
A Proofs

A.1 Proof of Proposition 1

The difference between the logarithm of the backward and forward proposals of preconditioned
MALA, i.e. the quantity log q(xn|yn) − log q(yn|xn) can be written (ignoring the normalizing
constants of the Gaussians which trivially cancel out) as,
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Observe that the term 1
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⊤A−1(xn − yn) cancels out since it appears twice with opposite
sign. The remaining terms after some simple algebra simplify as
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= h(xn, yn)− h(yn, xn) (19)

which completes the proof.

A.2 Proof of Proposition 2

We assume xt ∼ π(xt). Then by taking the expectation of the r.h.s. of Eq. (4) (where the expectation
is taken w.r.t. xt and the independent Brownian motion increment Bt+δ − Bt ∼ N (0, δId)) and
noting that Eπ(xt)[∇ log π(xt)] = 0 and E[Bt+δ − Bt] = 0 we conclude that E[xt+δ − xt] = 0.
Then the covariance is
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covariance terms are zero.

A.3 Proof of Proposition 3

The expected squared jumped distance is written as

J(δ, A) = tr
(
δ2
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)
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tr(AIA) + δc,

where we used the constraint tr(A) = c. Since c is just a constant to minimize J(δ, A) is the same as
minimizing tr(AIA), a quadratic convex loss since I is positive definite, under the constraint that A
is symmetric positive definite matrix and tr(A) = c. To deal with the equality constraint we consider
the Lagrangian

tr(AIA)− λ(tr(A)− c).

By taking derivatives wrt the matrix A (using the matrix derivative identities ∂
∂X tr(XBX) =

X⊤B⊤ +B⊤X⊤ and ∂
∂X tr(X) = Id for arbitrary d× d square matrices X,B) and setting to zero

we see that A must satisfy the linear equation

A⊤I + IA⊤ = λId,
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where we used that I is a symmetric matrix. This is a set of linear equations and given that each
eigenvalue µi of I satisfies 0 < µi <∞, so that I is invertible, there is an unique solution given by
A = (1/2)λI−1. The Lagrange multiplier λ is chosen so that tr(A) = c which leads to the optimal
A∗

A∗ =
c∑d
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1
µi

I−1.

Note that A∗ turned out to be symmetric and positive definite as desired. For this A∗ the optimal loss
value is tr(A∗IA∗) = c2∑
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1
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, for which we further need to disambiguate whether this is the global

minimum or maximum. We can do this by choosing a different matrix that satisfies the constraint
tr(A) = c and compare its loss with the optimal loss c2∑d
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. For example, one such matrix is
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This shows that A∗ achieves the global minimum which completes the proof.

A.4 Proof of Proposition 4

We first state and prove the following intermediate result.
Lemma 1. Suppose the positive definite matrix Id − zz⊤ where z ∈ Rd and z⊤z ≤ 1. Then, a
square root matrix R, satisfying RR⊤ = A, has the form R = Id − rzz⊤ where r = 1

1+
√

1−z⊤z
.

Proof. We hypothesize that R has the form Id−rzz⊤ for some scalar r. Then since RR⊤ = Id−zz⊤
we see that r must satisfy the quadratic equation r2z⊤z − 2r + 1 = 0, which has two real solutions
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To prove the proposition we need to find a square root matrix R1 of A1 = 1
λ
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Similarly by applying again Lemma 1 we can find Rn for any n > 1.

The computation of Rn costs O(d2) per iteration. Firstly, the vector ϕn = R⊤
n−1sn is computed

which is a matrix-vector multiplication. The next step is to compute the scalar rn in O(d) (involving
the dot product ϕ⊤

n ϕn) and then the scaled vector ϕ′
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ϕn also an O(d) operation. Then
we need two additional O(d2) multiplication operations to obtain firstly the vector tn = Rn−1ϕn

and secondly the outer vector product tn(ϕ′
n)

⊤. Finally, the update is Rn = Rn−1 − tn(ϕ
′
n)

⊤ which
requires a final O(d2) addition operation of two matrices which is typically cheaper than O(d2)
multiplication. Therefore, overall the cost is O(d2).

