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Abstract

In privacy-preserving machine learning, differentially private stochastic gradient
descent (DP-SGD) performs worse than SGD due to per-sample gradient clipping
and noise addition. A recent focus in private learning research is improving the
performance of DP-SGD on private data by incorporating priors that are learned on
real-world public data. In this work, we explore how we can improve the privacy-
utility tradeoff of DP-SGD by learning priors from images generated by random
processes and transferring these priors to private data. We propose DP-RandP,
a three-phase approach. We attain new state-of-the-art accuracy when training
from scratch on CIFAR10, CIFAR100, MedMNIST and ImageNet for a range of
privacy budgets ε ∈ [1, 8]. In particular, we improve the previous best reported
accuracy on CIFAR10 from 60.6% to 72.3% for ε = 1. Our code is available at
https://github.com/inspire-group/DP-RandP.

Figure 1: Our proposed DP training pipeline (DP-
RandP) has three distinct phases. In Phase I, we sample
images from random processes and train a feature ex-
tractor with representation learning to embed image
priors beneficial for visual tasks. In Phase II, we spend
a small privacy budget to train a linear classifier on top
of extracted features of private data. In Phase III, we
update all parameters with our remaining privacy bud-
get. We demonstrate that incorporating image priors in
Phase-I significantly improves DP training and adopting
Phase II before training the whole network in Phase III
can further improve test accuracy in DP training.
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Our DP-RandP
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Our private linear probing
De et al., 2022
Dörmann et al., 2021
Papernot et al., 2021

Figure 2: Comparing our results on CI-
FAR10 and previous state-of-the-art for
(ε, 10−5)-DP setup. Our full DP-RandP
outperforms all previous works on this
commonly benchmarked dataset and re-
duces the privacy cost needed to achieve
80% accuracy from ε = 6 to ε = 3. Even
our private linear probing from noise prior
outperforms all previous work at ε = 1 but
crucially has diminishing returns, a short-
coming that we address with our proposed
three-phase DP training framework (DP-
RandP).
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1 Introduction

Machine learning models are susceptible to a range of attacks that exploit data leakage from trained
models for objectives such as training data reconstruction and membership inference [58, 4]. Differen-
tial Privacy (DP) is the gold standard for quantifying privacy risks and providing provable guarantees
against attacks [20, 21]. DP implies that the outputs of an algorithm e.g., the final weights trained by
stochastic gradient descent (SGD) do not change much (given by the privacy budget ε) across two
neighboring datasets D and D′ that differ in a single entry.

Definition 1 (Differential Privacy) A randomized mechanism M with domain D and range R
preserves (ε, δ)-differential privacy iff for any two neighboring datasets D,D′ ∈ D and for any
subset S ⊆ R we have Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Differentially Private Stochastic Gradient Descent (DP-SGD) [59, 1] is the standard privacy-
preserving training algorithm for training neural networks on private data, with an update rule
given by w(t+1) = w(t) − ηt

|B|
(∑

i∈B
1
c clipc(∇ℓ(xi, w

(t))) + σξ
)

where the changes to SGD

are the per-sample gradient clipping clipc(∇ℓ(xi, w
(t))) = c×∇ℓ(xi,w

(t))
max(c,||∇ℓ(xi,w(t))||2)

and addition of
noise sampled from a d-dimensional Gaussian distribution ξ ∼ N (0, 1) with standard deviation σ.
DP-SGD introduces bias and variance into SGD and therefore degrades utility, creating a challenging
privacy-utility tradeoff. For example, the state-of-the-art accuracy in private training is only 60.6%
on CIFAR-10 at ε = 1 [35], while Dosovitskiy et al. [19] obtains 99.5% accuracy non-privately.

Theoretical analysis of the DP-SGD update yields that noise addition is especially harmful to
convergence at the start of training [24], and that pretraining on public data can greatly improve
convergence in this initial phase of optimization [46] by providing a better initialization [25]. Previous
works have improved the privacy-utility tradeoff of DP-SGD by pre-training on large publicly
available datasets, such as ImageNet [16], to learn visual priors [50, 49, 54, 9]. Other works assume
that a small subset of in-distribution data is publicly available [68, 2, 45, 52].

Interestingly, previous work has uncovered that synthetic data learned from random processes [44, 10,
22, 38] can be used in representation learning [30, 12, 11] to learn highly useful visual priors [39, 5].
Because there is a large distribution shift between synthetic images and natural images, training on
synthetic images does not incur any privacy cost. In this work, we leverage noise priors learned from
synthetic images to boost the performance of DP training, and make the following key contributions:

• We find that while noise priors are only marginally helpful in non-private training, we can unlock
their full potential to improve private training with a carefully calibrated training framework.

• We provide empirical evidence that priors learned from random processes become more critical
as the privacy budget decreases, because priors provide fast convergence at the start of training,
and have a much larger impact on private training than non-private training.

• We find that training a single linear layer (linear probing) on top of a pretrained feature extractor
that has learned noise priors is more robust to large amounts of noise addition than end-to-end
training of the entire network. We demonstrate this insight by linear probing with a small privacy
budget ε = 0.1 to 57.1% on CIFAR10, achieving nontrivial performance with lower privacy cost
than previous work has considered.

• We observe that while linear probing from noise prior has diminishing returns on performance as
the privacy budget increases, end-to-end training of the entire network continues to improve with
large ε but critically struggles for small privacy budgets.

• We harness our insights by proposing a privacy allocation strategy that combines the benefits of
learning from priors, linear probing, and full training into our full method DP-RandP (Visualized
in Fig. 1). Our proposed approach pretrains a feature extractor on synthetic data to learn priors
from random processes without paying privacy cost, then pays a small privacy cost for linear
probing and makes the best use of our remaining privacy budget by updating all parameters to
adapt our learned features to the private data.

• We evaluate DP-RandP against previous work and unlock new SOTA performance across CI-
FAR10, CIFAR100, MedMNIST and ImageNet across all evaluated privacy budgets ε ∈ [1, 8].
We provide a snapshot of our results in Fig. 2.

2



2 DP-RandP: Mitigating the effects of noise in DP-SGD with noise prior

Synthetic image generation without natural images. Recent progress in computer vision shows
that pretraining models on synthetic images without natural images [5, 6, 39] can learn visual priors
that are competitive to priors from natural images. The synthetic images can either be generated from
texture and fractal-like noise [6, 39], or structure priors extracted from an untrained StyleGAN [5].

Noise prior from synthetic images for private training. We consider pretraining on synthetic data,
generated by random processes [5, 6] (example images are in Fig. 3), as a noise prior in differentially
private training. We use contrastive representation learning [12, 11, 30, 64], which aims to learn
features invariant to common image transformations, to learn good visual features using synthetic
images. At a high level, rather than using a random or ‘cold’ initialization for our downstream private
dataset, we are using representation learning to obtain a ‘warm initialization’ that encodes priors
learned from random processes. Across common natural vision tasks, noise priors also ensure that
there is no privacy leakage from the pre-training data into this ‘warm initialization’.

(a) StyleGAN [5] (b) Shaders [6]
Figure 3: We use synthetic
data generated from random pro-
cesses in representation learn-
ing to learn useful image priors.
Due to the high distribution shift
from real images, we do not in-
cur privacy costs when learning
noise priors from these images.

Figure 4: Comparison of
training from a random
initialization (cold) and pre-
trained encoder on synthetic
dataset (warm) across different
privacy budgets (the x-axis is
the corresponding σ).

Figure 5: We zoom in on σ =
0, σ = 9.3 with learning rate=
0.4 and find that the improve-
ment of the warm start over cold
start is mostly due to the initial-
ization using synthetic dataset.

