
Unbound" - A country song about 
leaving it all behind, finding love, and 
embracing the freedom of the open 
road.

Figure 2: An example from VisIT-Bench displays an image, instruction, an instruction-conditioned
caption based on the instruction, a GPT-4 suggested response, and a label confirming its accuracy. All
678 entries in VisIT-Bench have such labels, with 592 confirming accurate GPT-4 responses. These
components aid in assessing multimodal chatbots and updating a dynamic leaderboard.
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Table 1: Comparison with related works for evaluating instruction-following vision-language models.
Win-rates* refers to the model win-rates against a reference output/model.

MultiInstruct [32] Owl [17] InstructBLIP [14] M3IT [33] LVLM [34] GAVIE [35] VisIT-Bench
Number of Models 1 5 3 4 8 5 10
Number of Skills Tested 9 6 13 13 47 16 70
Multiple-Images ✗ ✓ ✗ ✗ ✗ ✗ ✓
Video ✗ ✗ ✓ ✓ ✗ ✗ ✗
Multi-Turn Conversations ✓ ✓ ✓ ✓ ✓ ✗ ✗
Multilingual Conversations ✗ ✓ ✗ ✓ ✗ ✗ ✗
Instruction-conditioned Captions ✗ ✗ ✗ ✗ ✗ ✗ ✓
Chatbot-style Responses ✗ ✗ ✗ ✗ ✗ ✗ ✓
Dataset-specific Evaluation ✓ ✓ ✓ ✓ ✓ ✗ ✗
Human Evaluation ✗ ✓ ✗ ✗ ✓ ✗ ✓
Auto/GPT-4 Evaluation ✗ ✓ ✗ ✓ ✗ ✓ ✓
Win-rates* ✗ ✓ ✗ ✓ ✗ ✓ ✓
Elo Rating ✗ ✗ ✗ ✗ ✓ ✗ ✓

significant differences between models (e.g., that LLaVA-13b [13] is generally preferred to Panda
[18]), but also, that the human verified references in our corpus are preferred significantly more
than the ones generated using multimodal models. We summarize head-to-head comparisons with
two metrics: 1) Elo ratings [25, 26], which provide relative “skill” rating estimates encoding the
probability that model A will be preferred to model B; and 2) win rate versus our references, which
provides an absolute metric. The best model according to human judgement is LLaMA-Adapter-
v2 [16], yet it only wins in a pairwise setting against the reference in 27.4% of cases.

Finally, we design an automated evaluation for VisIT-Bench, utilizing GPT-4 to rank pairs of model
responses based on factors like correctness, relevance, and fluency. Using the instruction-conditioned
caption and the instruction, GPT-4 determines the better response between two options, expediting
iteration compared to human preferences. We explore reference-free and reference-backed versions of
this metric. Compared to various metrics (BLEU-4 [27], ROUGE-L [28], METEOR [29], CIDEr [30],
and BERTScore [31]), our evaluation aligns best with human preferences. For example, it achieves a
94% agreement rate in the cases where all five annotators agree. Figure 6 illustrates the process.

While it is difficult to a priori envision all possible scenarios under which more performant multimodal
chatbots might be used, we hope VisIT-Bench can provide a path to improving vision-language models
“in the wild.” Table 1 presents a summary of our contributions in comparison to the recent works
[32, 14, 17, 33, 34, 35] in the evaluation of multimodal chatbots. We publicly release VisIT-Bench
data, code, and automatic metrics in https://visit-bench.github.io/.

2 VisIT-Bench: A Real-World Inspired VL Instruction-Following Benchmark

VisIT-Bench was built to emulate real-world applications of multimodal models through image-text
tasks, creating an extensive and practical benchmark. These tasks, or ‘instruction families’, are seen
as key capabilities of a high-performing vision-and-language model. Although our selections are not
exhaustive, they provide a broad basis for evaluating beyond academic benchmarks. We prioritize
family coverage vs. number of instances-per-task. The final corpus, comprising 678 instances and
1,159 public images, can be found at VisIT-Bench Sheet Multi-Images. VisIT-Bench instances are
either from 45 newly assembled instruction families or reformatted from 25 existing datasets (see
Table 5). Notably, 10 instruction families cater to multi-image query scenarios (e.g., Figure 4).

2.1 Data Collection

The authors of this work perform an initial annotation step of curating instruction families. For each
instruction family not derived from an existing task (45 out of 70), we designate a name for the family
(e.g., “Contextual Knowledge of Events”) and identify an image-instruction pair that exemplifies the
category, along with a sample response (“Martin Luther King Jr. is waving to acknowledge and greet
the crowd of protesters [...]”). 10 sample familes are in Figure 1.

We work with crowdworkers at $18/hour to execute the annotation steps, as outlined in Figure 3:
(1) taking the image/instruction example as a guiding seed task crowdworkers formulate a new
instruction that examines the same instruction family (“instruction generation”); (2) crowdworkers
create detailed image captions that describe the image and allow an entity, relying solely on this
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“Provide a highly descriptive caption to allow a 
text-only recipient to follow the instruction”

Instruction Generation
“Create a new, challenging instruction 
inspired by the seed task for that family”

Model Output Evaluation
“Evaluate model predictions by answering the 

following questions…”.

Image

Seed
Instruction

Why is he waving? What 
happened in this event?

Output Martin Luther King Jr. is waving 
to acknowledge and greet the 
crowd of protesters who have 
gathered to hear him speak [...]

New 
Instruction

Why is this guy raising his hand?

Selected 
Image

Image

Instruction There is one color of candy 
in the bowl that is missing 
from the spoon. Which color 
is not represented in the 
spoon full of candies?

Annotated
Caption

Brightly colored round 
candies, with colors of red, 
orange, yellow, green, pink 
and dark brown. A purple 
spoon is raised above the bin 
of candy, bringing them in for 
a close-up. The spoon has 
red, orange, yellow, green 
and dark brown candy in it.

Instruction I am the player with the white chess 
pieces. Is there a move I can take on 
this turn to capture one of my 
opponent’s pieces?

Image

GPT-4 
Output

Yes, you can capture the black pawn 
at e5 with your white pawn at e4.