B Generalizing the recursion over arbitrary learning rate sequences

Suppose we have a sequence of learning rates γ1, γ2, . . . ,. Then a stochastic approximation of the
Fisher matrix I takes the form
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where the sequence is initialized at I1 = s1s
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which is initialized at A1 = 1
λ

(
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)
for which the square root R1 is the same as for the

standard learning rate γn = 1/n. The square root recursion for n > 1 takes the form
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C FisherMALA with paired mean and covariance stochastic approximation

Here, we derive a recursion for the empirical Fisher that centers the score function vectors using the
standard procedure by recursively estimating also the mean. We start from the following consistent
estimator of the inverse Fisher:

An =

(
1

n− 1

n∑
i=1

(si − s̄n)(si − s̄n)
⊤ +

λ

n− 1
Id

)−1

,

where s̄n = 1
n

∑n
i=1 si. This follows the recursion

An =

(
n− 2

n− 1
A−1

n−1 +
1

n
δnδ

⊤
n

)−1

=
n− 1

n− 2
An−1 −

(n− 1)2

(n− 2)2
An−1δnδ

⊤
n An−1

n+ n−1
n−2δ

⊤
n An−1δn

=
1

λn−1

(
An−1 −

An−1δnδ
⊤
n An−1

nλn−1 + δ⊤n An−1δn

)
.

Here, δn = sn− s̄n−1 and we defined the sequence of scalars λn = n−1
n , for n ≥ 2 while the starting

point of this sequence n = 1 we define it to be equal to the parameter parameter λ, i.e. λ1 = λ > 0.
The recursion starts at A2 given by
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where δ2 = s2 − s1. Along with the above we recursively estimate also the mean vector (for n ≥ 1):
s̄n = n−1
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Then we can recognize the square root recursion as
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D Initialization of AdaMALA

To initialize AdaMALA we first perform n0 = 500 iterations with simple MALA where we adapt the
step size parameter σ2. Thus, this part of the initialization is exactly the same used by FisherMALA.
However, for AdaMALA we do an additional set of n0 = 500 iterations where simple MALA still
runs and collects samples which are used to sequentially update the empirical covariance matrix
Σn. The purpose of this second phase is to play the role of "warm-up" and provide a reasonable
initialization for Σn. After the second phase (so in total 1000 iterations) AdaMALA starts running
having as a preconditioner Σn, which keeps adapted in every iteration until the last burn-in iteration.
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E Additional results

E.1 The step size σ2 is maximized when preconditioning becomes effective

To experimentally backup our claims in Section 3 that the discretization step size, denoted there by δ
or σ2, gets large when the preconditioner is selected efficiently, in Figure 4 we report the final learned
values (after burn-in adaptation iterations) of σ2 for MALA, AdaMALA and FisherMALA. For all
these three algorithms the values of σ2 are comparable because all use an overall preconditioning of
the form σ2

1
d tr(A)

A and only the matrix A is changing among them. For example, simple MALA sets
this matrix to A = Id, while AdaMALA and FisherMALA use their own procedures to learn more
complex matrices. Figure 4 shows the estimated σ2, for the four datasets reported in the main text
in Table 1. This shows that FisherMALA achieves significantly larger σ2 in all cases, which can be
orders of magnitude larger than the two other algorithms (note the y axis in Figure 4 is in log scale).

GP target Pima Indian

Caravan MNIST

Figure 4: It shows the estimated values of σ2 for MALA, AdaMALA and FisherMALA using
boxplots (each computed from the 10 random repeats; see Table 1) for the four datasets presented in
Table 1. For better visibility the y axis is shown in log scale.

E.2 Additional plots and tables

Figure 5 and 6 display additional visualizations for the 2-D Gaussian and the GP target experiments.
Tables 2-6 provide the ESS scores for the inhomogeneous Gaussian target and all remaining Bayesian
logistic regression datasets, that were not included in the main paper. Bold font in the "Min ESS"
entry in the tables indicates statistical significance. Similarly, Figures 7-14 show the log target values
across iterations for the four best samplers, i.e. excluding simple MALA which is the least performing
method.

