
A Framework of CWAEE

For a better understanding of our method, we give the framework of CWAEE. We use the outputs of
the one-vs-rest classifiers to detect known and unknown classes in unlabeled data. Each unlabeled
sample ui ∈ Du is passed through the network and gets its calibrated score p̃c

i , c ∈ Cl on each
one-vs-rest classifier, which indicates the probability that it belongs to this class. Each sample
and its scores are appended to corresponding queues according to the maximum score of all |Cl|
scores, i.e. sample ui is appended to qj , where j = argmaxc (p̃

c
i ), and |Cl| is the number of known

classes. Then, the class-wise adaptive threshold is calculated with a two-component beta mixture
model (BMM) which models the score distributions of known classes and unknown classes in an
unsupervised way. The adaptive thresholds for known classes δjknw (the large one) and unknown
classes δjunk (the small one) are set as the mean values of two fitted beta distributions. The unlabeled
sample ui can be determined whether belongs to a known class, an unknown class, or null according
to Section 3.1 in the main text. The entire process is summarized in Figure 5.
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Figure 5: The process of detecting known and unknown classes.
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Figure 6: The process of improving target domain generalization.

For Domain Generalization, it is important to exploit the inter-domain information which includes
domain-dependent styles and domain-invariant semantics. The amplitude component of the Fourier
spectrum contains the styles of the samples, while the phase component of the Fourier spectrum
preserves the semantics of the samples [1, 2], so we can disentangle styles and semantics with Fourier
Transform (FT) and get augmented samples with amplitude component mixing and Inverse Fourier
Transform (IFT) to enrich the inter-domain information. The consistency regularization loss between
the original unlabeled samples and the augmented ones is minimized to push the model to pay
attention to the high-level semantics of the samples. The process is summarized in Figure 6.

B Details of the Experiment

B.1 Datasets

We conduct experiments on PACS [3], OfficeHome [4] and miniDomainNet [5] datasets. For each
dataset, we split the original label set into known classes, seen unknown classes and unseen unknown
classes in alphabetical order of the class name, as shown in Table 5.
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Table 5: The splits of used datasets.

Dataset Known Classes Seen Unknown Classes Unseen Unknown Classes

PACS [3] Dog, Elephant, Giraffe Guitar, Horse House, Person
OfficeHome [4] Alarm Clock, Backpack, Batter-

ies, Bed, Bike, Bottle, Bucket,
Calculator, Calendar, Candles,
Chair, Clipboards, Computer,
Couch, Curtains, Desk Lamp,
Drill, Eraser, Exit Sign, Fan,
File Cabinet, Flipflops, Flowers,
Folder, Fork

Glasses, Hammer, Helmet, Ket-
tle, Keyboard, Knives, Lamp
Shade, Laptop, Marker, Monitor,
Mop, Mouse, Mug, Notebook,
Oven, Pan, Paper Clip, Pen, Pen-
cil, Postit Notes

Printer, Push Pin, Radio, Refrig-
erator, Ruler, Scissors, Screw-
driver, Shelf, Sink, Sneakers,
Soda, Speaker, Spoon, Table,
Telephone, ToothBrush, Toys,
Trash Can, TV, Webcam

miniDomainNet [5] Aircraft Carrier, Alarm Clock,
Ant, Anvil, Asparagus, Axe, Ba-
nana, Basket, Bathtub, Bear, Bee,
Bird, Blackberry, Blueberry, Bot-
tlecap, Broccoli, Bus, Butterfly,
Cactus, Cake, Calculator, Camel,
Camera, Candle, Cannon, Canoe,
Carrot, Castle, Cat, Ceiling Fan,
Cell Phone, Cello, Chair, Chan-
delier, Coffee Cup, Compass,
Computer, Cow, Crab, Crocodile,
Cruise Ship, Dog

Dolphin, Dragon, Drums, Duck,
Dumbbell, Elephant, Eyeglasses,
Feather, Fence, Fish, Flamingo,
Flower, Foot, Fork, Frog, Gi-
raffe, Goatee, Grapes, Guitar,
Hammer, Helicopter, Helmet,
Horse, Kangaroo, Lantern, Lap-
top, Leaf, Lion, Lipstick, Lobster,
Microphone, Monkey, Mosquito,
Mouse, Mug, Mushroom, Onion,
Panda, Peanut, Pear, Peas, Pencil