Output 
Eval

Does GPT-4 correctly follow the instruction? 
[   ] Yes [X] No
If answered ‘No’ for the above, mark one of 
the following:
[   ] N/A
[X] The dense caption is detailed enough, 
the problem is in GPT-4’s answer
[  ] The dense caption is underspecified, not 
GPT-4’s fault

Task 
Family

Contextual Knowledge of Events

Instruction-
Conditioned
Caption

There is a wooden chess board [...] 
The black rooks are at a8 and h8. The 
black knights are at c6 and g8. [...]

Instruction-Conditioned Caption Generation

Figure 3: Data collection steps: (1) Instruction Generation from a seed task (left). (2) Caption
Generation creates rich instruction-conditioned captions for GPT-4 (middle). (3) Model Evaluation
with human-validated GPT-4 responses (right). Top: rater instructions; bottom: outputs.

text, to interpret and execute the given instruction successfully (“instruction-conditioned caption
generation”); (3) crowdworkers assess the correctness of GPT-4’s response to the instruction (“model
output evaluation”). We further elaborate on these steps using human annotators below.

Re-formatting existing datasets. 25/70 instruction families (corresponding to 25*10=250 in-
stances) are re-formatted versions of existing vision-language tasks (See Appendix D for full list).This
process involves re-formatting tasks into chatbot-style instruction/response versions. In re-formatting,
we re-write instructions to retain the original task’s goal while maintaining the original images, see
Figure 4. These repurposed tasks are integrated into our data collection process, ensuring uniformity
between the chatbot-style answers in the full VisIT-Bench instances and the reinterpreted tasks.

Instruction Generation. Here, annotators create a new instance from the same instruction family
as a given example, along with an instruction and corresponding image. For instance, in Figure 3
(left), the instruction family is “Contextual Knowledge of Events”, and the example instruction is

“Why is he waving? What happened in this event?” alongside an image of Martin Luther King, Jr. To
collect images, annotators were instructed to use openverse for Creative Commons licened images.

Instruction-Conditioned Caption Generation. Annotators are provided with the image and
instruction, and are tasked to construct a caption that is rich enough to allow an entity, solely receiving
the text they author, to follow the instruction. These captions, termed instruction-conditioned captions,
aid GPT-4 reference generation and text-only evaluation. See Figure 3 (middle) for an example: an
annotator doesn’t just mention the skittles and a spoon, but, given the query regarding specific colors,
they indicate the exact colors in detail.

Model Output Evaluation. The goal of this stage is to gather human-validated reference chatbot
responses for each multimodal instruction query. We initially obtain response candidates from GPT-4
given the instruction and the instruction-conditioned caption. GPT4’s prompt is: “Consider an image
depicted by: <caption>’. Now, briefly follow this instruction, and you can add a short explanation:
<instruction>’. Response: This prompt is employed for both single and multiple image instances,
with appropriate modifications for the latter. Then we verify each response with human annotators. If
a response is marked incorrect, the annotator identifies whether the issue lies with the detail level of
the instruction-conditioned captions or with GPT-4’s response itself. For VisIT-Bench, we discard any
case marked as incorrect for either reason. An example is given in Figure 3 (right), where GPT-4’s
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The In this task you will be provided with two individual images i.e., BEFORE and AFTER. Please study them 
carefully and determine if the following sentence is correct (Answer "Yes"/"No"):  

NL
VR
2

None of the dogs in these images are wearing clothing.

Two small chihuahuas, one with all white 
fur, and the other with a light brown coat 
of fur on its back, but white fur on its 
head and neck, are near a small pink 
pillow that has large white words 
proclaiming, "BE MINE" on it. The all white 
chihuahua is resting its head on the 
pillow, while the other one is laying 
behind it.

1
A small all white chihuahua is standing 
and looking straight at the camera. It's 
wearing a pink and white polka-dotted 
dress, over which is a pink shirt with 
some white text on it. Under the dog is a 
cement walkway, and there is grass to the 
dog's right and to the right of the 
walkway.

2
GPT-4

No. The second image has a dog wearing a pink and white polka-dotted dress and a pink 
shirt with white text on it.

Figure 4: An example multi-image task from VisIT-Bench, sourced from NLVR2 [36], tests visual
reasoning. While NLVR2 uses a sentence, two images, and a binary answer, we add a zero-shot
prompt, a instruction-conditioned caption per image, and a verified GPT-4 reply. This chatbot-style
design aids automatic evaluation of future chatbot interactions.

candidate reference response aims to answer a question about a chess position (which it does so
incorrectly, and thus, the instance is discarded).

2.2 Data Collection Annotation and Results

We conduct the data collection steps in Figure 3 using Amazon’s Mechanical Turk (MTurk) platform.
Prior to annotating, each MTurk worker passed a qualification test, which involved five to ten sample
tasks designed to assess their ability to generate high-quality annotations. More detailed information
about the execution process and full user interface examples can be found in Appendix C.

Table 2: Human rating metrics for the VisIT-Bench dataset:
overall, single-, and multi-image tasks.

Metrics Overall Single Multi
GPT-4 Correct (%) 87.3 91.5 63.0
Problem in Caption (%) 4.0 3.6 6.0
Problem in GPT-4 (%) 7.7 3.8 30.0

Annotation results are in Table 2.
We assess our collection and filtra-
tion efficiency. For single-image
tasks, our pipeline’s yield was
91.5% from the original candidate
set. However, the success rate
dropped to 63.0% for multi-image
tasks, accompanied by an uptick in
issues either in the captions (6.0%)
or GPT-4’s responses (30.0%). This
drop suggests that multi-image queries may pose a more difficult data collection challenge.

3 VisIT-Bench Analysis

We analyze the tasks, images, and instruction-conditioned captions of VisIT-Bench.

Are instruction-conditioned captions necessary? To elucidate instruction-conditioned captions’
role, we conduct an experiment on 150 single-image instances. We replace our instruction-conditioned
captions with BLIP2 [15] captions, a leading image captioning model, and feed them to GPT-4 for a
chatbot response. See Figure 5 for this process. We manually evaluate whether the resulting output
accurately followed the instructions. We find instruction-conditioned captions yielded 91% correct
results, but with BLIP2 captions, success dropped to 31% (Table 2). This underscores the importance
of instruction-conditioned captions in the construction of VisIT-Bench, and shows that the instances
in our dataset are sophisticated enough such that most are not solvable by using a simple Socratic
model [37] baseline of caption → LLM.
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Would a disabled wheelchair bound 
individual find it easy to go into this store?

