
A Proofs of Linear Case

Throughout the appendix, for ease of notation, we overload the definition of the function dTV (·, ·).
When inputs are random variables, it represent the TV distance between the distributions of those
random variables.

Lemma 4.2. Let {(xi, yi)}ni=1 be i.i.d. random variables such that yi = xi · w∗ +N (0, 1). Then,
for n ≥ k

2 , with probability 1− e−Ω(n), the MLE ŵ satisfies

d̃(ŵ, w∗) ≤
√

k

2n
.

The proof of this lemma requires Lemma A.1, which characterizes the distribution of the residual
error of the MLE.

Lemma A.1. Given y ∈ Rn, X ∈ Rn×k satisfying y = Xw∗ + η, where η ∼ N (0, σ2In), the least
square solution ŵ satisfies

Xw∗ −Xŵ ∼ N (0, σ2X(XTX)−1XT )⇒ E[∥Xŵ −Xw∗∥2] = σ2k.

Proof. The least squares solution is given by

ŵ = (XTX)−1XT y,

= (XTX)−1XT (Xw∗ + η),

= w∗ + (XTX)−1XT η.

Multiplying on the left by X , we have

Xŵ = Xw∗ +X(XTX)−1XT η.

Since η is i.i.d. Gaussian with variance σ2, we have,

X(XTX)−1XT η ∼ N (0, σ2X(XTX)−1XTX(XTX)−1XT )

∼ N (0, σ2X(XTX)−1XT )

This implies

E[∥Xŵ −Xw∗∥2] = σ2Tr[X(XTX)−1XT ],

= σ2Tr[(XTX)−1XTX],

= σ2k.

Proof of Lemma 4.2. The KL divergence between two Gaussians P = N (µ1,Σ) and Q = N (µ2,Σ)
is:

dKL(P∥Q) =
1

2
(µ1 − µ2)Σ

−1(µ1 − µ2).

By Pinsker’s inequality, this implies

dTV (P∥Q) ≤ min

{
1,

1

2

√
(µ1 − µ2)Σ−1(µ1 − µ2)

}
.
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Hence, the empirical TV on the dataset can be bounded by

1

n

∑
i

dTV (pŵ(y|xi), pw∗(y|xi)) ≤
1

n

∑
i

min

{
1,

1

2

∣∣xT
i (ŵ − w∗)

∣∣
σ

}
,

≤

√√√√ 1

n

∑
i

min

{
1,

1

2

∣∣xT
i (ŵ − w∗)

∣∣
σ

}2

,

≤

√√√√min

{
1,

1

4n

∑
i

(
xT
i (ŵ − w∗)

)2
σ2

}
,

=

√
min

{
1,

1

4n

1

σ2
∥X(ŵ − w∗)∥2

}
.

where the second line follows from Jensen’s inequality.

By Lemma A.1, we have
E[∥X(ŵ − w∗)∥2] = σ2k.

which implies that with probability 1− e−Ω(n), we have

∥X(ŵ − w∗)∥2 ≤ 2σ2k.

Substituting in the earlier inequality, we get

1

n

∑
i

dTV (pŵ(y|xi), pw∗(y|xi)) ≤

√
min

{
1,

k

2n

}
=

√
k

2n
for n ≥ k

2
.

Lemma 4.3. Let {xi}ni=1 be i.i.d. random variables such that xi ∼ Dx. For a sufficiently large
constant C > 0, and for n = C k

ε2 log
1
ε with n ≥ k

2 , we have:

Pr
xi∼Dx

[
sup
w∈Rk

∣∣∣d̃(w,w∗)− d(w,w∗)
∣∣∣ > ε

]
≤ e−Ω(nε2).

Proof. The proof is inspired by Theorem 11.2 in [20], with modifications to our setting.

Let Since fw(x) is bounded, for any fixed w, the Chernoff bound gives

Pr
[∣∣∣d̃(w,w∗)− d(w,w∗)

∣∣∣ > α
]
≤ e−2nα2

. (11)

for any α > 0. The challenge lies in constructing a “net” to be able to union bound over Rk without
assuming any bound on w or the covariate x. A net is a partitioning of an space, where within each
part, points are close together in some way. In this case, we construct a net using what we will refer
to as “ghost” samples.