How much noise prior benefits private training? As an initial exploration, we obtain a warm
initialization via representation learning on synthetic images and compare it with a competitive
DP-SGD baseline [15] that uses cold (random) initialization (Fig. 4). We find that while the warm
initialization only improves performance by 2.7% when σ = 0, i.e., non-private training, the warm
initialization improves performance by 12.5% when σ = 9.3 (equivalent to ε = 1). In Fig. 5, we
zoom in on a single point of comparison between σ = 0 (dashed) and σ = 9.3 (solid) for warm
and cold initializations. We find that over the course of training, as more noise is added, both the
σ = 9.3 warm and cold initializations not only converge at the same rate (given an appropriately
small learning rate) but also diverge from the non-private runs at similar rates. Although warm and
cold start obtain different results in the private setting, the difference is mostly due to the initialization
and is therefore magnified at smaller privacy budgets.

We support this claim by drawing a connection to previous works. Ganesh et al. [25] prove the
existence of out-of-distribution public datasets that can achieve small test loss on target private
datasets. Bu et al. [8] prove that in the gradient flow setting for the NTK regime, that is, when we are
taking very small steps η → 0, noise does not impact convergence. Mehta et al. [50], Panda et al.
[54] propose scaling the learning rate η inversely with the noise σ. We combine our analysis with
these previous works by noting that if we start training from fixed initialization and set the learning
rate near-zero for small privacy budgets [50, 54], we enter the regime [8] where the noise does not
impact convergence, and achieving nontrivial performance for these small privacy budgets provides
the first empirical evidence for the theory [25] that only the initialization matters.

We gather our insights into a design goal that will enable us to achieve nontrivial performance under
strict privacy constraints. We want to encode a learned prior into our initialization and then adapt this
prior to private data. We now introduce DP-RandP, a method that achieves this key design goal.
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2.1 Three-phase differentially private training framework

We propose a three-phase DP training framework DP-RandP that has two phases after pretraining
on synthetic images, and significantly improves the performance of DP training (Fig. 1). We first
learn noise priors by training a feature extractor on synthetic data (Phase-I). We then split our private
training into 1) Learning the head classifier with frozen features (Phase-II) and 2) End-to-end training
of the entire network to co-adapt the feature extractor and head classifier (Phase-III).

Our design is motivated by the strengths and weaknesses of linear probing and end-to-end training in
the private setting. First, the ℓ2 norm of the Gaussian noise added to gradients in each DP-SGD step
scales with the number of parameters in the model. Because the head classifier typically has far fewer
parameters than the feature extractor, updating this linear layer reduces the amount of added noise.
Second, there is a large distribution shift between synthetic data from random processes and natural
images found in private datasets. Linear probing merely inherits the frozen pre-trained features, but
end-to-end training of all layers can improve the pre-trained features by adapting them to the private
dataset. Because adapting to our private dataset may require many end-to-end training steps, we
improve the convergence by first learning a task-specific linear classifier that can be trained quickly,
and then training the entire network end-to-end. DP-RandP satisfies our previously stated design goal
by first obtaining a good initialization with pretraining, then transferring the prior encoded in this
initialization to the private dataset with fast-converging linear probing, and finally end-to-end training
to adapt to the private dataset as much as possible for a given privacy budget.

We further consider the design choice of how to allocate the privacy budget for the two private
training phases (ε1 and ε2). Recall that our model is pre-trained on synthetic data in Phase I, thus it
doesn’t incur any privacy cost. In Phase II, we use DP-SGD with privacy budget ε1 to train the linear
classifier. We observe diminishing returns in accuracy with increasing ε1, so we spend a smaller
privacy budget on linear classifier training and allocate the rest to training the full network in Phase III.
Allocating a higher budget to full training does not have diminishing returns; consider that ε2 = ∞
we recover non-private accuracy. We now rigorously evaluate the performance of DP-RandP.

3 Evaluation

To outline the evaluation section we first overview our experimental setup and then evaluate the
performance of DP-RandP on CIFAR10/CIFAR100/DermaMNIST in Sec. 3.2. We find that our
method outperforms all previous works across multiple datasets, architectures, and privacy budgets.
In Sec. 3.3 we find that our principled allocation of privacy budget ε1, ε2 between linear probing
and end-to-end training is robust to different choices of ε1 and ε2. We also find that the private
linear probing is a strong computationally efficient baseline. Specifically, we provide a new SOTA on
ImageNet with private linear probing. We next provide a quantitive comparison of DP-RandP to DP
with public data. Finally we discuss the computational costs of our method and find that DP-RandP
can provide computational savings over previous methods.

3.1 Experimental setup

Learning priors from images generated by random processes with representation learning.
In Phase I we sample images from StyleGAN-oriented [5], and train a feature extractor on these
synthetic datasets with representation learning [12, 64] with the loss function proposed in Wang and
Isola [64]. Although our method can accommodate any kind of synthetic data and representation
learning method, we focus our evaluation on these datasets and methods. We consider other kinds of
synthetic data and other representation learning in Appendix A.

Datasets and models. We evaluate DP-RandP on CIFAR10/CIFAR100 [41], DermaMNIST in
MedMNIST [65, 66] and private linear probing version of DP-RandP on ImageNet [16]. For
CIFAR10/CIFAR100, we use WRN-16-4 following De et al. [15]. For MedMNIST, we use ResNet-9
following Hölzl et al. [34]. We choose WRN-16-4 and ResNet-9 because these architectures for
the corresponding datasets achieve the most compelling results in previous works [15, 34]. For
ImageNet, we use a ViT-base [19] feature extractor pretrained on Shaders-21k [6] provided by Yu
et al. [71] and train a linear classifier. We provide the results on CIFAR10, CIFAR100, DermaMNIST
in Sec. 3.2 and results on ImageNet in Sec. 3.3. We also report results of WRN-40-4 on CIFAR10 in
Appendix B.
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Implementation details. To ensure a fair comparison with previous works [15, 57, 35], we use
standard DP-SGD [1] and make use of multiple data augmentations and exponential moving average
(EMA) as proposed by De et al. [15], that are now standard techniques used in DP-SGD work [57, 35].
We allocate small privacy budget ε1 to Phase II and remaining privacy budget ε2 to Phase III according
to the strategy detailed in Sec. 3.3. We report our results across different privacy costs and use
δ = 10−5 for CIFAR10/CIFAR100/DermaMNIST by following previous works [15, 34].2 When we
report results, we report the standard deviation and accuracy averaged across 5 independent runs with
different random seeds. We report implementation details for CIFAR10/CIFAR100/DermaMNIST in
Appendix C and for ImageNet in Appendix G.

3.2 Evaluation of DP-RandP

We report the results of DP-RandP in Tab. 1, Tab. 2 and Tab. 3 for CIFAR10, CIFAR100 and
DermaMNIST datasets, respectively.

DP-RandP outperforms all previous works across all privacy budgets. In Tab. 1 we find that
DP-RandP obtains higher performance than previous works [15, 35, 61, 40, 18, 69, 55] on CIFAR10
across the standard evaluated privacy budgets ε ∈ [1, 8].

We first compare DP-RandP to De et al. [15] as our CIFAR10 model, optimizer and hyperparameters
follow De et al. [15]; the only difference is the use of Phase I and Phase II in DP-RandP to learn a
prior from synthetic data and allocate a small privacy budget to linear probing. Crucially DP-RandP
outperforms De et al. [15] by more than 15% for the important privacy budget ε = 1.