BLIP2 Caption

a sign on a brick wall

Instruction-Conditioned Caption
This image is of an exterior store front 
and sidewalk, showing two portable 
wedge ramps, one green and one red. 
The ramps are positioned against the 
step to two retail doorways, and seem to 
bridge the vertical distance between the 
level of the sidewalk and the step up to 
the doorway. The ramps are printed with 
"STOPGAP.CA" on the top surface.

It is not possible to determine if a 
disabled wheelchair-bound individual 
would find it easy to go into the store 
based on the image of "a sign on a brick 
wall." Additional information about the 
store's entrance, accessibility features, 
and layout is needed to make that 
assessment.

Yes, a disabled wheelchair-bound 
individual would likely find it easy to go 
into this store, as the portable wedge 
ramps provide a smooth transition from 
the sidewalk to the doorway, making it 
more accessible for them.

GPT-4

GPT-4

Overall 
Success:

31%

Overall 
Success:

91%

Figure 5: This experiment evaluates the value of instruction-conditioned captions in accurate
instruction-following tasks. Given an image and instruction, GPT-4 generates responses using
both a instruction-conditioned caption and a less detailed BLIP-2 [15] caption. The latter’s impreci-
sion leads to an error, emphasizing the need for detailed, task-specific captions.

What skills are required for VisIT-Bench? The full list of instruction families we cover are in
Appendix Table 6. Following [38], for the VisIT-Bench instructions, we extract the most frequent
root verbs and their direct nouns (a full plot is in Figure 10). The most common include: ‘answer
question’, ‘write story/poem’, ‘create title’, etc. There’s also a long-tail of diverse requests that
demand comprehension, commonsense, and cross-modal understanding, e.g., ‘identifying objects’ to

‘need ingredient’ to ‘connect device’. Additional examination reveals a range of underlying skills
required ranging from ‘emotion identification’ to complex reasoning tasks such as ‘paper folding’.

What is contained in VisIT-Bench images? We detect all the COCO [20] objects present in the
images from our dataset using Yolov5-L [39]; The most common detected objects in VisIT-Bench are
“person” (∼ 900 detections), chair, and car (∼ 100). But, a long tail of rarer objects exists as well: full
distribution in Appendix Figure 9. Overall, to perform well at VisIT-Bench, a model must account for
a broad range of scenes and objects.

4 Experiments

We evaluate a range of state-of-the-art publicly accessible vision-and-language chatbots on the 592
instances in VisIT-Bench. In §4.1, we provide the details of the instruction-following models in our
benchmark. Following this, we collect the human preferences for pairwise model generations to
achieve a human-guided Elo ranking and the win-rates against the reference of the models in §4.2.
We then develop automatic evaluation on VisIT-Bench in §4.3, that can be scaled and improved given
new and improved models. Finally, we establish the trustworthiness of our automatic evaluation
method by performing agreement analysis with the human judgments in §4.3

GPT-4

Instruction-
Conditioned 
Caption
A cave man 
with a 
headband is 
holding a 
money bill 
that has the 
face of a cave 
man on it.

PandaGPT
The unusual aspect of this image is that it appears to be a combination of two different 
scenes or images. The main focus is a cartoon drawing of a man holding a sign that says 
"ART." However, there are also elements of a kitchen, such as a refrigerator, a microwave, 
and a clock, which do not seem to be related to the "ART" theme. This juxtaposition of 
unrelated subjects in the same image creates a peculiar and unexpected visual effect.

InstructBLIP
An unusual aspect of this image is the man's appearance. He has long hair, a beard, and is 
wearing a loincloth, which is an ancient form of clothing worn by men in some cultures. 
Additionally, he is holding a stack of money in his hand, which is a modern-day item. This 
combination of ancient and modern elements creates an interesting contrast and raises 
questions about the context and purpose of the image.

What is unusual 
about this image?

InstructBLIP

Figure 6: ELO-based evaluation for VisIT-Bench: Our reference-free approach uses a GPT4 evaluator
to compare two instruction-following models with an instruction and a instruction-conditioned caption.
The instance is obtained from an existing dataset, WHOOPS! [40].
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Table 3: Human scores for models are displayed as ELO ratings and win-rates against the reference,
summarizing 5.0K pairwise judgments. The ’matches’ column shows each model’s participation
count, and ’win-rate vs. reference’ denotes its win rate against reference outputs.

Model Elo matches Win-rate vs. reference (w/ # ratings)

Single Image Human Verified GPT-4 Reference 1223 1439 –
LLaVA (13B) 1085 1462 26.23% (n=244)
LlamaAdapter-v2 (7B) 1061 1507 27.41% (n=259)
mPLUG-Owl (7B) 995 1345 14.95% (n=214)
InstructBLIP (13B) 957 1315 12.37% (n=194)
MiniGPT-4 (7B) 893 1513 14.72% (n=299)
PandaGPT (13B) 786 1441 10.48% (n=229)

Multiple Images Human Verified GPT-4 Reference 1193 210 –
mPLUG-Owl 997 190 15.38% (n=78)
Otter v1 917 147 3.17% (n=63)
OpenFlamingo v1 893 171 4.35% (n=69)

4.1 Models

We evaluate LLaVA-13B [13], InstructBLIP-13B [14], MiniGPT4-7B [41], mPLUG-Owl-7B [17],
LlamaAdapter-v2-7B [16], PandaGPT-13B [18], VisualChatGPT [42], Multimodal GPT [43], Open-
Flamingo v1 [11, 44] and Otter v1 [45]. For the execution-based VisualChatGPT [42], we implement
a chat window for each sample, hold inputs and intermediate chains of thoughts and actions in
memory, and feed the images and the instruction sequentially. For OpenFlamingo [11] and Otter [45],
we feed the image(s) and the instruction in an interleaved format. For the others, we feed the image
to the vision feature extractor and feed the instruction as a prompt to the text encoder.