Ghost samples. First, we construct a “ghost” dataset D′
x consisting of n new samples, drawn

i.i.d. {x′
i}i∈[n] of Dx. This gives another metric d̃′(·, ·). Instead of directly considering the distance

between d̃(w,w∗) and d(w,w∗), it is sufficient to consider the difference between d̃(w,w∗) and
d̃′(w,w∗) i.e.,

Pr

[
sup
w

∣∣∣d(w,w∗)− d̃(w,w∗)
∣∣∣ > ε

]
≤ 2Pr

[
sup
w

∣∣∣d̃(w,w∗)− d̃′(w,w∗)
∣∣∣ > ε/2

]
. (12)

To see this, let w̄ maximize d̃(w,w∗)− d̃′(w,w∗). Since w̄ and {x′
i}i∈[n] are independent, by the

Chernoff bound,

Pr
[∣∣∣d̃′(w̄, w∗)− d(w̄, w∗)

∣∣∣ > ε/2|Dx

]
≤ e−nε2/2 ≤ 1/2.
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for any (Dx, w̄) and large enough n. Thus,

Pr
[∣∣∣d̃′(w̄, w∗)− d̃(w̄, w∗)

∣∣∣ > ε/2
]
≥ Pr

[∣∣∣d(w̄, w∗)− d̃(w̄, w∗)
∣∣∣ > ε ∩

∣∣∣d(w̄, w∗)− d̃′(w̄, w∗)
∣∣∣ < ε/2

]
= E

Dx

[
1{|d(w̄,w∗)−d̃(w̄,w∗)|>ε} Pr

[∣∣∣d(w̄, w∗)− d̃′(w̄, w∗)
∣∣∣ < ε/2|Dx

]]
≥ (1− 1/2)Pr

[∣∣∣d(w,w∗)− d̃(w,w∗)
∣∣∣ > ε

]
,

which implies (12).

Symmetrization. Since Dx and D′
x each have n independent samples, we could instead draw the

datasets by first sampling 2n elements x1, . . . , x2n from Dx, then randomly partition this sample into
two equal datasets. Let si ∈ {±1} so si = 1 if zi lies in D′

x and −1 if it lies in Dx. Then

d̃′(w̄, w∗)− d̃(w̄, w∗) =
1

n

2n∑
i=1

si · dTV (pw(y|xi), pw∗(y|xi)).

For a fixed w and x1, . . . , x2n, the random variables (s1, . . . , s2n) are a permutation distribution, so
negatively associated. Then the variables si · dTV (pw(y|xi), pw∗(y|xi)) are monotone functions of
si, so also negatively associated. They are also bounded in [−1, 1]. Hence we can apply a Chernoff
bound:

Pr
[∣∣∣d̃′(w̄, w∗)− d̃(w̄, w∗)

∣∣∣ > ε
]
< e−nε2/2 (13)

for any fixed w.

Constructing a net. We partition Rk the space of w s.t. if w,w′ are in the same partition then,∣∣dTV (pw(y|x), pw∗(y|x))− dTV (pw′(y|x), pw∗(y|x))
∣∣ < α.

for each x in the dataset x1, . . . , x2n. Then take the intersection of all 2n partitions to construct a net
over Rk.

As the total variation distance is a unimodal function of xi · w − xi · w∗, we partition w the sets
{w : dTV (pw(y|xi), pw∗(y|xi)) ∈ [jα, (j + 1)α]

where j goes from 0 to 1/α − 1. So the space of w, Rk is partitioned by 2n sets of 1/α parallel
hyper-planes. Then the total number of cells is at most

k∑
i=0

(
2n

i

)
(2/α)i ≤ 2

(
4en

αk

)k

We define a net N by choosing one representative of each cell in the partition, so |N | ≤ e2k log n
αk .

By (13),

Pr

[
max
w∈N

∣∣∣d̃′(w̄, w∗)− d̃(w̄, w∗)
∣∣∣ > ε

]
< |N |e−nε2/2 ≤ e2k log n

αk−ε2n/2.

Finally, for any w ∈ Rd let w̄ ∈ N be the representative of its cell. By definition of the cells,
|dTV (pw(y|xi), pw∗(y|xi))− dTV (pw̄(y|xi), pw∗(y|xi))| < α

for all i ∈ [2n]. Thus∣∣∣(d̃′(w,w∗)− d̃(w,w∗)
)
−
(
d̃′(w̄, w∗)− d̃(w̄, w∗

)∣∣∣ ≤ ∣∣∣d̃(w,w∗)− d̃(w̄, w∗)
∣∣∣+ ∣∣∣d̃′(w,w∗)− d̃′(w̄, w∗)