Tramèr and Boneh [61] use a ScatterNet [53] to encode invariant image priors and Hölzl et al.
[35] use equivariant CNNs [14] to learn transform invariant features. DP-RandP shares the same
intuition of leveraging invariant image priors as these works [61, 35]. Instead of leveraging model
architecture design for invariant features, we achieve this intuition by learning priors from images
generated from random processes and design our three-phase framework to optimize use of this prior.
Although DP-RandP shares this intuition of leveraging invariant image priors, DP-RandP achieves
12% improvement over previous works [61, 35] who both achieve 60% at ε = 1. Our improvement
comes both from leveraging the priors from synthetic images and our design of three learning phases
that makes the best use of priors. We provide a detailed comparison to Tramèr and Boneh [61] in
Sec. 4 where we explain why and how the feature prior we learn from synthetic data provides better
results than the feature prior provided by their architectures.

Table 1: Test accuracy (%) of DP-RandP and comparison to previous work on CIFAR10. Not shown
in this table are Klause et al. [40], Dörmann et al. [18], Papernot et al. [55], Yu et al. [69] because they
achieve 71.5% at ε = 7.5 ,70.1% at ε = 7.42, 66.2% at ε = 7.53 and 63.4% at ε = 8 respectively,
that are not on the pareto frontier of previous work.

Method ε = 1 ε = 2 ε = 3 ε = 4 ε = 6 ε = 8 ε = ∞

Tramèr and Boneh [61] 60.3 67.2 69.3 − − − 73.8∗

De et al. [15] 56.8 64.9 69.2 71.9 77.0 79.5 88.9

Hölzl et al. [35] 60.59 71.86 75.96 78.27 80.26 81.62 −

DP-RandP 72.320.22 77.250.07 79.990.21 81.880.27 84.010.23 85.260.11 91.69

CIFAR100 results. Previous work has not provided results on training from scratch for CIFAR100,
perhaps because as we find in Tab. 2 the DP-SGD baseline following De et al. [15] does not perform
well for ε = 3. We believe this to be a competitive baseline, but DP-RandP outperforms it by more
than 10% across ε ∈ [3, 8]. Although CIFAR10 and CIFAR100 are both benchmark computer vision
datasets, we find CIFAR100 to be a much more challenging task for private learning. One possible

2We run experiments for ε = ∞ with per-sample gradient clipping but without noise, because we are
interested in the ability of DP-RandP to mitigate variance. We note that there is accuracy degradation from the
non-private baseline even at ε = ∞ due to the bias introduced by per-sample gradient clipping [37]. When we
report ε = ∞ results from previous work we mark them with ∗ when previous work does not report whether the
non-private baseline uses clipping.
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explanation for this is that private classifiers struggle to distinguish between many classes because
the added noise is more likely to shift the decision boundary. We use the same hyperparameters
for CIFAR10 and CIFAR100, that are likely suboptimal for CIFAR100, and the performance gap
between ε = 8 and ε = ∞ may be mitigated if we train on CIFAR100 for longer than we do on
CIFAR10. We encourage the use of CIFAR100 as a standard benchmark for private learning in the
future because we find limited room for improvement on CIFAR10. In particular, the private and
non-private gap between ε = 8 and ε = ∞ for CIFAR10 is only ≈ 6% for DP-RandP.

Table 2: Test accuracy (%) of DP-RandP and comparison to DP-SGD baseline on CIFAR100.

Method ε = 3 ε = 4 ε = 6 ε = 8 ε = ∞

DP-SGD 30.73 34.45 39.66 44.22 66.68

DP-RandP 43.330.15 46.400.31 51.530.13 55.020.21 71.68

DermaMNIST results. We have shown that DP-RandP outperforms previous work on the standard
CV benchmarks of CIFAR10 and CIFAR100, and now consider the privacy sensitive medical dataset
DermaMNIST. Although CIFAR is a standard CV benchmark, there is limited previous work that
evaluates on privacy sensitive data in CV such as medical images. In Tab. 3 we find that DP-RandP
achieve improvements from ε = 1 to ε = 7.42 by up to 2.78% over the DP-SGD baseline that we
evaluate. Also, DP-RandP can achieve similar accuracy at ε = 4 as the result of DP-SGD at ε = 7.42,
which reduces the privacy cost from ε = 7.42 to ε = 4. We also include the results of Hölzl et al.
[34], that use equivariant neural networks [14]. DP-RandP is a uniform framework applicable to
any model architectures. We leave the systematic investigation of more model architectures, such as
equivariant neural network [14, 35] in DP-RandP, for future work.

Table 3: We follow previous work [34] and report the validation accuracy (%) of DP-RandP on
DermaMNIST. We also report the test accuracy in Appendix D.

ε ε = 1 ε = 4 ε = 7.42 ε = ∞

baseline in Hölzl et al. [34] − − 72.41 78.48∗

best in Hölzl et al. [34] − − 74.17 77.84∗

DP-SGD we evaluated 69.000.37 71.780.87 74.080.41 77.27

DP-RandP 71.780.40 74.820.55 75.910.29 79.26

We find that the prior we learn from synthetic data is applicable to standard benchmarks and medical
images. One direction for future work is to validate the robustness of this prior across more datasets.

3.3 Allocating privacy budget in DP-RandP
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Figure 6: The fraction of total privacy
budget allotted to Phase II for ε = 1.
The performance is stable across a wide
range of value [0.1, 0.4]. However, skip-
ping either Phase-II or Phase-III leads to
suboptimal test accuracy in DP training.

In this subsection we analyze the privacy budgets of Phase
II (ε1, linear probing) and Phase III (ε2, full training) and
how to allocate the overall privacy budget ε among Phase
II and Phase III. Specifically, we will present a new STOA
on ImageNet with additional designs on linear probing.

In Fig. 6 we observe that DP-RandP is robust to the key
algorithmic design choice of how much privacy budget to
allocate to Phase II and Phase III (Please check Apendix E
for more details of Fig. 6 and more results on different ε).

In particular, we find that even the worst choice of ε1/ε
provides results comparable to the previous SOTA on CI-
FAR10 at ε = 1.3 We first investigate the behavior at each
extrema and conclude a general allocation strategy that
provides good performance across CIFAR10, CIFAR100
and DermaMNIST.

3Due to computational constraints we did not calculate error bars for Fig. 6, resulting in some nonconvexity.
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Allocating the entire privacy budget to Phase II is competitive for small privacy budgets but
provides diminishing returns. This corresponds to the right extreme in Fig 6 (ε1/ε = 1) and
is equivalent to doing linear probing on top of extracted features. We follow the training recipe
in Panda et al. [54] and report the result of private linear probing in Tab. 4 for CIFAR10 and Tab. 5
for ImageNet [16] respectively (δ = 7.8 × 10−7 is by δ = 1/|Dtrain| for ImageNet). We provide
the detailed experimental set-up for CIFAR10 in Appendix F and ImageNet in Appendix G.

CIFAR10 results. We present the result of private linear probing on CIFAR10 by including more
conservative privacy constraints like ε = 0.03. Our private linear probing can achieve 57.10% at
ε = 0.1, that is comparable to the result of ε = 1 in De et al. [15] that fully trains a WRN-16-4.
Notably, previous work [61] also trains a neural network on top of the handcrafted features using an
untrained ScatterNet [53]. DP-RandP is slightly better than their result at ε = 3. We can see that our
non-private baseline (74.05%) is slightly better than the non-private baseline (73.8%) in Tramèr and
Boneh [61], that shows that our feature extractor is better than the ScatterNet and therefore improves
the performance under DP-SGD. We include a detailed comparison to Tramèr and Boneh [61] in
Sec. 4. However, this private linear probing variant of DP-RandP can only achieve 74.05% with no
noise added, that is lower than the result at ε = 4 in De et al. [15], that shows that allocating all
privacy cost to Phase II is a sub-optimal design choice.