4.2 Human Evaluation

We collect 5K pairwise human preference judgements across an initial set of 6 models and the
human-verified references. For 1K uniformly randomly sampled tuples of (query, model A, model B),
we collect 5 crowdworker judgements each. Preferences are collected in a “forced choice” setting,
annotators are instructed to decide based on accuracy, helpfulness, and detail. We provide the template
for the human annotation process in Appendix Figure 15. We summarize the results with two metrics:

Relative metric: Elo We follow [26] and compute Elo ratings, treating each pairwise human
judgement as a “match.”The difference between the Elo ratings of two different models provides an
estimate for the win probability when pitting model A vs. model B. More details are in Appendix E.

Absolute metric: Win rate vs. reference. We provide a win-rate vs. the human-verified reference.
We use the 1.4K pairwise human judgments where one of A or B is the reference. We report the
percent of cases where the human judge prefers the output from that model vs. the human-verified
GPT-4 reference output. Because we do not allow for ties in our forced-choice setup, if the annotator
believes the responses are of equal quaity, they choose one arbitrarily.

Results Table 3 contains the Elo and win-rate vs. reference. In terms of Elo, the Human Verified
GPT-4 reference achieves a higher rating than all alternatives, validating the quality of our reference
set: concretely, for our Elo settings, the reference (Elo =1223) has an estimated win-rate over one of
the best performing models, LLaVA, (Elo =1085) of 69%, and an estimated win rate of 93% against
the lowest performing model in this setup, PandaGPT (Elo =786). This result can partly be explained
by the training process of the underlying models: The improved performance of LLaVA (13B) might
be attributed to its fine-tuning process, which utilized 150K instruction-tuning data that is rich in
both diversity and quality. Interestingly, despite achieving a slightly lower Elo (the computation of
which is based on all head-to-head “matches”, rather than just ones against the human reference),
LlamaAdapter-v2 (7B) wins with the highest rate against the reference. However, the complexity of
models and tasks in VisIT-Bench makes it challenging to definitively pinpoint the factors influencing
performance. We conduct an initial exploration of this result in Section 4.3.
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Table 4: As of July 19th, 2023, reference-free Elo rankings summarize 12K matches between models,
each with 2 GPT-4 queries. With the dynamic VisIT-Bench, rankings update as more models join the
leaderboard and more head-to-head evaluations occur.

Model Elo matches Win vs. Reference (w/ # ratings)

Single Image Human Verified GPT-4 Reference 1370 5442 -
LLaVA (13B) 1106 5446 17.81% (n=494)
LlamaAdapter-v2 (7B) 1082 5445 13.75% (n=502)
mPLUG-Owl (7B) 1081 5452 15.29% (n=497)
InstructBLIP (13B) 1011 5444 13.73% (n=517)
Otter v1 (9B) 991 5450 6.84% (n=512)
VisualGPT (Da Vinci 003) 972 5445 1.52% (n=527)
MiniGPT-4 (7B) 921 5442 3.26% (n=522)
OpenFlamingo v1 (9B) 877 5449 2.86% (n=524)
PandaGPT (13B) 826 5441 2.63% (n=533)
Multimodal GPT 763 5450 0.18% (n=544)

Multiple Images Human Verified GPT-4 Reference 1192 180 -
mPLUG-Owl 995 180 6.67% (n=60)
Otter v1 911 180 1.69% (n=59)
OpenFlamingo v1 902 180 1.67% (n=60)

4.3 Automatic Evaluation and Leaderboard

Because it is costly to gather human pairwise preference judgements for new model submissions, to
support faster model development, we seek an automatic evaluation procedure that produces high
correlation with our human evaluation setup.
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Figure 7: Correlations between evaluation metrics
and human preferences ranked by performance,
with our reference free evaluation (GPT-4-no-ref)
showing the strongest alignment. Bottom: random
chance (50%), top: upper performance bound.

Automatic evaluation metric candidates.
We consider several existing reference-backed
evaluation metrics: BLEU-4 [27] , ROUGE-
L [28], METEOR [29], CIDEr [30], and
BERTScore [31], we use the RoBERTa-Large
english version [46], treating the human-verified
GPT-4 reference as the evaluation reference. We
additionally report two baseline metrics: ran-
dom, which assigns a random score without ac-
counting for the candidate, and length, which
assigns a score equal to the number of non-
whitespace tokens in the candidate. Beyond
existing metrics and baselines, following the re-
cent line of work utilizing API-accessed LLMs
with a prompt for automatic evaluation [6, 47],
we consider two GPT-41 [7] backed evaluation
metrics.

Specifically, we provide the LLM with: 1) a
system prompt describing the desired evaluation
behavior; 2) the instruction-conditioned caption
for the image; 3) the instruction to be followed;
and 4) two candidate generations dubbed “Response A” and “Response B”. We also consider a
reference-backed version where the human-verified reference is provided as well. We provide our
prompts in Appendix F. To mitigate potential biases in “A” and “B” positioning, for all pairs of
candidates, we run two queries covering both possible orderings. Our prompt encourages the model
to think step-by-step so that its chain-of-thought process is made explicit [48, 49]. Despite strongly
encouraging the model to select between the two references in a forced-choice setup, it sometimes

1OpenAI [7] hosts several API versions of GPT-4 and updates them over time, we use the versions they host
interchangeably (specifically, our evaluations mix their models named: gpt-4-0314 (which became depreciated
during the development of this work) and gpt-4 (which underwent an update during our experiments).
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Figure 8: Reference-free assesment win rate vs. human-verified GPT4 response for each instruction
category. Axes: win rate (Y), instruction categories (X). Categories are from-the-wild or existing
datasets. VisIT-Bench facilitates analysis of diverse instruction tuning tasks.

refuses and outputs “tie” which we account for later. We call the reference-free version of this metric
“GPT4-no-ref”, and the reference-backed version of this metric “GPT4-ref”.

Evaluating evaluation metrics. We measure the correlation between the candidate metrics and
human judgements using a pairwise framework. Specifically, we use a subset of the 5K pairwise
human judgements in § 4.2. For 690 pairwise instances where both candidate instances are model-
generated (rather than human-verified references), we have 5 pairwise judgements from crowd-
workers. For 336 pairs, there is 5/5 agreement, for 200 pairs, there is 4/5 agreement, and for 154
pairs, there is 3/5 agreement. For each metric, we measure the percent of time the metric is able to
accurately reconstruct a majority vote judgement from the 5 crowdworkers. The newly proposed
GPT-4 based metrics sometimes outputs “tie” (this happens in 10-15% of cases overall) – for fair
comparison with the other metrics in forced choice setting, we randomly choose one of the two
options when GPT-4 reports a tie.