∣∣∣ ≤ 2α

and so

Pr

[
sup
w∈Rd

∣∣∣d̃′(w,w∗)− d̃(w,w∗)
∣∣∣ > ε

]
≤ Pr

[
max
w∈N

∣∣∣d̃′(w,w∗)− d̃(w,w∗)
∣∣∣ > ε− 2α

]
≤ e2k log n

αk−(ε−2α)2n/2

Setting α = ε/4, we have that

n ≲
1

ε2
k log

1

ε
suffices for

Pr

[
max
w∈Rk

d̃′(w,w∗)− d̃(w,w∗) > ε

]
< e−Ω(ε2n).
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B ReLU Activation with Scalar y

In this section, we consider the model of

y = ϕ(w∗ · x+ η), η ∼ N (0, 1),

where w∗, x ∈ Rk, y, η ∈ R. We are given samples (x, y) ∈ Rk × R, and want to estimate a ŵ that
estimates the distribution of y in TV.

The most challenging aspect of the ReLU setting is that we do not have an expression for the TV
suffered by the MLE, such as Lemma 4.2 in the linear case. This forces us to directly analyze the
log-likelihood.

For a fixed x,w,, the expectation of the log-likelihood ratio over y is

E
y

[
log

pw(y | x)
pw∗(y | x)

]
= −dKL(w

∗∥w) ≤ −2d2TV (w
∗, w),

where the last inequality is via Pinsker’s inequality. This equation implies that if w is ε-far from w∗,
then the expected log-likelihood ratio(LLR) is < −2ε2. By definition, the MLE has a non-negative
LLR. Hence, if the empirical LLR is close to the expectation, this would imply that the MLE has
small TV.

However, we only receive a single sample of y per x. For a fixed w, we can prove a Bernstein
inequality, showing that given 1/ε2 log(1/δ) samples, the empirical LLR is < −ε2 for w that are
ε-far.
Lemma B.1. Let p1, . . . , pn and q1, . . . , qn be distributions with Ei[dTV (pi, qi)] ≥ ε, where we use
the uniform measure on i ∈ [n]. Let xi ∼ pi for i ∈ [n]. Then w.p. 1− δ, Ei[log

qi(xi)
pi(xi)

] ≤ − ε2

4 for
n ≥ O

(
1
ε2 log

1
δ

)
.

The proof of this Lemma, as well as other Lemmas in this section, can be found in Appendix B.1.

In order to extend this to all w ∈ Rk that are ε-far, we will construct a cover over Rk depending on
the values the log-likelihood ratio can take, and then apply the Bernstein inequality to each element
in the cover.

In order to construct the cover, we first show that the log-likelihood ratio is bounded above by the
magnitude of noise in y. For ease of notation, for a fixed x ∈ Rk, and each w ∈ Rk, define

θ = ⟨x,w⟩ ∈ R,

and let θ∗ = ⟨x,w∗⟩.Similar to the notation for w, for each θ ∈ R, define pθ as the distribution of
ϕ(θ + η) for η ∼ N(0, 1). Define the log likelihood ratio

γθ(y) := log
pθ(y|x)
pθ∗(y|x)

.

The following Lemma states that for a fixed datapoint (x, y), the log-likelihood ratio is bounded by
the noise in y:
Lemma B.2. For any y = ϕ(θ + η),

γθ(y) =

{
log Φ(−θ)− log Φ(−θ∗) if y = 0

η(θ − θ∗)− (θ−θ∗)2

2 if y > 0

and therefore, for all y,
γθ(y) ≤ |η|2/2.

Now, as γ is bounded above by |η|2
2 , and it is concave wrt θ, the following Lemma shows that we can

partition θ into O
(
A
ε

)
intervals, such that in each interval, γ changes by atmost ε, or is very negative,

i.e., γ < −A.
Lemma B.3 (One-dimensional net). Let A > B2 > 1. There exists a partition of R into O(A/ε)
intervals such that, for each interval I in the partition and every y = ϕ(θ∗ + η) with |η| ≤ B, one of
the following holds:
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• For all θ ∈ I , γθ(y) ≤ −A

• For all θ, θ′ ∈ I , |γθ(y)− γθ′(y)| ≤ ε

Using Lemma B.2 and Lemma B.3, we can form a uniform bound, such that all w that are ε-far from
w∗ in distribution will have log-likelihood ratio smaller than − ε2

4 on the training set. With some
additional arguments, we can now show that as the MLE has positive log-likelihood ratio, it has small
empirical TV.
Lemma B.4. Let x1, . . . , xn be fixed, and yi ∼ ϕ(xT

i w
∗ + ηi) for ηi ∼ N (0, 1). For n ≥ 1

ε2 k log
1
ε ,

the MLE ŵ satisfies
d̃(ŵ, w∗) ≤ ε.