Table 4: Test accuracy (%) of our private linear probing and
comparison to previous SOTA for private learning on top of
extracted features [61] on CIFAR10. Note that, our result is
training a linear layer on top of the extracted features. The
result of previous SOTA is by training a CNN on top of
extracted features. Tramèr and Boneh [61] also report the
private linear probing result 67.0% at ε = 3.

ε 0.03 0.1 0.2 0.5 1 2 3

SOTA - - - - 60.3 67.2 69.3

Ours 40.64 57.10 60.89 65.10 67.78 69.92 71.08
(Std.) 2.59 0.42 0.26 0.21 0.17 0.09 0.14

Table 5: Test accuracy (%) of our
private linear probing with addi-
tional designs on ImageNet.

ε 1 8

De et al. [15] - 32.4
Sander et al. [57] - 39.2

Ours (ViT) 26.54 39.39
(Std.) 0.11 0.03

ImageNet results. We achieve a new SOTA results on ImageNet. We achieve 39.39% accuracy at
ε = 8 and the previous SOTA [57] is 39.2% at ε = 8. We use a Vit-base [19] model pretrained on
Shaders-21k (the model checkpoint is provided by Yu et al. [71]). If we directly do Phase II with
extracted features, we can achieve around 33% accuracy at ε = 8, that is comparable to De et al.
[15]. The direct linear probing result shows that linear probing (Phase II only after pretrained on
synthetic data) is not enough for difficult tasks like ImageNet, and therefore updating full parameters
in Phase III is necessary. While training the full ViT model on large datasets like ImageNet needs
much computation resources (for example, Sander et al. [57] used 32 A100 GPUs), we could leverage
the core concept of DP-RandP and adapt it to a computationally efficient version, i.e., we train a
linear layer with additional modifications. We then obtain a new SOTA result of 39.39% on the
ImageNet-1k validation dataset. We now briefly explain the two main modifications of DP-RandP
to achieve 39.39%. We provide a detailed explanation in Appendix G. We emphasize that these
modifications are more for computational efficiency; if we had enough compute to do full fine-tuning
of the ViT on ImageNet with sufficiently large batch size, our original DP-RandP would still work.

Our first modification is to approximate full fine-tuning by linear probing on larger feature represen-
tations that we create by aggregating intermediate representations from the network. This is because
each block of vision transformers learns a different representation. However, linear probing only
takes the representation from the penultimate layer as input and therefore the final representation
may not be sufficient to learn the task. The representation of the input image after each block in the
ViT has both a temporal and feature dimension, so we pool over the temporal dimension to gather
a feature map of size (4, feature size). We concatenate the feature map of different blocks into a
one-dimensional vector. By doing linear probing on these much larger features, we can also take
advantage of intermediate representations.

Our second modification is to approximate the work of a LayerNorm or other normalization layer
that we would update during full fine-tuning of the entire ViT, by manually normalizing the features.
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To do this we first normalize each feature vector to a fixed norm. We next privately estimate the
mean over the entire ImageNet feature vector dataset, using the Gaussian mechanism with a small
privacy cost, and subtract the private mean from all feature vectors. This is equivalent to doing
non-private centering and then adding the same Gaussian noise to the entire dataset. This procedure
can be thought of as a one-time approximation to the normalization layer, which is known to speed
up training by centering the data.

Within the two modifications of direct linear probing, we improve upon previous SOTA [57] and
achieve 39.39% at ε = 8. This method is computationally efficient and one run can be done on a
single A100 GPU in a few hours. We also provide the result for a stronger privacy guarantee, i.e.,
26.54% at ε = 1.

Allocating the entire privacy budget to Phase III struggles for small privacy budgets. We
report DP-RandP without Phase II on CIFAR10 in Tab. 6 (equals to ε1/ε = 0 in Fig. 6). The result
in Tab. 6 is slightly worse than DP-RandP in Tab. 1 and the utility gap between Tab. 6 and Tab. 1
decreases as ε increases, that justifies the importance of Phase II in DP-RandP. Moreover, the result
of DP-RandP without Phase II is significantly better than previous SOTA [15, 35, 61], that shows that
the feature extractor pretrained on images from random process can capture the image prior.

Table 6: Fully privately training a WRN-16-4 with warm initialization. Test accuracy on CIFAR10.

ε ε = 1 ε = 2 ε = 3 ε = 4 ε = 6 ε = 8 ε = ∞

Accuracy(%) 69.030.23 75.310.28 78.440.19 80.560.12 82.900.10 84.450.09 91.69

A general privacy budget allocation strategy. We have observed that allocating the entire privacy
budget to linear probing or full training is suboptimal. We now propose a simple yet effective general
strategy to allocate the privacy budget. For small ε (ε ≪ 1), we set ε1 = ε to allocate the entire
privacy budget to Phase II. This is because allocating the entire privacy budget to linear probing
is competitive for small privacy budgets. As ε increases, we decrease ε1/ε. This is because as ε
increases, the noise multiplier will decrease. Therefore, it is easier to train the linear probing layer as
ε increases, and the percentage of total steps allocated to Phase II can be reduced to train a good linear
probing layer and we can use the remaining steps for Phase III. Because the closed-form computation
of ε with numerical privacy loss distribution accounting by Gopi et al. [27] is challenging, we
implement this strategy by using a fixed number of steps n for linear probing in CIFAR10, CIFAR100,
DermaMNIST, and increasing the number of steps in Phase III as ε increases. We present the privacy
allocation ε1/ε on CIFAR10 in Appendix E for results in Tab. 1, which validates this strategy.

3.4 In comparison to DP with public data

A major direction in improving the privacy utility trade-off for DP-SGD is by incorporating priors
that are learned on real-world public data [68, 2, 45, 52, 50, 49, 54, 56]. These priors are either from
small in-distribution data [68, 2, 45, 52] or large scale public data [50, 49, 54, 56].

Table 7: Comparison of DP-RandP with methods using public data. Test accuracy (%) on CIFAR10.
Method Model Public Data ε = 1 ε = 2 ε = 4 ε = 6 ε = 8

Nasr et al. [52] WRN-16-4 4% ID 72.10 75.10 77.9 80.0 −
Mehta et al. [50] ViT-B/16 ImageNet 95.10 95.10 95.10 − 95.20
Mehta et al. [49] ViT-G/16 JFT 98.80 98.80 98.83 − 98.84
Panda et al. [54] beitv2 ImageNet 99.00 − − − −

DP-RandP WRN-16-4 Synthetic 72.32 77.25 81.88 84.01 85.26

We present a quantitative comparison of DP-RandP and DP with public data works [54, 50, 49, 52] in
Tab. 7. Our DP-RandP is comparable with Nasr et al. [52], which in fact utilizes a limited amount of
in-distribution data as public data for pre-training. This indicates that the prior learned from images
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generated from random processes can help as much as the prior learned from limited in-distribution
public data. Compared to works [50, 49, 54] with access to large public data, there is still a gap
between our DP-RandP and these works. Note that we consider a different threat model to this line
of work where we do not have access to public data [62] and must instead make the best possible
use of images drawn from random processes. Closing the gap between leveraging synthetic data and
leveraging large-scale real public data is an interesting direction for future work.

3.5 Computational cost

DP-RandP consists of three phases. Some phases can be done in a single-run per dataset. For example,
for feature extractor in Phase I, we only need to train a single feature extractor once for each evaluated
dataset as the synthetic dataset and model architectures are the same. Also, for the private linear
probing (LP). We report the computation cost in Tab. 8 for single-run per dataset. For Phase II and
Phase III, we need to go through these processes at each run of our training process. Also, after we
get the extracted features for LP, we need to train a linear layer each time we run the experiments.
We report the computation cost in Tab. 9 for these procedures.