The results are in Figure 7, with GPT-4-no-ref best aligns with human correlation. The best perform-
ing metric is our newly proposed GPT-4 based metric, which accurately reconstructs majority-vote
pairwise human judgments better than alternatives (p < .05; binomial proportion CI nonover-
lapping). For example, for instances where 5/5 annotators agree, GPT4-no-ref, with no refer-
ence, accurately reconstructs human judgment 93% of the time, whereas the next best metrics
BERTScore/METEOR/ROUGE-L reconstruct accurately 80%/78%/70% of the time; A length base-
line metric achieves only 60%. Notably, the reference-backed version of the newly proposed GPT-4
based metric achieves comparable (but slightly worse) performance compared to the reference-free
version. Thus, we adopt the reference-free version, which additionally enables us to place the
references themselves into the the Elo setup, because they are not used in the prompts.

System-level Correlation. We summarize the LLM’s pairwise judgements using the same metrics as
introduced in §4.2, Elo ratings and win rate vs. reference, but instead of using a human judge, we use
our reference-free GPT-4 based metric. The results are in Table 4. Notably, among the 7 systems for
which we gathered human ratings for, the automatic metric produces the same ordering compared to
human evaluation (ρ = 1.0, p < .01).

Shortcomings of proposed metric. While the relative ranking of models produced by the automatic
metric correlates strongly with the ranking produced by human judgements, the win rate vs. reference
according to human judgement (Table 3) are higher overall compared to the win-rate vs. reference
according to the automatic metric Table 4. One plausible explanation for this discrepancy is that
GPT-4, as an evaluation model, may prefer responses that closely match its own response distribution.

Per-category results. In Figure 8, we plot the win-rate vs reference for the models across all
the single-image instruction families. We find that there is no model that performs the best and
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worst across all the instruction families. Thus, VisIT-Bench aids in highlighting the strengths and
weaknesses of the instruction-following models along various real-world use-cases.

5 Related Work

Our work builds on prior multimodal image-text models and instruction-following benchmarks in
machine learning. We provide a detailed overview of related work in §B. Multi-model modals
for image-text understanding have recently emerged as powerful and useful methods for many
image-language reasoning tasks [12, 15, 13, 50, 18, 14, 17, 11, 7]. Both language and multimodal
models are often trained to follow language instruction, a paradigm known as “instruction following”
[5, 16, 51, 14, 13, 17]. Despite the success of these approaches on existing vision-language datasets
(GQA, Image Captioning [21, 52, 20]), there is no quality benchmarking dataset for multimodal
instruction-following tasks that reliably replicates the way in which humans would interact with
multimodal chatbots in the wild. The absence of benchmarking data impedes reliable progress
assessments [53] and limits empirical evaluations of multimodal LLMs[54].

6 Conclusion

We present VisIT-Bench, a benchmark assessing multimodal chatbot skills. Going beyond prior
efforts, VisIT-Bench’s collection process centers potential real-world use cases, and 70 diverse
instruction families encompassing a range of tasks from recognition to complex reasoning. Besides
human-verified outputs, it features an Elo ranking aligning with human judgments. Our data reveals
a performance gap between models and humans. Releasing data, code, and metrics, we aim for
community engagement and believe VisIT-Bench will quantify progress and gaps in multimodal AI.

7 Limitations

Although VisIT-Bench covers a wide spectrum of potential use-cases, it does not incorporate every
possible vision-language task. We hope to add more categories of tasks over time. In terms of
dialogue, VisIT-Bench concentrates on single-turn instances with one instruction and response. This
does not encompass multi-turn interactions between users and chatbots, which presents a direction
for future research. Our study focuses on image-text modalities. Future extensions could expand the
scope to include other modalities like audio and video, enabling a more comprehensive evaluation.
Additionally, while the dataset offers a wide variety of tasks, a larger number of examples per
category could provide more depth. Finally, while our GPT-4 based metric correlates well with
human judgement at instance and system level, we see some evidence that the GPT-4 based metric
has a stronger preference for GPT-4 based generations compared to humans. Thus, models which
train, e.g., by distilling from GPT-4 outputs, may have an unfair advantage on our evaluation.
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Appendix

A License and Intended Use

The VisIT-Bench dataset, along with its various contributions such as instructions, reference outputs,
and model ranking annotations, is licensed under the Creative Commons Attribution 4.0 International
License (CC BY 4.0). This license applies to all the images we have directly contributed, each of
which carries a public license specification in the “public images metadata” field within the dataset
sheets. However, the dataset also incorporates images sourced from pre-existing collections. For
these images, the original licensing terms are respected and remain applicable.

VisIT-Bench’s primary purpose is to function as a dynamic benchmark that continuously evolves
and evaluates instruction-following vision-language models. In the current landscape, commercial
chatbots are often trained on non-disclosed and non-public datasets, which raises concerns about
potential data contamination and inadvertent training on our evaluation data [8]. This risk is further
highlighted by recent studies [55, 56]. To mitigate such concerns, we have chosen to withhold the
complete VisIT-Bench test set from public disclosure, while still making the images and instructions
available for direct download. Researchers, however, can utilize VisIT-Bench to its full potential
as a dynamic benchmark by submitting their model predictions for evaluation. We will assess their
models using the undisclosed test set, ensuring the ongoing evolution of the benchmark. Moreover,
we are open to releasing the test data upon receiving reasonable and justified requests, particularly
when additional analysis is necessary, provided that requesters agree to our non-contamination policy
which prohibits the use of this data for training commercial chatbots. This approach strikes a balance
between the need for robust model evaluation and the mitigation of potential data contamination.

A Dataset Analysis
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Figure 9: Count of the various COCO objects present in the VisIT-Bench images on a log-scale. The
object detection was performed by Yolov5-Large [39]. We observe that the object ‘person’ occurs
most of the time in the dataset images i.e., 875 times.

17



Figure 10: Most frequently occurring verbs (inner circle) and their top 4 direct nouns (outer circle) in
the VisIT-Bench instructions.