E.3 The effect of Raoblackwellization and comparison with paired stochastic estimation

Finally, we compare three versions of FisherMALA: (i) The one that uses the Raoblackwellized signal
sδn from Eq. (16), which is our main proposed method used in the main paper and all previous results
(in this section we will denote this as FisherMALA-with-RB), (ii) the one that uses the initial score
function difference from Eq. (15) (FisherMALA-no-RB) and (iii) and FisherMALA with paired mean
and covariance stochastic estimation (FisherMALA-paired-est) as descibed in Appendix C. Table
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Table 2: ESS scores for the inhomogeneous Gaussian target.
Max ESS Median ESS Min ESS

MALA 13695.291± 1369.515 9.793± 0.655 2.943± 0.130
AdaMALA 4310.690± 606.618 70.802± 14.912 9.225± 3.272
HMC 19362.103± 1372.400 381.205± 101.781 42.033± 33.080
mMALA 2354.354± 65.835 2014.801± 23.713 1490.119± 108.745
FisherMALA 2347.340± 70.234 2002.579± 30.001 1500.983± 67.087

Table 3: ESS scores for the Heart dataset.
Max ESS Median ESS Min ESS

MALA 68.774± 25.304 5.354± 1.056 2.898± 0.104
AdaMALA 208.636± 124.762 14.762± 9.134 3.781± 0.731
HMC 387.321± 311.673 12.991± 4.009 4.064± 1.120
mMALA 878.858± 1079.674 789.356± 969.806 651.793± 806.477
FisherMALA 4864.278± 103.277 4474.288± 102.029 3954.793± 199.832

Table 4: ESS scores for the German Credit dataset.
Max ESS Median ESS Min ESS

MALA 262.206± 211.839 5.932± 0.668 2.972± 0.212
AdaMALA 223.592± 111.914 16.111± 5.058 3.774± 0.653
HMC 10439.824± 9572.157 45.872± 7.823 5.431± 1.257
mMALA 3066.605± 100.768 2767.022± 94.222 2342.902± 112.610
FisherMALA 3951.807± 78.858 3582.184± 90.551 3011.483± 258.154

Table 5: ESS scores for the Australian Credit dataset.
Max ESS Median ESS Min ESS

MALA 15.627± 12.892 3.823± 1.166 2.611± 0.538
AdaMALA 1525.373± 1600.986 6.986± 3.200 3.297± 0.456
HMC 1282.235± 932.038 6.966± 1.249 2.856± 0.095
mMALA 2609.462± 881.967 2308.175± 776.872 1869.364± 630.880
FisherMALA 4732.724± 116.074 4361.969± 104.750 3772.086± 265.170

Table 6: ESS scores for the Ripley dataset.
Max ESS Median ESS Min ESS

MALA 2058.325± 180.839 496.981± 68.029 427.492± 60.006
AdaMALA 9678.793± 384.295 9497.814± 463.059 9272.026± 412.361
HMC 18403.796± 3202.136 18254.161± 3513.550 7644.709± 2288.559
mMALA 9333.633± 280.238 8941.579± 288.223 8655.640± 396.106
FisherMALA 9875.968± 218.801 9673.009± 280.759 9244.631± 559.137
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(a) (b) (c)

Figure 5: Panel (a) shows the true covariance of the 2-D Gaussian. Panel (b) shows the estimated
covariance by FisherMALA (dashed green line), where for comparison the true covariance is also
shown in blue. Panel (c) shows the estimated covariance by AdaMALA (dashed red line).

Figure 6: The covariance matrices for the GP target, where in the right panel is the covariance
estimated by AdaMALA which was not displayed in Figure 1 in the main text.

7 compares the three versions of FisherMALA in terms of ESS for all problems, which shows that
FisherMALA-paired-est is significantly worse than the other two methods that learn based on score
function increments. These two latter methods, FisherMALA-with-RB and FisherMALA-no-RB,
have similar performance without significant difference (the highest difference in terms of Min ESS
is in Pima Indians dataset, but still not statistically significant).

Figure 15 displays the Frobenius norms for FisherMALA with Raoblackwellization and FisherMALA
without Raoblackwellization in the two 100-dimensional Gaussian targets. It shows that the Raoblack-
wellized signal sδn leads to slightly faster convergence, which agrees with the theory that says that
Raoblackwellization should reduce the variance.

Finally, Table 8 reports numerical performance of the non-centered version of FisherMALA where
we learn directly from the score function vectors sn, i.e. without centering or using score function
increments. From this table we can see that FisherMALA (non-centered) performs worse than the
other FisherMALA variants, and only on Ripley dataset works equally well with the rest.

Figure 7: The evolution of the log-target across iterations in the GP target.
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Figure 8: The evolution of the log-target across iterations in the inhomogeneous Gaussian target.

Figure 9: The evolution of the log-target across iterations in Pima Indians dataset.

Figure 10: The evolution of the log-target across iterations in MNIST dataset.