De et al. [15] also needs to fully train a WRN-16-4 and the major additional computation cost for
DP-RandP is Phase I compared to De et al. [15]. However, the training in Phase I is done once
for CIFAR10. Moreover, we can use the same feature extractor from Phase I for CIFAR10 and
CIFAR100.

Table 8: One-time per dataset computational
cost on CIFAR10. These procedures only need
to be done once for each evaluated dataset.
Phase I can be shared for CIFAR10 /CIFAR100.

Phase I feature extraction in LP

Time 16 h 1 min

Table 9: Computational cost on CIFAR10 for hyper-
parameters given in Appendix C. These procedures
are comparable to the standard training procedure
such as De et al. [15].

linear probing in LP Phase II Phase III

Time 1 min 12min 5.5 h

For the private linear probing experiment, each run of training a linear layer can be finished in 1
minute for CIFAR10 and 320 minutes for ImageNet while fully privately training a model costs much
more time. A single run to privately train a WRN-16-4 for CIFAR10 takes around 5.5 hours for 875
steps with 1 A100 GPU in our evaluation. Also, as reported in previous work [57], a single run for
ImageNet experiments needs to take four days using 32 A100 GPUs.

4 Discussion and related work

In this section we first provide a detailed comparison to previous work [61] that also uses priors to
improve DP-SGD image classification. We then give an overview of the broader body of work on
improving the privacy utility tradeoffs in DP-SGD. Finally we discuss the previous work [43] that
also uses the two-stage training with domain-specific data for a different reasoning.

Discussion on DP-RandP and Tramèr and Boneh [61]. Tramèr and Boneh [61] find that training
a neural network (linear layer or CNN) on top of ‘handcrafted’ ScatterNet [53] features outperforms
private ‘deep’ learning. While this method performs well for smaller values of ε, the non-private
accuracy is limited because the features cannot be adapted to the private data. There are two key
differences between DP-RandP and Tramèr and Boneh [61]. In Phase I we use representation learning
to train the feature extractor on images sampled from random processes, to learn the prior that extract
transformations-invariant features. Our feature extraction process is therefore much more general,
and while we explore the use of different synthetic data, model architectures, and representation
learning methods, there are many more methods in each of these categories that we have not explored.
The second difference is between the training on top of extracted features, that is used by Tramèr and
Boneh [61] and the private linear probing that we consider as a baseline in Fig. 2, and the combination
of linear probing and full training that we use in DP-RandP. Comparing the improvements between
DP-RandP and Tramèr and Boneh [61] confirms that our empirical improvements are mostly due
to the advantage of DP-RandP over DP linear probing. In particular, for ε = 3, exchanging the
handcrafted features of Tramèr and Boneh [61] for the pretrained feature extractor we use only
improves performance by a modest ∼ 2%. However, our full DP-RandP exhibits more than 10%
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improvement. Our innovation over Tramèr and Boneh [61] is therefore twofold: we introduce the
potential of pretraining on synthetic data for the DP community, and also provide guidance on how to
better transfer features learned from synthetic data to private training.

DP with public data. A major direction in improving the privacy utility tradeoff in DP-SGD for
image classification is the principled use of public data. Several works [68, 2, 45, 52] make use of
public data under a different threat model by treating a small fraction of the private training dataset as
public. There is also another line of work that leverages a large real-world public dataset to pretrain
models [50, 49, 54, 56].

Besides directly training image classification by DP-SGD, another direction is DP-trained generative
models. The generated images can be used for classification tasks without additional privacy costs.
Recent work [26] show that DP diffusion models can achieve high-quality images when pretrained on
large public data like ImageNet and achieve 88.8% classification accuracy for CIFAR10 at ε = 10.

Another line of work has shown the success of DP-SGD fine-tuning of pretrained large language
models (LLMs) [28, 47, 70]. LLM pretraining can be framed as a way to learn structural priors from
unstructured data [7].

DP-SGD training from scratch. In addition to the directly related works discussed above, the
baselines for training from scratch that we compare to in this work are De et al. [15] and Sander et al.
[57]. De et al. [15] make use of multiple techniques that are now a mainstay of DP-SGD training
from scratch such as multiple data augmentations [32] that we also use. Sander et al. [57] propose
a method for estimating the best hyperparameters for DP training at scale using smaller-scale runs.
Recent works [34, 35] propose the use of inductive bias via architectural prior. They use DP-SGD
to train the equivariant CNN architecture [14] and achieve 81.6% at ε = 8 on CIFAR-10. We note
that the design space of novel architectures that are especially compatible with DP is rich and mostly
unexplored, and our approach is compatible with any advancements in this domain. In particular,
using the architecture of Hölzl et al. [34, 35] in DP-RandP could potentially enjoy the improvements
by combining the feature priors. We leave this exploration as future work.

Two-stage training with domain-specific data. The two-stage training of first training the classifier
head and then tuning all hyperparameters has also shown to be effective for out-of-distribution (OOD)
tasks [43]. Their reasoning is that if the full parameters are directly updated using the in-distribution
training data, this may lead to the loss of some general features learned in the pretrained stage and
result in utility drop on OOD data. Our task of DP image classification is different from the OOD
task [43] but still shares some common intuition. After Phase I, our feature extractor has learned
some useful priors while the classifier head has a random initialization. If we directly update the full
network, too much noise is added to the full network, which may distort features learned in Phase
I and lead to suboptimal performance. We also conduct experiments and find that, without noise
prior (therefore model is randomly initialized), the two-stage training pipeline would not significantly
improve the performance compared to directly training the full parameters (See Appendix H).

5 Conclusion

We leverage images generated from random processes and propose a three-phase training DP-RandP
to optimize the use of noise prior. The evaluation across multiple datasets including the benchmark
datasets CIFAR10 and ImageNet shows that DP-RandP can improve the performance of DP-SGD. For
example, DP-RandP improves the previous best reported accuracy on CIFAR10 from 60.6% to 72.3%
at ε = 1. DP-RandP is a general framework for different datasets, models, and representation learning
methods. Future improvements of designs in each of these categories would potentially improve
the performance of DP-RandP. DP-RandP makes use of priors from synthetic images. It would be
interesting to study whether DP-RandP would improve the priors for DP with public data. Also,
investigating the priors beyond image domains, e.g., language and speech tasks, for differentially
private training would also be of great interest.
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A Ablation study for Phase I

We present our main results by using the WRN-16-4 model pretrained on Style-GAN dataset
by Baradad et al. [5] with representation learning [64] for CIFAR10/CIFAR100/DermaMNIST. In this
section, we provide more ablation study on the different synthetic data and different representation
learning methods in Phase I. We use CIFAR10 for the evaluation.

A.1 Results on different synthetic data

A number of synthetic datasets have been proposed by prior work. Baradad et al. [5] consider a family
of synthetic datasets generated by random processes, and report that the best synthetic dataset in terms
of downstream performance is generated by an untrained StyleGAN with a specific initialization,
denoted as StyleGAN-Oriented. Based on this prior work, we also use StyleGAN-Oriented as our
main synthetic dataset throughout the main body of the paper. We also considered the Shaders dataset
proposed in Baradad et al. [6] for our ImageNet experiments. In this subsection we consider different
choices of synthetic datasets and find that multiple synthetic datasets can provide good performance.
That is, our results and analysis extend beyond StyleGAN-Oriented and can be applied to future
proposed synthetic datasets.

We first use the feature extractor checkpoint4 provided by Baradad et al. [5] pretrained on different
synthetic datasets (Please refer Baradad et al. [5] for the full description of these datasets).

Note that Baradad et al. [5] uses a small AlexNet [42] as feature extractor, which includes Batch-
Norm [36]. We freeze the feature encoder and only train the last linear model, therefore the feature
extractor does not break our differential privacy guarantee. When we use the feature extractor in the
main body we use WideResNet without BatchNorm.