B Related Work

Multimodal Models for Image-Text Understanding: Recently, the field of machine learning
has experienced a rapid proliferation of new models which can perform various image-text tasks
[12, 15, 13, 50, 18, 14]. This growth has been driven by several factors, including the emergence of
large-scale multimodal datasets (e.g. LAION-5B [57], Multimodal C4 [11]), improved software and
hardware frameworks, and advances in modality-specific models such as language models (e.g., [10]).
Our work specifically evaluates models which can generate textual outputs, given one or more images,
and text. Recent examples of such models include LLaVA [13], mPLUG-Owl [17], InstructBLIP,
LLaMA-Adapter, Flamingo [12] and OpenFlamingo [11], PandaGPT [18], and GPT-4 [7] (which
reports multimodal capabilities but has not yet seen a release of the multimodal variant).

Instruction Following: “Instruction-following” is an emerging paradigm for training models via
language, where instead of being trained to complete only a single, fixed task (such as image
classification or captioning), models are trained to follow textual instructions that describe an
arbitrary task, with the aim of generalizing to novel instructions. Examples of instruction-following
models include Alpaca [5], LLaMA-Adapter [16], Koala [51], InstructBLIP [14], LLaVA [13], and
mPLUG-owl [17]. As the downstream capabilities of these models are influenced by the quality of
the training dataset, there has also been extensive work on developing instruction-following datasets
[38, 58, 59, 13, 60] .

To build powerful these models, two broad approaches have been shown to be effective. One
approach focuses on leveraging existing pretrained task-specific tools such as image captioners
[15], object detectors [61] and text-to-image generators [62] by either creating multimodal prompt
interfaces [42, 63] or by executing LLM-generated programs [64, 65, 66]. The other approach
[13, 16, 67, 45, 68, 17, 11] focuses on building a single pretrained model that can follow instructions
by supervised finetuning on multimodal vision-language data.

Despite the success of both these approaches on the existing vision-language datasets e.g., VQA,
GQA, Image Captioning [21, 52, 20], there is a lack of a high-quality benchmarking dataset for
multimodal instruction-following tasks that reliably replicates the way in which humans would
interact with multimodal chatbots in the wild. Similar to the image-text models discussed above,
many instruction-following models have been released directly as open-source without undergoing
peer review or thorough evaluation. As a result, the effectiveness of these models for many tasks is
not well-understood.

Benchmarks for Machine Learning: High-quality evaluation datasets have served both to (re)assess,
and to accelerate, progress on many machine learning tasks [53]. For example, our work draws
particularly from the fields of computer vision and natural language processing, where benchmarking
datasets have been critical drivers of progress. On the vision side, datasets such as ImageNet [69] and
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CIFAR [70] have proven to be critical yardsticks of progress. On the language side, benchmarks such
as SQuAD [71], SST [72], GLUE/SuperGLUE [73, 74] and more [75, 76] seen wide use. Recent
work has indicated that improvements on these high-quality benchmark datasets is not the result of
overfitting, and is a reliable indicator of genuine progress beyond the benchmark data [77, 78, 79, 80].

However, high-quality benchmarking datasets and evaluation methods do not yet exist for multimodal
instruction-following. As a result, it is difficult to assess progress in this direction, which both reduces
the field’s ability to identify true breakthroughs and increases vulnerability to potential pitfalls of
evaluation that have hampered progress in other areas of machine learning [53, 54].

C Interfaces for Collecting Human Annotations

In this section, we provide the templates we used to collect human annotations for the instruction
generation (Figure 11), the dense caption generation (Figure 12), the model verification (Figure 13
and Figure 14), and the model rating (Figure 15).

Figure 11: An interface that collects the image and corresponding instruction.

Figure 12: An interface that collects the dense caption given an image-and-instruction pair.
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Figure 13: A sample of the model verification where the GPT4 follows the instruction correctly.

Figure 14: A sample of the model verification where the GPT4 failed to follow the instruction due to
its incorrect reasoning.

Figure 15: An interface that collects the feedback of the model rating.
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D Existing Datasets incorporated in VisIT-Bench

In Table 5, we listed the existing datasets that are incoprated in our VisIT-Bench. Among these
datasets, 15 contain a single image in each sample pair, and 10 require reasoning based on multiple
images.

Table 5: List of existing datasets in VisIT-Bench, categorized as single and multiple image datasets.

Single

Dataset Topic
VQA [21] Visual Question Answering
VCR [81] Cognition-level Visual Understanding

GD-VCR [82] Geo-Diverse Commonsense Reasoning
WHOOPS [40] What Makes this Image Strange

Newyork Caption [83] Humor Understanding
CLEVR [84] Visual Question Answering

Kilogram [85] Tangrams Identification
Harmful Memes [86] Memes Understanding

ScienceQA [87] Science Question Answering
OK-VQA [88] Outside Knowledge Visual Question Answering

AOK-VQA [89] Outside Knowledge Visual Question
AOK-VQA [89] Question Generation

VizWiz [90] Visual Question Answering
GQA [52] Visual Question Answering on Scene Graphs

TextCaps [91] Visual Question Answering on Texts

Multiple

Robust Change Captioning [22] Describing What has Change in a Scene
NLVR2 [36] Testing Visual Language Bias

ImageCoDE [92] Image Retrieval
Spot-the-Diff [93] Identifying Differences

VASR [94] Visual Analogies
WinoGavil [95] Visual Associations

IRFL (Metaphor) [96] Figurative Speech Understanding
IRFL (Idioms) [96] Figurative Speech Understanding

IconQA [97] Abstract Diagram Understanding
Pick-a-Pic[98] Text-to-Image User Preferences