Penguin, Pig, Pillow, Pineapple,
Potato, Power Outlet, Purse, Rab-
bit, Raccoon, Rhinoceros, Rifle,
Saxophone, Screwdriver, Sea Tur-
tle, See Saw, Sheep, Shoe, Skate-
board, Snake, Speedboat, Spider,
Squirrel, Strawberry, Streetlight,
String Bean, Submarine, Swan,
Table, Teapot, Teddy-Bear, Tele-
vision, The Eiffel Tower, The
Great Wall Of China, Tiger, Toe,
Train, Truck, Umbrella, Vase,
Watermelon, Whale, Zebra

We resize each image to 224*224. The weak augmentation includes random flip and random
translation, while the strong augmentation includes random flip, RandAugment [6], Cutout [7] and
AdaIN [8].

B.2 Implementation Details

Hyper-parameters. Unless otherwise noted, the same value is used for all datasets.

• The CNN backbone, ImageNet-pretrained ResNet-18 [9].
• The linear classifier, stochastic classifier [10].
• The batch-size is set to 16 per source domain, both for labeled data and unlabeled data.
• The learning rate is set to 0.003 for the pretrained backbone and 0.01 for the randomly

initialized linear classifier. They decay following the cosine annealing rule.
• The optimizer is SGD with momentum = 0.9, and weight_decay = 5e-4.
• The running epochs are 40, 20 and 20 (counted by unlabeled dataset) for PACS, OfficeHome

and miniDomainNet respectively.
• The warm-up epoch is 5 (counted by labeled dataset).
• The trade-off parameter λ1 = 1.0 on PACS, λ1 = 0.4 on OfficeHome and λ1 = 0.1 on

miniDomainNet.
• Trade-off parameters λ2 = 0.4, λ3 = 1.0.
• The queue length is set to 300 for each known class.

Train-Validate-Test Split. We use the official train-validate split of each dataset for validation, and
labeled samples are randomly sampled from the training split. All samples of the target domain are
used as test data.

We run all experiments on 8 Nvidia A6000 GPUs.

C Additional Experimental Results

C.1 Sensitivity to Hyper-parameters

We test the sensitivity of hyper-parameters λ1, λ2, and λ3 on OfficeHome. For each hyper-parameter,
we vary it from 0 to 1 while keeping others fixed with default values. The results are shown in Figure
7. With the increase of λ1, more unlabeled samples will be detected as known classes. At first,
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samples belonging to known classes will be selected correctly, then more and more unknown class
samples will be selected, thus the accuracy and AUROC will first increase and then decrease. With
the increase of λ2, more unlabeled samples will be detected as unknown classes, thus the accuracy
will be harmed when known class samples are detected as unknown classes. With the increase of
λ3, both the accuracy and AUROC increase to saturation. In summary, the performance is stable
near the default values of the hyper-parameters, and will degrade if any loss term is not employed
(i.e. weight = 0). We recommend setting λ1 = 1.0, λ2 = 0.4, and λ3 = 1.0 as the starting point of
hyper-parameters searching.
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Figure 7: The accuracy (a, b, c) and AUROC (d, e, f) sensitivity with respect to the hyper-parameters
λ1, λ2, λ3 on OfficeHome.

C.2 Results with Standard Deviations

The results with standard deviations of Table 1 in the main text are summarized in Tables 6 and 7
respectively. The results with standard deviations of Table 2 in the main text are summarized in Table
8. The results with standard deviations of Table 4 in the main text are summarized in Table 9.

C.3 Results without Pre-trained Model

It is a common practice to use ImageNet-pretrained model as the backbone network and train the
model for a few epochs on the training datasets in Domain Generalization [12, 1, 10]. We follow the
training setting of the seminal work [10] to use the ImageNet-pretrained model . In order to study
the effects of the pretrained model on the performance of the proposed method, we train the model
from scratch with the compared methods and ours. The results on OfficeHome with 25:20:20 (known
classes, seen unknown classes and unseen unknown classes) are summarized in Tables 10 and 11.
It can be found that our method outperforms compared methods at most cases when the model is
trained from scratch. Although the unknown classes AUROC of OpenMatch [14] is better than ours
on Clipart, our method significantly outperforms OpenMatch [14] on other domains (Art, Product
and Real-World).