Figure 11: The evolution of the log-target across iterations in German Credit dataset.

Figure 12: The evolution of the log-target across iterations in Heart dataset.
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Table 7: Comparison of ESS scores for three versions of FisherMALA: the first with Raoblackwellized
score function differences in (16), the second based on the initial adaptation signal of score function
differences from (15), and the third based on paired stochastic estimation.

Max ESS Median ESS Min ESS

GP target
FisherMALA-with-RB 2096.259± 94.751 1923.753± 95.820 1784.962± 104.440
FisherMALA-no-RB 2064.940± 87.943 1916.990± 85.208 1794.114± 103.711
FisherMALA-paired-est 1802.141± 142.784 1583.570± 109.241 1226.303± 244.752

Inhomog. Gaussian
FisherMALA-with-RB 2347.340± 70.234 2002.579± 30.001 1500.983± 67.087
FisherMALA-no-RB 2351.481± 78.894 2012.243± 30.024 1489.617± 133.619
FisherMALA-paired-est 1941.994± 106.710 1147.138± 61.591 109.160± 57.998

Heart
FisherMALA-with-RB 4864.278± 103.277 4474.288± 102.029 3954.793± 199.832
FisherMALA-no-RB 4893.063± 107.068 4455.591± 98.542 3977.741± 194.922
FisherMALA-paired-est 4804.365± 176.747 2519.187± 693.945 441.434± 386.287

German Credit
FisherMALA-with-RB 3951.807± 78.858 3582.184± 90.551 3011.483± 258.154
FisherMALA-no-RB 3979.744± 79.647 3616.894± 104.722 3031.384± 228.345
FisherMALA-paired-est 3960.773± 105.169 3097.557± 252.619 397.034± 244.768

Australian Credit
FisherMALA-with-RB 4732.724± 116.074 4361.969± 104.750 3772.086± 265.170
FisherMALA-no-RB 4711.549± 115.329 4364.347± 95.004 3790.949± 253.464
FisherMALA-paired-est 4887.606± 173.626 3603.765± 725.018 84.202± 44.750

Ripley
FisherMALA-with-RB 9875.968± 218.801 9673.009± 280.759 9244.631± 559.137
FisherMALA-no-RB 9852.895± 281.295 9679.384± 303.946 9272.040± 581.732
FisherMALA-paired-est 9869.053± 321.031 9598.430± 330.766 9217.330± 584.224

Pima Indians
FisherMALA-with-RB 6437.419± 207.548 5981.960± 156.072 5628.541± 168.425
FisherMALA-no-RB 6448.999± 199.817 5977.292± 122.852 5585.217± 160.586
FisherMALA-paired-est 6048.419± 650.262 2618.271± 889.425 788.687± 388.978

Caravan
FisherMALA-with-RB 2257.737± 45.289 1920.903± 55.821 498.016± 96.692
FisherMALA-no-RB 2241.262± 47.873 1908.045± 62.430 509.913± 115.563
FisherMALA-paired-est 1930.109± 208.848 1107.987± 83.439 87.456± 90.858

MNIST
FisherMALA-with-RB 1053.455± 35.680 811.522± 19.165 439.580± 52.800
FisherMALA-no-RB 1036.138± 32.399 803.210± 16.163 437.325± 40.040
FisherMALA-paired est 301.055± 37.597 13.819± 1.127 3.176± 0.113
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Figure 13: The evolution of the log-target across iterations in Australian Credit dataset.

Figure 14: The evolution of the log-target across iterations in Ripley dataset.

Figure 15: The effect of Raoblackwellization. Left panel shows the evolution of the Frobenius norm
in the GP target and right panel for the inhomogeneous Gaussian target.

Table 8: Performance of FisherMALA (non-centered), in a subset of the targets, which learns directly
from the score function vectors sn.

Max ESS Median ESS Min ESS

GP target
FisherMALA (non-centered) 1740.943± 157.871 518.924± 579.639 48.218± 117.349

Ripley
FisherMALA (non-centered) 9881.540± 353.377 9636.357± 313.009 9237.885± 710.741

Pima Indians
FisherMALA (non-centered) 5520.181± 1781.518 474.990± 587.788 65.313± 59.316

Caravan
FisherMALA (non-centered) 1602.723± 164.497 14.226± 4.429 3.298± 0.141

MNIST
FisherMALA (non-centered) 271.629± 22.918 22.147± 1.683 3.744± 0.139
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