Table 6: List of skills and existing datasets in VisIT-Bench
‘scienceqa’, ‘ocr math’, ‘recognition’, ‘okvqa’, ‘house plan understanding’,
‘nlvr2’, ‘gardening tips’, ‘textcaps’, ‘architectural styles’, ‘dressing sense’,
‘winoground’, ‘food recipe’, ‘paper folding’, ‘whoops’, ‘spot the diff’, ‘wino-
gavil’, ‘imagecode’, ‘exercise’, ‘art knowledge’, ‘gqa’, ‘physical knowledge’,
‘contextual knowledge of events’, ‘home renovation’, ‘aokvqa’, ‘animals’, ‘vasr’,
‘counting’, ‘board games’, ‘solving geometry problems’, ‘who to call?’, ‘clevr’,
‘building materials’, ‘hazard identification’, ‘pickapick’, ‘astronomy’, ‘figurative
speech explanation’, ‘write a story’, ‘gestures understanding’, ‘newyork’, ‘cul-
tural knowledge’, ‘aokvqg’, ‘traffic sign identification’, ‘pop culture’, ‘fashion
products’, ‘harmful memes’, ‘write a poem’, ‘vizwiz’, ‘guesstimate of capacity’,
‘location understanding’, ‘graph reasoning’, ‘vqa’, ‘game playing’, ‘differently
abled’, ‘chemical identification’, ‘history knowledge’, ‘climate and weather
understanding’, ‘irfl metaphor’, ‘human emotion recognition’, ‘medical’, ‘gd
vcr’, ‘vcr’, ‘technical support’, ‘catchy titles’, ‘kilogram’, ‘anagrams’, ‘color’,
‘tour guide’, ‘directions’, ‘irfl idiom’, ‘rcc’
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E Elo Rating

For many years, the Elo rating has been popular in ranking players in zero-sum games such as chess
[25]. Recently, it has been adopted to rate large language models (LLMs) against each other on the
user instructions. In this work, we adopt the same strategy to rank a set of instruction-following
vision-language models, that can grow dynamically with further advances in the field.

Given two multimodal chatbots Ca and Cb with their absolute Elo rating Ra and Rb, respectively.
Simply put, the probability of Ca winning over Cb in a head-to-head battle is given by:

P (Ca wins over Cb) =
1

1 + 10(Ra−Rb)/400
(1)

In practice, calculating the Elo rating requires us to set hyperparameters to decide the weightage
for each win and loss in a head-to-head battle between two models. In our work, we use the open
implementation of Elo for LLMs by FastChat at https://github.com/lm-sys/FastChat/blob/
main/fastchat/serve/monitor/elo_analysis.py.

F GPT-4 Pairwise Evaluation Prompts

The specific prompts we use to extract pairwise judgements from our language model are provided in
Table 16 (reference-free version) and Table 17 (reference-backed version). When applied to GPT-4
[7], these prompts usually solicit a definitive pairwise response by the model. But, in some cases, the
model either produces a pairwise judgement in an unexpected format, or, refuses to issue a judgement
at all. For cases like these, we issue an additional query to ChatGPT to extract an answer (or decide
there is no answer) using an additional prompt, given in Table 18. If after this step there is still no
definitive pairwise judgment, we call the result a tie.

A head-to-head comparison involves querying GPT-4 two times. Each query has approximately 800
input/250 output tokens (output includes chain of thought; see Supplementary for full prompt/response
example). Running a head-to-head comparison between a new model and a randomly sampled existing
model across the 700 instances is usually sufficient for a stable Elo estimate. In total, at current
GPT-4 prices, the 700 head-to-head comparisons required to assess a new model costs 50-70 dollars.
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system prompt (human authored)

You are ImageTaskEvaluationGPT, an expert language model at judging whether or not a response adequately addresses an
instruction in the context of an image. More specifically, you will be given the following:

1. An image context: This will describe the contents of an image with sufficient detail to address the instruction.
2. An instruction: This is a question, an imperative request, or something similar about the image which requires a response.
3. Two responses, response A and response B: These two responses attempt to address the instruction in the context of the image.
Your job is to judge whether response A or response B better. A and B are randomly ordered.

Some things to remember:

- Even though you are just a language model, the image description will be sufficiently detailed so that your judgements can be
accurate.
- You are capable of judging response quality, accounting for important factors like correctness, relevance, fluency, specificity, etc.
- You think step-by-step, but ultimately respond with "Response A" or "Response B"

user (human authored)

I will describe an image to you, and provide an instruction. Then, I will give you two candidate responses that address the instruction
in the context of the image: these will be labelled "Response A" and "Response B". Your job is to first reason step-by-step about
which response is best in terms of accuracy, specificity, fluency, etc. After reasoning step-by-step and comparing the pros/cons of
each response, in the end, respond with "Overall, Response X is better." where X is either A or B.

assistant (human authored)

Sure, please provide the image context, the instruction, and the two candidate responses, Response A and Response B. Then, I will
think step-by-step and provide my ultimate judgement as to which response is better.

user (from human-authored template)

OK. Here is the image description, the instruction, and the two response options, Response A and Response B. Image context:
A skier is wearing a green jacket, burgundy pants, white shoes, white gloves, and a gray beanie. There are people sitting on the
background with their snowboards.

Instruction: Answer the following question based on the provided image: Are the trousers the same color as the shoes?

Response A: no

Response B: No, the trousers are not the same color as the shoes. The trousers are burgundy, while the shoes are white.

Think step-by-step and finish your response with "Overall, Response X is better." where X is either A or B.

assistant (machine generated; used to derive the prediction)

Step 1: Identify the key information from the image description.

The skier is wearing:
- Burgundy pants
- White shoes

Step 2: Assess the accuracy of each response in addressing the instruction.

Both Response A and Response B convey that the trousers and shoes are not of the same color.

Step 3: Compare specificity and detail of each response.

Response A is concise and provides a straightforward answer, but lacks detail.
Response B provides a clear, comprehensive answer that includes the color of both the trousers and shoes.

Step 4: Consider the fluency and correctness.

Both responses are fluent and grammatically correct.

Overall, Response B is better.

Figure 16: The prompt we use for reference-free evaluation, along with a sample instance/completion
from GPT-4 [7].
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system prompt (human authored)

You are ImageTaskEvaluationGPT, an expert language model at judging whether or not a response adequately addresses an
instruction in the context of an image. More specifically, you will be given the following:

1. An image context: This will describe the contents of an image with sufficient detail to address the instruction.
2. An instruction: This is a question, an imparative request, or something similar about the image which requires a response.
3. A reference output: This is a high-quality example output that humans have judged to be an accurate response for the input
instruction.
4. Two responses, response A and response B: These two responses attempt to address the instruction in the context of the image.