C.4 Results on Additional Benchmarks

In order to verify the effectiveness of the proposed method on more challenging datasets, we conduct
the experiments on the FMoW dataset from the WILDS benchmark [15]. It is a satellite image
classification task that has 62 classes and 80 domains (16 years × 5 regions). In particular, the
input x is a RGB satellite image of size 224 × 224, the label y is one of the 62 building or land use
categories, and the domain d represents the year that the image was taken as well as its corresponding
geographical region (Africa, the Americas, Oceania, Asia, or Europe). The train/test/validation splits
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Table 6: Leave-one-domain-out results of known classes accuracy on PACS, OfficeHome and
miniDomainNet.

PACS
Target Domain Art Cartoon Photo Sketch Average

DeepAll 62.96±2.28 53.41±9.79 79.17±8.28 48.60±6.33 61.03±3.54
UDG [11] 42.98±4.43 46.92±7.55 58.75±8.55 38.82±8.76 46.87±4.22
DAML [12] 42.07±6.54 57.74±6.95 42.87±4.93 45.29±0.90 46.99±4.05
FixMatch [13] 81.32±4.18 61.85±4.96 85.63±7.21 76.39±4.09 76.30±0.76
OpenMatch [14] 83.28±1.73 75.39±4.15 91.45±2.93 58.05±11.33 77.04±1.75
StyleMatch [10] 82.66±3.44 71.95±3.74 90.81±2.24 77.34±5.39 80.69±0.77

CWAEE 87.08±0.06 76.65±6.46 93.19±1.55 79.87±2.28 84.20±2.01

OfficeHome
Target Domain Art Clipart Product Real-World Average

DeepAll 61.95±0.41 50.80±1.58 75.23±0.79 84.55±1.73 68.13±0.88
UDG [11] 52.25±2.98 41.97±2.13 63.64±1.50 72.24±1.67 57.52±1.22
DAML [12] 45.73±2.62 43.98±6.43 58.50±3.88 64.46±6.39 53.17±0.71
FixMatch [13] 65.25±1.89 59.32±3.00 73.31±1.58 82.35±0.14 70.06±1.22
OpenMatch [14] 64.95±0.37 55.82±0.31 75.20±0.25 81.76±0.50 69.43±0.18
StyleMatch [10] 67.83±0.55 63.02±1.50 75.46±0.40 84.79±0.51 72.77±0.58

CWAEE 70.55±0.92 64.00±0.72 76.22±1.05 86.60±0.96 74.34±0.35

miniDomainNet
Target Domain Clipart Painting Real Sketch Average

DeepAll 52.58±1.52 52.13±0.71 66.10±1.88 44.15±2.27 53.74±1.23
UDG [11] 56.30±1.44 49.51±1.81 61.70±2.63 36.99±1.40 51.12±1.37
DAML [12] 56.16±4.18 50.32±0.89 57.23±1.05 46.52±3.60 52.55±1.51
FixMatch [13] 57.91±0.71 59.71±0.50 65.63±0.80 64.78±1.14 62.01±0.64
OpenMatch [14] 64.53±1.41 61.55±1.00 70.61±0.87 61.40±1.29 64.52±0.38
StyleMatch [10] 62.42±1.91 61.23±0.36 66.02±0.93 65.44±0.65 63.77±0.60

CWAEE 66.68±0.98 65.65±1.20 69.86±0.22 66.36±1.17 67.14±0.17

are based on the time when the images are taken. Specifically, images taken before 2013 are used as
the training set. Images taken between 2013 and 2015 are used as the validation set. Images taken
after 2015 are used for testing. We split the original label set into 42:20:20 (known classes, seen
unknown classes and unseen unknown classes) in alphabetical order of the class name. 15 labeled
samples of each known class are randomly sampled to construct the labeled data, and the remaining
samples of known classes and seen unknown classes construct the unlabeled data. We follow the setup
of [16] which uses ImageNet-pretrained DenseNet121 [17] and Adam [18] optimizer, sets learning
rate as 1e-4, weight_decay as 0, batch-size as 32, and trains 5 epochs. We set λ1 = 0.2, λ2 = 0.4,
λ3 = 0.25 in our method. We compare our method with existing methods except DAML [12] which
is out of memory since it requires to train one model on each domain. The results are summarized in
Table 12. It can be found that our method outperforms compared methods in this benchmark.