Tab. 10 summarizes the results on different synthetic datasets. As in Baradad et al. [5], the best
synthetic dataset is StyleGAN-oriented. However, even the worst-performing synthetic dataset (Dead
leaves) performs similarly to the best prior work [61, 15]. Tab. 10 suggests that one potential future
direction of DP-RandP is better synthetic data.

Table 10: Test accuracy (%) of private linear probing (ε = 1, training for 100 steps, that is the same
as with WRN-16-4) on a small AlexNet trained on different synthetic images. StyleGAN-Oriented
achieves the best performance. Note that all these images are generated without access to real-world
images. Evaluation on CIFAR10 task.

Dead leaves Stat Untrained StyleGAN Feature Vis
textures Color+WMM Sparse High freq Oriented Dead leaves

Accuracy 59.92 64.59 64.34 64.08 67.79 59.32

A.2 Results on different representation learning methods

In Tab. 11, we compare the representation learning method of Wang and Isola [64] (results already in
the main body) to MoCo [30] (we use default hyperparameters in the official repository) for use in
Phase I. For Phase II and III, we use the same hyperparameters as in Tab. 13.

Similar to the main results, DP-RandP achieves significant improvements compared to baseline [15].
We find that using either of contrastive learning methods [64, 30] can achieve 72% accuracy at ε = 1.
Also, Tab. 11 shows that DP-RandP consistently improves upon DP-RandP w/o Phase II when using
either of Wang and Isola [64] or He et al. [30] in Phase I. We note that while DP-RandP is robust to
the two representation learning choices of for Phase I, there is a small gap between the two methods
as ε increases. This suggests a future direction for further improving our method with a principled
choice of contrastive learning method for Phase I.

4https://github.com/mbaradad/learning_with_noise.
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Table 11: Test accuracy (%) of different representation learning methods in Phase I. Evaluation on
CIFAR10 task.

Method for Phase I Phases ε = 1 ε = 2 ε = 3 ε = 4 ε = 6 ε = 8 ε = ∞

Wang and Isola [64] DP-RandP 72.32 77.25 79.99 81.88 84.01 85.26 91.69
DP-RandP w/o Phase II 69.03 75.31 78.44 80.56 82.96 84.45 91.69

MoCo [30] DP-RandP 72.79 76.26 78.32 79.78 81.64 82.84 90.84
DP-RandP w/o Phase II 69.48 73.82 76.60 78.89 80.56 82.64 90.84

− Phase III only (De et al. [15]) 56.8 64.9 69.2 71.9 71.0 79.5 88.9

B Ablation study on model architecture

We present DP-RandP on CIFAR10 with experiments with WRN-16-4 in the main body and here we
also present the WRN-40-4 result on CIFAR10 in Tab. 12. The result has a similar trend as De et al.
[15], WRN-40-4 can achieve better utility with more parameters. For example, at ε = 1, WRN-40-4
has a 0.83% increase compared to WRN-16-4. However, training WRN-40-4 model takes a longer
time. Training a WRN-16-4 for 875 steps takes 5.5 hours while the same amount of steps would take
12 hours for WRN-40-4. Given the utility improvement is within 2% improvement by changing from
WRN-16-4 to WRN-40-4, we use WRN-16-4 to demonstrate the effectiveness of DP-RandP for the
main experiments.

Table 12: Ablation study on WRN-16-4 and WRN-40-4 on CIFAR10.

Method Model ε = 1 ε = 2 ε = 3 ε = 4 ε = 6 ε = 8

DP-RandP w/o Phase II
WRN-16-4 69.03 75.31 78.44 80.56 82.90 84.45

WRN-40-4 69.45 76.63 79.64 82.20 84.51 85.57

DP-RandP
WRN-16-4 72.32 77.25 79.99 81.88 84.01 85.26

WRN-40-4 73.15 77.53 80.93 82.83 85.17 86.12

C Experimental details

We use the Opacus library [67] for the DP-SGD implementation. Our experiments are based on the
open-source code5 of Sander et al. [57] and Baradad et al. [5]. We also provide our code. For the
noise multiplier σ, given sampling rate and total step size, σ is precomputed according to privacy loss
distribution accounting as implemented in Gopi et al. [27] with epserror= 0.01 and rounded up to the
precision of 0.1 to ensure that we do not underestimate the privacy loss.

Hyperparameters. Tab. 13, 14 and 15 summarize the hyperparameters for DP-RandP on CIFAR10,
CIFAR100 and DermaMNIST respectively. We use the same total steps and batch size for CIFAR10
by following De et al. [15]. We also use the same hyperparameters of batch size and steps for
CIFAR100. For DermaMNIST, we use batch size 1024 because Hölzl et al. [34] follow Klause et al.
[40] and Klause et al. [40] use batch size 1024.

Table 13: Hyperparameters for DP-RandP on CIFAR10. Batch size is 4096 Augmult is 16, SGD
optimizer with momentum 0 and no weight decay.

ε 1 2 3 4 6 8

Total Steps 875 1125 1593 1687 1843 2468
σ 9.3 5.6 4.7 3.8 2.9 2.6

Steps in Phase II 96 96 96 96 96 96
LR in Phase II 15 15 15 15 15 15
LR in Phase III 0.4 1 1 1.2 1.2 1.6

5https://github.com/facebookresearch/tan and https://github.com/mbaradad/learning_with_noise.
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Table 14: Hyperparameters for DP-RandP on CIFAR100. Batch size is 4096 and Augmult is 16,
SGD optimizer with momentum 0 and no weight decay.

ε 3 4 6 8

Total Steps 1593 1687 1843 2468
σ 4.7 3.8 2.9 2.6

Steps in Phase II 96 96 96 96
LR in Phase II 25 25 25 25
LR in Phase III 1.4 2 2.2 1.8

Table 15: Hyperparameters for DP-RandP on DermaMNIST. Batch size is 1024 and Augmult is 16,
SGD optimizer with momentum 0 and no weight decay.

ε 1 4 7.42

Total Steps 600 800 800
σ 13.6 4.6 2.8

Steps in Phase II 48 48 48
LR in Phase II 2 2 2.8
LR in Phase III 0.2 1 1.2

D Additional results on DermaMNIST

We follow Hölzl et al. [34] and report the validation accuracy of DermaMNIST in Tab. 3. Here we
also report the test accuracy in Tab. 16 and we can see DP-RandP outperforms the DP-SGD baseline.

Table 16: Test accuracy (%) of DP-RandP on DermaMNIST.

Method ε = 1 ε = 4 ε = 7.42 ε = ∞

DP-SGD we evaluated 68.340.28 71.080.51 72.580.19 76.16

DP-RandP 71.190.28 73.680.24 75.040.25 79.70

E Privacy allocation method

We give a general privacy budget allocation strategy in Sec. 3.3. In this section, we give a detailed
description of our privacy allocation strategy, the privacy ratio for CIFAR10 main results, and more
results on different ε.

Our privacy allocation strategy. Given a total number of steps N , we use the first N1 steps to
train the head classifier for Phase II, and use the remaining N2 = N − N1 steps to train the full
network for Phase III. We follow Panda et al. [54] (that suggests 100 steps for linear probing) and
set N1 = 96 steps (this is closest to 100 steps and equals 8 epochs as each epoch contains 12 steps)
in our experiment. For the x-axis in Fig. 6, we use PLD accounting as implemented in Gopi et al.
[27] to calculate ε1 by calculating the privacy cost of N1 steps and get ε1/ε as the x-axis. Although
it is known that ε! does not increase linearly with N1, ε! is monotonically increasing with N1 and
therefore we can use this method to compute the privacy ratio of Phase II. The N1 steps in Fig. 6
include [0, 12, 24, 36, 48, 96, 144, 192, 240, 288, 336, 384, 432, 480, 528, 576, 624, 672, 720, 768,
816, 864, 875] with N = 875.

