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In this supplementary document, we present a comprehensive account of the implementation and1

training details in Section A. We delve into the analysis of misalignment resulting from temporal2

fusion and discuss the effectiveness of our proposed methods for addressing this issue in Section B.3

Moreover, we provide additional visualizations in Section C. Lastly, we explore the potential social4

impact of our research in Section D.5

A Experiment Details6

A.1 Dataset and Evaluation Metrics7

We conduct our experiments on the nuScenes dataset [1], a widely used benchmark for autonomous8

driving tasks. The dataset encompasses diverse driving scenarios captured using cameras and LiDAR9

sensors, offering rich information for both visual and LiDAR-based 3D object detection. The dataset10

comprises 700 training scenes, 150 validation scenes, and 150 testing scenes. Each scene spans11

approximately 20 seconds, with key frames annotated at a 2 Hz frequency.12

The two dominant metrics for the nuScenes detection task are the nuScenes Detection Score (NDS)13

and mean Average Precision (mAP). The mAP for nuScenes is computed based on the center distance14

between predictions and ground truth annotations on the ground plane. Moreover, the nuScenes dataset15

defines five true positive metrics (mATE, mASE, mAOE, mAVE, mAAE) for measuring translation,16

scale, orientation, velocity, and attribute, respectively. The NDS for nuScenes is a weighted sum of17

mAP and the five true positive metrics, defined as NDS = 1
10 [5mAP+

∑
mTP (1−min(1,mTP ))].18

A.2 Implementation Details19

We conduct experiments on BEVDepth [4]. The codebase is developed upon MMDetection3D [2].20

Main experiments are trained on 8 NVIDIA A100 GPUs, while ablation experiments are conducted21

on 8 NVIDIA V100 GPUS. For BEVDepth, the model is trained for 20 epochs with an initial learning22

rate of 2e-4. In the distillation process, the per-GPU batch size is set to 4, whereas during the training23

of the baseline model, it is set to 8. Normal data augmentations are introduced in the training process24

such as flip and rotate. In our apprentice models, future frames are not incorporated into the long-term25

temporal fusion throughout the training phase to ensure a fair comparison.26

In our research, we implement distinct temporal modeling strategies for both apprentice and expert27

models. For the apprentice models, we incorporate a sequence of eight frames into the temporal28

modeling process. In contrast, the expert models integrate four future frames into the temporal29

modeling as demonstrated in our primary results. However, in our ablation study, we deviate from30

this approach and instead employ eight historical frames for temporal modeling.31
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Table 1: Experiment settings. ∗ denotes that the training schedule for VCD-E is approximately
one-fourth of the original schedule. This reduction was implemented to expedite the training process
during the ablation study. The first group is engaged in training on the main results, whereas the
second group is utilized in the ablation study.

Method Backbone Image Size mAP (%) NDS (%)

VCD-E ConvNext-B [5] 512 x 1408 67.7 71.1
VCD-A Res-50 [3] 256 x 704 41.8 54.2

VCD-E∗ ConvNext-B [5] 256 x 704 54.2 58.8
VCD-A Res-50 [3] 256 x 704 29.7 40.9

A.3 Experiments Settings32

The setting of adopted expert-apprentice pairs is depicted in Tab. 1. We categorize the distillation33

setting into two distinct groups. The primary group is engaged in training on the main results, whereas34

the second group is utilized for the ablation study.35

B The Analysis of Temporal Fusion36

B.1 The Misalignment of Motion Objects37

As highlighted in preceding studies [6], long-term temporal fusion may face misalignment issues38

in motion estimation, which can be discerned through a reduction in performance on metrics like39

mATE. Let’s consider a moving object and analyze the impact of inaccurate motion estimation on its40

position in the fused frame. We will assume that the environment is static, except for the moving41

object. Let the position of the moving object in the world coordinate system be represented by42

Pw
i = (xw

i , y
w
i , z

w
i , 1)