C.5 Training Epochs

We follow the training setting of the seminal work [10] of SSDG for a fair comparison, which sets
running epochs as 40, 20 and 20 for PACS, OfficeHome and miniDomainNet respectively. In order
to study the effects of training epochs on the performance of the proposed method and compared
methods. We extend the training epochs to 40 on OfficeHome and conduct the experiments. The
results are shown in Figure 8. It can be found that the performance of all methods does not change
much after 20 epochs, and our method keeps outperforming others.
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Table 7: Leave-one-domain-out results of unknown classes AUROC on PACS, OfficeHome and
miniDomainNet.

PACS
Target Domain Art Cartoon Photo Sketch Average

DeepAll 60.06±2.06 58.15±1.33 71.26±11.47 50.16±2.98 59.91±4.23
UDG [11] 49.83±3.46 48.52±4.71 57.28±9.62 45.21±2.41 50.21±2.26
DAML [12] 50.27±3.81 54.80±2.25 54.00±5.63 47.20±6.37 51.57±1.34
FixMatch [13] 68.67±2.68 56.34±3.82 64.87±5.40 48.01±3.66 59.47±0.76
OpenMatch [14] 68.97±3.27 66.60±5.89 68.37±6.35 47.42±6.75 62.84±4.01
StyleMatch [10] 63.35±3.65 56.86±3.12 67.40±4.31 43.33±0.61 57.73±2.61

CWAEE 81.21±1.59 72.88±4.01 80.30±3.81 82.46±1.35 79.21±1.33

OfficeHome
Target Domain Art Clipart Product Real-World Average

DeepAll 69.97±0.30 60.96±1.04 71.38±1.47 76.63±2.04 69.73±1.01
UDG [11] 60.71±1.40 55.58±1.94 64.74±0.40 65.90±0.96 61.73±0.42
DAML [12] 62.96±3.40 55.46±2.63 67.09±1.69 67.75±3.12 63.31±0.46
FixMatch [13] 67.60±0.61 62.18±0.19 67.72±0.33 73.16±0.52 67.67±0.21
OpenMatch [14] 69.27±0.45 61.60±0.92 72.93±1.68 75.71±0.90 69.90±0.34
StyleMatch [10] 67.40±0.54 60.15±1.51 69.16±1.63 74.44±1.06 67.79±0.86

CWAEE 75.85±0.99 66.57±2.98 76.56±1.97 81.82±1.94 75.20±0.74

miniDomainNet
Target Domain Clipart Painting Real Sketch Average

DeepAll 66.31±2.09 62.96±0.20 73.17±0.88 64.90±0.34 66.83±0.56
UDG [11] 68.49±1.01 61.47±1.03 70.21±0.50 57.25±0.49 64.36±0.18
DAML [12] 67.16±1.86 65.62±0.21 69.14±0.28 65.15±2.26 66.77±0.87
FixMatch [13] 62.83±0.99 62.37±0.83 63.58±0.31 64.90±0.38 63.42±0.57
OpenMatch [14] 72.70±2.23 69.80±0.75 74.87±0.25 71.30±0.62 72.17±0.72
StyleMatch [10] 63.63±1.30 62.21±0.78 62.58±0.12 63.46±0.97 62.97±0.31

CWAEE 73.38±0.71 73.07±0.95 75.98±0.92 74.96±0.52 74.35±0.43

Table 8: Leave-one-domain-out average AUROC of seen (left of the slash) and unseen unknown
classes (right of the slash) on PACS, OfficeHome and miniDomainNet.

Dataset PACS OfficeHome miniDomainNet

DeepAll 58.28±5.18 / 60.89±4.73 68.48±1.58 / 71.04±0.47 69.21±0.58 / 67.89±0.78
UDG [11] 50.73±0.37 / 49.08±3.30 63.35±0.71 / 60.07±0.49 64.26±0.37 / 64.33±0.21
DAML [12] 50.45±1.14 / 52.94±7.19 62.21±0.67 / 64.46±0.81 67.20±1.05 / 66.36±0.76
FixMatch [13] 53.84±1.79 / 67.87±1.62 64.05±0.61 / 71.39±0.38 58.56±0.71 / 67.45±0.49
OpenMatch [14] 55.61±6.70 / 73.73±1.52 68.12±0.91 / 71.72±0.19 72.86±0.90 / 71.55±0.61
StyleMatch [10] 49.77±2.54 / 68.91±4.28 63.46±1.34 / 72.27±0.38 56.57±0.64 / 68.31±0.06

CWAEE 84.09±0.43 / 74.53±2.29 74.57±1.06 / 75.87±0.55 76.81±0.30 / 72.31±0.53

Table 9: Leave-one-domain-out average known classes accuracy (left of the slash) and unknown
classes AUROC (right of the slash) on OfficeHome with different numbers of labeled samples.