Privacy ratio for CIFAR10 main results. We visualize our privacy allocation strategy on CIFAR10
in Fig. 7, that is consistent with this strategy.

Additional experimental results on different ε. We provide more results on different privacy
allocations for different ε from Tab. 17 to Tab.21. Our main results in Tab. 1 in the main paper are
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Figure 7: The fraction of total privacy budget allotted to Phase II (ε1/ε) as a function of total privacy
budget ε. As ε increases, the ratio ε1/ε decreases.

produced by setting the number of epochs in Phase II to 8. From Tab. 17 to Tab.21 we can see that
our privacy splitting strategy is robust to several choices of the number of epochs in Phase II (e.g., 4,
8, 12, 16) in the evaluated privacy range. Furthermore, our privacy splitting strategy is better than
allocating the entire privacy budget to either Phase II (rightmost) or Phase III only (leftmost).

Table 17: Test accuracy (%) for CIFAR10 ε = 2. 1125 steps. 94 epochs in total.
Epochs for Phase II 0 1 4 8 12 16 20 50 94

Accuracy (%) 75.30 76.31 77.03 77.35 76.74 77.05 77.10 75.06 63.10

Table 18: Test accuracy (%) for CIFAR10 ε = 3. 1593 steps. 133 epochs in total.
Epochs for Phase II 0 1 4 8 12 16 20 50 100 133

Accuracy (%) 78.34 79.20 79.71 79.74 79.48 80.27 80.04 79.21 75.47 63.93

Table 19: Test accuracy (%) for CIFAR10 ε = 4. 1687 steps. 141 epochs in total.
Epochs for Phase II 0 1 4 8 12 16 20 50 100 141

Accuracy (%) 80.63 81.24 81.76 81.46 81.61 82.01 81.56 81.36 78.07 64.41

Table 20: Test accuracy (%) for CIFAR10 ε = 6. 1843 steps. 154 epochs in total.
Epochs for Phase II 0 1 4 8 12 16 20 50 100 150 154

Accuracy (%) 82.93 83.73 84.04 83.75 83.86 84.17 83.94 83.41 81.13 65.43 64.89

Table 21: Test accuracy (%) for CIFAR10 ε = 8. 2468 steps. 206 epochs in total.
Epochs for Phase II 0 1 4 8 12 16 20 50 100 150 200 206

Accuracy (%) 84.37 84.84 85.43 85.17 85.21 85.37 85.08 85.08 83.84 82.74 69.17 64.85

F Details for private linear probing on CIFAR10

For CIFAR10, we follow Baradad et al. [5] and use the alignment and uniformity loss proposed
in Wang and Isola [64] to pretrain a feature extractor WRN-16-4 on StyleGAN-oriented dataset. Also
we follow Baradad et al. [5] and use the third to last layer and the dimension of this layer is 4096.
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Note that, the right extreme in Fig. 6 is slightly higher than 60% at ε = 1, while the linear probing
result in Tab. 4 is 67.78% at ε = 1. This is because representation learning [64, 11] usually adds
additional representation layers for representation learning and may keep it for linear probing. As
mentioned earlier, we follow Baradad et al. [5] and use the third to last layer and the dimension of this
layer is 4096. For Fig. 6, we keep the exact same architecture as De et al. [15] for a fair comparison
where we did not use such embedding layers.

Tab. 22 summarize the hyperparameter for DP-RandP without Phase III on CIFAR10 in Sec.3.3.

Table 22: Hyperparameters for linear probing CIFAR10 experiments. Other hyperparameters include
full batch size, SGD optimizer with momemtum 0.9, 100 steps, no augmentation multiplicity.

ε 0.1 0.2 0.5 1 2 3 4 6 8

σ 339 171 72 38 21 14 11 8 7
LR 0.8 2.2 5.5 10 20 40 40 60 60

G Details for ImageNet experiments

As discussed in Sec. 3.3, we achieve a new SOTA on ImageNet with additional designs for private
linear probing. We first present the technical details of our method, which combines principled
feature extraction and a private feature preprocessing approach. We then include the hyperparameters
for our experiments on ImageNet.

G.1 Method

Our modifications on private linear probing include principled feature extraction and a private feature
preprocessing approach. We qualify that neither of these steps is novel; feature extraction variants
and feature preprocessing are very standard in feature extraction pipelines.

Pretraining. We use a pretrained ViT-base [19] model by Yu et al. [71], that is pretrained on
the Shaders-21k dataset [6] using MAE [31]. We use a different pretraining dataset here than for
the simpler datasets, because models pretrained on Shaders-21k are observed to outperform those
pretrained on StyleGAN [6]. Furthermore, based on our initial experiments models pretrained on
StyleGAN with MoCo [30] do not perform well on ImageNet fine-tuning, only reaching ≈ 33%.

Modifying the LP-FT recipe. For the results on simpler datasets, we present a combination of linear
probing and full fine-tuning (LP-FT [43]). However, we note that for more complex datasets, it is
more necessary to devote privacy budget to full fine-tuning because adapting the features learned
from random priors to private datasets is more challenging. Based on the increase in the best values
of ε1 from CIFAR10 and CIFAR100, it seems likely that full DP fine-tuning is necessary to adapt the
pretrained features to ImageNet. Unfortunately, we lack the computational resources to fine-tune ViT
on ImageNet with DP as prior works [15, 57] have noted that it may require hundreds or thousands
of GPU-hours. Instead, we propose a hybrid combination of linear probing and full fine-tuning via
principled feature extraction that is computationally efficient, running under 10 hours on a single
A100, and also obtains better performance than the prior SOTA [57]. We emphasize that these
modifications are more for computational efficiency; if we had enough compute to do full fine-tuning
of the ViT on ImageNet with sufficiently large batch size, our original DP-RandP will still work.

Standard feature extraction. Standard CNNs and ResNets iteratively refine the representation of
the image at each layer, and the best representation of the image is produced at the penultimate layer.
The head classifier at the end of the network learns a mapping between this representation and classes.
Vision transformers are slightly different; each block learns a different representation. Nonetheless,
the SOTA DP fine-tuning approaches that use pretrained ViTs as feature extractors still just use the
representation from the penultimate layer as input to the linear layer [54]. When we use this approach
for linear probing, our best result does not exceed 33.2%.

Intuition behind principled feature extraction. The intuition behind this approach is the same as the
intuition in a long line of fine-tuning approaches [48, 51, 23] and we do not claim any novelty for it.
Given a sufficiently good pretrained initialization for the network [29], the domain adaptation should
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have low intrinsic rank such that the adaptation from the pretrained weights to the fine-tuning weights
can be modeled in a lower-dimensional subspace than that of the full model parameters [33]. Results
have shown that a linearized approximation of fine-tuning can obtain competitive performance. If we
add another level of approximation, if we learn a linearization of the intermediate representations of
the ViT, we can model the linearization of fine-tuning.

Principled feature extraction. The first challenge is the dimensionality of the intermediate
representations. Although it may not seem large upon initial inspection, as ViTs may only have a
representation size of 768, we actually want the representation before the pooling. The representation
of the input after each block in the ViT has both a temporal and feature dimension, so we pool over
the temporal dimension to gather a feature map of size (4, feature size). One alternative option
here is to actually learn first what weights should be used for the final linear layer, as in Evci et al.
[23]. We can privatize this via the exponential mechanism. Initial results indicate this may be a very
interesting direction for future work. However, this approach has a quite high computational cost,
so we do not use it for the sake of reproducibility. Instead, we stride the average pooling such that
the representations at each block are 4× larger, and then we concatenate together the block-wise
representations so that the final representation size is 4× num_blocks larger than it is in the standard
feature extraction approach. For a ViT-base, num_blocks = 12 so this is 48× larger for a final
representation size and the feature size for each image is 36864.