Your job is to judge whether response A or response B better. A and B are randomly ordered. Some things to remember:
- Even though you are just a language model, the image description will be sufficiently detailed so that your judgements can be
accurate.
- Take the high-quality reference into account when making your judgements, but remember: some instructions are more open-ended
than others, so for those cases, a high quality response can differ from the reference.
- You are capable of judging response quality, accounting for important factors like correctness, relevance, fluency, specificity, etc.
- You think step-by-step, but ultimately respond with "Response A" or "Response B"

user (human authored)

I will describe an image to you, and provide an instruction. Then, I will provide a reference output which is an example of a
high quality output for that instruction in the context of the image. Then, I will give you two candidate responses that address
the instruction in the context of the image: these will be labelled "Response A" and "Response B". Your job is to first reason
step-by-step about which response is best in terms of accuracy, specificity, fluency, etc. After reasoning step-by-step and comparing
the pros/cons of each response, in the end, respond with "Overall, Response X is better." where X is either A or B.

assistant (human authored)

Sure, please provide the image context, the instruction, the reference, and the two candidate responses, Response A and Response
B. Then, I will think step-by-step and provide my ultimate judgement as to which response is better.

user (from human-authored template)

OK. Here is the image description, the instruction, the high-quality reference, and the two response options, Response A and
Response B.
Image context: There is a white plate that has on it a small pizza with many topics, mostly unrecognizable, due to the pie being very
well done, charred to the point of almost being burnt, and the crust blackened in many places.

Instruction: Someone told the creator of this item that they are very talented. What is the implied meaning?
High quality reference: The implied meaning is that the person complimenting the creator is being sarcastic, as the pizza is
overcooked and almost burnt, which is not a sign of talent.

Response A: When someone says that they are "very talented" in the context of the image, it implies that the person responsible
for creating the pizza is skilled in the craft and able to create an appealing and tasty dish. The person praising the pizza’s creator
recognizes their culinary skills, which can be seen through the combination of ingredients and the overall look of the finished dish.
The praise is a form of appreciation for their efforts and the enjoyable result they achieved.
Response B: It is difficult to determine the implied meaning without further context or information about the image. It appears to be
a pizza that has been burnt or charred on the surface and has various toppings, including pepperoni, onion, and mushrooms. The
image is shown on a white plate or surface. The implied meaning of this image could be that it is a dish that has been cooked badly
or that it is a dish with a unique or unusual combination of ingredients.

Think step-by-step and finish your response with "Overall, Response X is better." where X is either A or B.

assistant (machine generated; used to derive the prediction)

Step 1: Comparing both responses with the high-quality reference, it’s clear that Response A describes the pizza as well-made and
appealing, while Response B is more focused on the fact that it is burnt or charred, somewhat aligning it with the reference.
Step 2: Evaluating specificity, Response A defines the creator as skilled, even though the image description contradicts this by
stating that the pizza is overcooked. Response B, while not as specific, acknowledges the overcooked nature of the pizza.
Step 3: In terms of fluency, both responses are easily understood and written in coherent language.
Step 4: Considering accuracy, Response A is inaccurate in relation to the context and instruction because it implies a positive
meaning when it should be sarcastic. Response B doesn’t fully capture the sarcasm but is closer to the truth about the pizza being
badly cooked.
Step 5: Understanding relevance, Response A is not entirely relevant due to the inaccuracy in the creator’s talent, while Response B,
although less direct, is more relevant by mentioning the burnt or charred nature of the pizza.
Overall, Response B is better.

Figure 17: The prompt we use for reference-backed evaluation, along with a sample in-
stance/completion from GPT-4 [7].
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system prompt (human authored)

You are FinalAnswerExtractionGPT, an expert language model at extracting multiple choice answers from written out from longer
explanations. You will be given several sentences describing a thought process which should eventually contain a final answer,
either A or B. Your job is to extract the final answer that the explanation arrives at.

Some things to remember:

- Keep your answers short: only output "Final Answer: X" where X is A or B
- If the explanation doesn’t mention a final choice explicitly, you can output "Unknown"

. . .
(+ 2 in-context examples (human authored))
. . .

Example One: GPT-4 gives a definitive answer, but in the wrong format

user (GPT-4’s raw pairwise judgement)

Step 1: Compare the two responses to the instruction
- The instruction asks if people are required to stop and requests an explanation.

Step 2: Assess Response A
- Response A indicates that people should stop due to the presence of a stop sign. However, it doesn’t consider the fact that the sign
is pressed against the bus, and the LED lights are off.

Step 3: Assess Response B
- Response B simply says "yes," acknowledging that people should stop, but it doesn’t provide the explanation required by the
instruction.

Step 4: Compare specificity, fluency, and other factors
- Response A is more specific and fluent but misconstrues the image description.
- Response B is accurate in that it acknowledges the stop sign but lacks an explanation.

Overall, since neither response is fully correct, it is difficult to declare a better response. However, given the fact that Response B
acknowledges the prominent stop sign, I would say that Response B is slightly better, but it should also explain how the situation
indicates that people should stop.
Please extract the final answer from the above text.

assistant (machine generated; used to derive the prediction)

Final Answer: Response B is slightly better, but it should also explain how the situation indicates that people should stop.

Example Two: GPT-4 refuses to answer.

user (GPT-4’s raw pairwise judgement)

Step 1: Consider the image context, which states that the original thirteen colonies are shown with New Hampshire specifically
highlighted in a darker green.

Step 2: Assess the accuracy of Response A, which claims that the colony shown is "Virginia." This is not accurate since the image
context indicates New Hampshire being highlighted.

Step 3: Assess the accuracy of Response B, which claims that the colony shown is the Massachusetts Bay Colony. This response is
also not accurate, as the image context states New Hampshire is the highlighted colony.

Step 4: In terms of accuracy, both responses are incorrect. Neither response is consistent with the image context.

Step 5: Consider other factors like fluency and specificity. Both responses seem fluent and specific in nature.

After considering these factors, none of the responses are accurate given the information provided in the image context. However, I
am unable to provide an "Overall, Response X is better." judgement in this case as both responses are incorrect and neither stands
out as being better than the other.

Please extract the final answer from the above text.

assistant (machine generated; used to derive the prediction)

Final Answer: Unknown.

Figure 18: The prompt we use to extract answers from ill-formatted GPT-4 [7] responses, along with
two example outputs. In one case, GPT-4’s pairwise judgement is given, but in a format different than
requested. In the other case, GPT-4 “defies" the prompt, and refuses to issue a judgement because
both options are bad.
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