# Labels 5 10 20

DeepAll 62.87±1.21 / 67.77±1.39 68.13±0.88 / 69.73±1.01 72.17±0.57 / 70.83±0.45
UDG [11] 47.02±0.90 / 55.68±0.51 57.52±1.22 / 61.73±0.42 65.31±0.50 / 67.66±0.29
DAML [12] 52.67±0.68 / 64.15±0.99 53.17±0.71 / 63.31±0.46 50.95±2.53 / 63.07±0.33
FixMatch [13] 66.90±0.75 / 64.29±0.85 70.06±1.22 / 67.67±0.21 71.92±0.61 / 70.21±0.73
OpenMatch [14] 66.24±0.99 / 69.81±0.20 69.43±0.18 / 69.90±0.34 70.14±0.73 / 69.81±0.41
StyleMatch [10] 70.16±0.53 / 63.57±1.46 72.77±0.58 / 67.79±0.86 75.36±0.35 / 70.45±0.21

CWAEE 71.24±0.43 / 73.23±0.60 74.34±0.35 / 75.20±0.74 76.09±0.36 / 73.96±0.57
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Table 10: Leave-one-domain-out results of known classes accuracy on OfficeHome without pre-
trained model.

Target Domain Art Clipart Product Real-World Average

DeepAll 17.17±1.35 16.47±1.73 25.51±1.93 26.06±1.82 21.30±1.19
UDG [11] 16.25±3.50 13.41±2.16 24.20±0.73 23.34±2.40 19.30±1.51
DAML [12] 25.31±1.52 25.25±0.54 37.23±3.98 35.28±2.34 30.77±1.68
FixMatch [13] 34.28±1.47 33.89±3.18 44.22±2.32 46.16±2.81 39.63±1.30
OpenMatch [14] 26.32±1.49 22.80±2.91 32.73±0.89 34.74±0.92 29.15±0.91
StyleMatch [10] 37.00±0.96 35.76±1.70 45.08±0.76 48.22±1.37 41.51±1.03

CWAEE 37.83±0.47 35.58±1.86 46.61±2.10 51.64±1.99 42.91±0.79

Table 11: Leave-one-domain-out results of unknown classes AUROC on OfficeHome without pre-
trained model.

Target Domain Art Clipart Product Real-World Average

DeepAll 52.62±1.15 50.88±0.12 56.63±1.01 54.61±0.82 53.68±0.55
UDG [11] 50.83±1.92 52.74±2.32 59.67±1.24 54.03±2.81 54.32±1.99
DAML [12] 55.31±0.46 51.81±0.61 59.57±2.43 58.14±1.57 56.21±1.07
FixMatch [13] 57.08±0.51 53.57±0.76 60.80±0.97 57.43±1.10 57.22±0.28
OpenMatch [14] 57.00±2.37 54.10±0.43 58.52±2.05 57.61±0.32 56.81±0.51
StyleMatch [10] 57.74±1.79 50.98±1.94 58.51±1.75 57.63±1.20 56.22±0.43

CWAEE 65.17±1.08 49.67±1.28 65.92±0.35 61.40±1.55 60.54±0.68

Table 12: Results of known classes accuracy and unknown classes AUROC on FMoW.

Accuracy AUROC

DeepAll 17.36±1.89 50.08±0.84
UDG [11] 13.58±1.59 51.10±1.38
FixMatch [13] 18.22±1.69 51.15±2.06
OpenMatch [14] 6.55±3.87 49.58±1.66
StyleMatch [10] 17.61±6.39 49.75±2.07

CWAEE 19.43±4.97 52.58±2.67

0 10 20 30 40
Epoch

30

40

50

60

70

Ac
cu

ra
cy

DeepAll
UDG
DAML
FixMatch

OpenMatch
StyleMatch
Ours

(a) Accuracy

0 10 20 30 40
Epoch

45

50

55

60

65

70

75

AU
RO

C

DeepAll
UDG
DAML
FixMatch

OpenMatch
StyleMatch
Ours

(b) AUROC

Figure 8: Leave-one-domain-out average known classes accuracy (a) and unknown classes AUROC
(b) with respect to the training epochs on OfficeHome.
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