Feature normalization. The first step in feature preprocessing is feature normalization. We
normalize the feature vectors to a fixed norm of C by the transformation below

x′
i =

xi · C
∥xi∥2

.

We treat C as a fixed constant, and hence this normalization step doesn’t result in any privacy loss
about the dataset. We pick C = 50 because the representation multiplier from the principled feature
extraction step is 48. Next we center the feature vectors around their mean xi = xi − 1

|D|
∑

j∈D xj ,
which requires private mean estimation. That is, the input to the training method will just be the
difference between the feature and the noisy feature mean.

Private mean estimation. Now we introduce the motivation behind the feature normalization; so
that we can do private mean estimation in high dimensions without prohibitive error rates. Given
that all the feature vectors have the same dimension and fixed norm, the optimal error rate for private
mean estimation will be obtained via the Gaussian mechanism. That is, we first compute the true
mean and then add Gaussian noise scaled to the ℓ2 sensitivity of the mean. The sensitivity of the
mean is C/N ; adding or removing any datapoint can change the ℓ2 sensitivity by at most C, and
there are N datapoints (for ImageNet, N = 1281167). We do a hyperparameter search here to find
the best amount of the overall privacy budget to dedicate to this step, which we can do efficiently by
saving the true mean and then adding noise for each value of ε we consider. We find that a very noisy
estimate is sufficient, because the noise is added to the mean vector and then used to normalize all the
features such that all datapoints have the same noise. This correlated noise is highly tolerable for
our approach, in line with concurrent work that indicates correlated noise has much less accuracy
degradation [13].

Related work on private feature preprocessing. One concurrent work [60] conducts a theoretical
analysis that feature preprocessing provably reduces the error rate of DP linear regression and
provides experiments when finetuning a model that is pretrained on ImaageNet (that is, the regime
of Tab. 7. Another concurrent work [63] conducts theoretical analysis that feature preprocessing
provably reduces the error rate of DP-GD from extracted features by connecting to the neural collapse
regime and provides experimental validation when finetuning a model that is pretrained on ImageNet.
These concurrent works provide intuition behind the success of our private feature preprocessing,
although we note that neither theoretical guarantee is actually applicable to our setting because we
use an entirely different method (pretraining on synthetic data, principled feature extraction, and
private feature preprocessing). Our method therefore validates the theory of these concurrent works
by applying private feature preprocessing in conjunction with principled feature extraction to do
private linear probing on one of the most challenging datasets for DP image classification, achieving
a new SOTA for methods that do not use public data.
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G.2 Results

We achieve 39.39% accuracy at ε = 8, and the previous SOTA [57] is 39.2% at ε = 8. Although
this improvement is minor, we note that we have not been able to reproduce the results in Sander
et al. [57] using their provided code, who themselves were not able to reproduce the result from De
et al. [15] that they compare to. This reproducibility gap can be attributed to the high variance of DP
training, which itself is difficult to mitigate because of the enormous computational cost required to
get SOTA results on ImageNet privately. We hope that by providing our code we can bridge this gap.

We include hyperparameters of our private linear probing results on ImageNet in Tab. 23. In Tab. 23,
we use σ1 for the private mean estimation step and σ2 for DP-SGD. Because we are using the full
batch, we can use the composition theorem in Gaussian differential privacy [17] (Theorem 2.7 and
Corollary 3.3) to compute the privacy loss. With T steps in DP-SGD, our private linear probing is
equivalent to a one-step Gaussian mechanism with noise multiplier σ, where

σ =
1√

1
σ2
1
+ T

σ2
2

We can then compute (ε, δ)-DP by computing the privacy curve of Gaussian mechanism [3, 17].

According to Panda et al. [54], as ε increases, the total step size will also increase to achieve better
performance. Therefore in Tab. 23, we use T = 100 for ε = 1 and T = 200 for ε = 8. In addition to
Tab. 23, we also provide a few more observations during the hyperparameter search. T = 100 for
ε = 8 also achieves compelling result that is close to 39%. When we fix ε = 8, as we increase T ,
the performance improves. Further increasing T would continue to improve the performance. As
the number of steps T increases, the corresponding optimal learning rate would decrease. This is
consistent with previous work [54].

We note that Sander et al. [57] also tried training the ViT model on ImageNet but concluded that it
does not perform as well as ResNet. Our explanation for this is that ViT requires pretraining data
because the architecture does not encode any natural prior, whereas CNNs naturally have a prior. The
nature of convolutional filters biases CNNs to extract features with spatial locality. As we observe in
Sec. 2, the impact of pretraining data is mostly at the initialization by giving the model a prior, so it
stands to reason that the missing piece in utilizing ViT for DP training on ImageNet is learning a
random prior from Shaders-21k [6].

Table 23: Hyperparameters for linear probing on ImageNet. σ1 is for private mean estimation and σ2

is for DP-SGD. Other hyperparameters include batch size = full, SGD optimizer with momentum
= 0.9. For the linear layer, bias = False and zero initialization. We do not employ any additional
regularization or learning rate schedule.

ε Steps T σ1 σ2 learning rate

ε = 1 100 71 43 3
ε = 8 200 14 9.33 10

H Two-stage training with private data

After pretraining with synthetic data, DP-RandP first training the classifier head (Phase II) and
then tuning all hyperparameter (Phase III). Tab. 24 summarizes the results in the main paper and
presents the comparison of our full DP-RandP, DP-RandP without Phase II and the baseline [15].
Note that DP-RandP without Phase III is not included in Tab. 24 as training the linear layer only has
diminishing returns: the non-private baseline of DP-RandP w/o Phase III is 74.05%, which is worse
than DP-RandP w/o Phase II at ε = 2. Tab. 24 shows the importance of combining both Phase II and
Phase III in DP-RandP.
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Table 24: The importance of phases in DP-RandP. Evaluation of test accuracy (%) on CIFAR10.
Phases ε = 1 ε = 2 ε = 3 ε = 4 ε = 6 ε = 8

DP-RandP 72.32 77.25 79.99 81.88 84.01 85.26
DP-RandP w/o Phase II 69.03 75.31 78.44 80.56 82.96 84.45

Phase III only (De et al. [15]) 56.8 64.9 69.2 71.9 71.0 79.5

Our DP-RandP uses synthetic data for pretraining to give a warm initialization for two-stage training
with private data. Tab. 25 shows the two-stage training with private data with random initialization.
As noted in Tab. 13, we use σ = 9.3 for ε = 1 while De et al. [15] use ε = 10 for the same number
of 875 steps (equals to 73 epochs). This is because we only round σ up to 0.1 and we ensure the σ
we use in Tab. 13 will not exceed the designed privacy bound. As we add less noise compared to De
et al. [15], the baseline result, i.e., directly updating the full parameters during training (0 epoch for
Phase II), is 57.46.

Table 25: Test accuracy (%) of two-stage training with private data by random initialization on
CIFAR10.

Epochs for Phase II 0 1 2 4 8 12 16 20 50 73

Accuracy (%) 57.46 57.01 56.27 55.04 54.45 54.09 53.15 52.26 47.00 25.80
Std. 0.48 0.69 0.57 0.90 0.80 0.41 0.91 0.97 1.53 2.08

Tab. 25 shows that when the feature extractor is randomly initialized, if we train the head classifier
with more steps while keeping the same total steps, the performance will decrease compared to
directly finetuning the whole network. Our analysis of this is that, the feature extractor is not encoded
with any prior and it is better to update the full network in the whole training procedure to learn more
information.
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