T in each of the N frames captured at times t1, t2, . . . , tN . The actual motion43

of the moving object between frames is represented by Mobj
i , and the estimated motion is represented44

by M̂
obj

i . The difference between the estimated and actual motion of the object can be denoted as:45

∆Mi
obj = Mi

obj − M̂
obj

i . (1)

As we have already computed the transformation matrix T i based on the estimated ego motion, we46

can calculate the transformed object position in the current frame, considering its actual motion, as:47

Pw′

i = T iM
obj
i Pw

i . (2)

The error in the transformed object position can be computed as:48

eobji = Pw′

i − P̂
w′

i . (3)

In the long-term fusion process, we integrate the information from all N frames. Assuming we use a49

fusion function F , the fused position in the current frame can be represented as:50

P obj
fusion = F (Pw′

1 ,Pw′

2 . . . . ,Pw′

N ). (4)

The inaccuracies in the motion estimation of the moving object for each frame can propagate through51

the fusion function and result in a misaligned object in the fused frame. The overall error in the fused52

position can be represented as a function of the errors in each frame:53

eobjfusion = G(eobj1 , eobj2 . . . . , eobjN ), (5)

where G represents a function that combines the errors from each frame. The fused position of54

the moving object will be less accurate due to these motion estimation errors, leading to a decline55

in object detection performance in the long-term setting. To address the issue mentioned earlier,56

we introduce the trajectory-based distillation module, which compensates for the misalignment of57

moving objects. We will provide further details in the subsequent discussion.58
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Table 2: The performance gains of different trajectory length for trajectory-based distillation. As the
trajectory length increases, the benefits derived from the distillation process become more pronounced.

Trajectory Length Distill mAP (%) NDS (%)

- ✗ 29.7 40.9
0 ✓ 31.8 42.1
1 ✓ 33.1 44.5
3 ✓ 34.6 45.6
5 ✓ 35.4 45.9
9 ✓ 33.9 44.7
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Figure 1: Effects of VCD on movable objects. Our distillation framework VCD consistently improves
dynamic objects across a range of metrics.

B.2 The Effectiveness of Trajectory-based Distillation59

The results presented in Table 2 indicate that as the trajectory length increases, the benefits derived60

from the distillation process become more pronounced. The temporal fusion length for this experiment61

is set at eight. However, when the trajectory length exceeds five, there is a noticeable decrease in62

accuracy. We hypothesize that this decrease may be attributed to the model’s distracted attention63

towards distant motions. The density of traffic can lead to distant motion locations being occupied64

by other objects, which may not necessarily require additional trajectory supervision. This suggests65

that the application of excessive trajectory supervision in such scenarios could be unnecessary and66

inefficient.67

B.3 The Improvements of Dynamic Objects68

In this section, we present visualizations to demonstrate the improvements achieved in dynamic69

objects. Particularly noteworthy is the significant enhancement in the representation of dynamic70

objects through trajectory-based distillation, thereby highlighting the effectiveness of the trajectory-71

based module. As depicted in Fig. 1, our distillation framework consistently enhances dynamic72

objects across various metrics.73

C Visualization74

We have performed several visualizations in Fig. 2 to showcase the advancements achieved by our75

distillation framework. Our findings indicate that our models excel in accurately predicting 3D76

bounding boxes for the target objects.77

3



CAM_BACK_RIGHTCAM_BACKCAM_BACK_LEFT

CAM_FRONT_LEFT CAM_FRONT CAM_FRONT_RIGHT

Figure 2: Visualization of the predictions for 3D object detection generated by the VCD-A.

D Broader Impact78

Our research introduces a novel perspective for multi-modal methodologies and a fresh distillation79

paradigm for camera-only techniques. We believe that it can establish a robust baseline for the broader80

scientific community. However, while our methods contribute to the enhancement of autonomous81

driving, they are not yet capable of addressing more complex corner cases. Consequently, these82

limitations could potentially introduce risks in real-world autonomous systems.83
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