This sample complexity guarantees that the MLE is good for the set of empirical xi ∼ Dx, and we
need to extend this to the expectation over x ∼ Dx, for which we use a Lemma similar to Lemma 4.3
in the linear case, and this completes the proof.

A straight forward combination of Lemma 4.3 and Lemma B.4 gives the following Theorem.
Theorem B.5. Let y = ϕ

(
xTw∗ + η

)
, for w∗ ∈ Rk, x ∼ Dx, and η ∼ N (0, 1). Then for a

sufficiently large constant C > 0,

n = C · k
ε2

log
1

ε

samples of {(yi, xi)}ni=1 suffices to guarantee that the MLE ŵ satisfies

d(ŵ, w∗) ≤ ε.

B.1 Proofs

Lemma B.1. Let p1, . . . , pn and q1, . . . , qn be distributions with Ei[dTV (pi, qi)] ≥ ε, where we use
the uniform measure on i ∈ [n]. Let xi ∼ pi for i ∈ [n]. Then w.p. 1− δ, Ei[log

qi(xi)
pi(xi)

] ≤ − ε2

4 for
n ≥ O

(
1
ε2 log

1
δ

)
.

Proof. Define γi(x) = log qi(x)
pi(x)

and ai(x) := max(γi(x),−2). We have that

E
i,x
[γi(x)] = −E

i
[dKL(pi, qi)] ≤ −E

i
[2dTV (pi, qi)

2] ≤ −2ε2

and want to show that Ei[γi(x)] ≤ −ε2/4 with high probability. Note that ai(x) ≥ γi(x), so it
suffices to show Ei[ai(x)] ≤ −ε2/4. We will do this with Bernstein’s inequality, for which we need
bounds on the moments of ai(x).

To simplify notation, fix a particular i and consider p = pi, q = qi, a = ai, and x ∼ p.

For a random variable v, define v+, v− to be the positive/negative parts of v, respectively, so
v = v− + v+. Define ∆(x) = q(x)

p(x) − 1. We have that Ex∼p[∆(x)] = 0, and

E
x∼p

[∆+(x)] = E
x∼p

[−∆−(x)] = dTV (p, q). (14)

Now, consider the function b(z) := max(log(1 + z),−2) − z. This function is nonpositive over
z ≥ −1, and b(z) ≤ −z2/2 for z ≤ 0. Since

a(x) = b(∆(x)) + ∆(x)

and Ex∼p[∆(x)] = 0, Ex∼p[−a(x)] = Ex∼p[−b(∆(x))]. This means

E
x∼p

[−a(x)] = E
x∼p

[−b(∆(x))] ≥ E
x∼p

[−b(∆(x))1∆(x)<0]

≥ E
x∼p

[∆2
−(x)/2]

or by (14),

E
x
[−a(x)] ≥ E

x
[∆2

−(x)/2] ≥
1

2
dTV (p, q)

2. (15)
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Bounding the positive higher moments. We have that p(x)ea(x) = max(q(x), e−2p(x)) so

E[ea(x)] =
∫

max(q(x), e−2p(x))dx

≤ 1 + e−2 Pr[a(x) = −2].

In the following, we use that et ≥ 1 + t for all t, as well as et = 1 + t+
∑∞

k=2
1
k! t

k. Therefore

1 + e−2 Pr[a(x) = −2]
≥ E[ea(x)] = E[ea−(x)1a(x)≤0 + ea+(x)1a(x)>0]

≥ E[1 + (a−(x) + a+(x)) +

∞∑
k=2

1

k!
ak+(x)]

= 1 + E[a(x)] +
∞∑
k=2

1

k!
E[ak+(x)]

so
∞∑
k=2

1

k!
E[ak+(x)] ≤ E[−a(x)] + e−2 Pr[a(x) = −2].

We now show that the Pr[a(x) = −2] is smaller than the E[−a(x)] term, by relating to −b. When
a(x) = −2, ∆(x) ≤ −1+1/e2, and b(∆(x)) = −2−∆(x) ≤ −1. Since−b(∆(x)) is non-negative,
and at least 1 whenever a(x) = −2,

E[−a(x)] = E[−b(∆(x))] ≥ Pr[a(x) = −2] · 1
and hence

∞∑
k=2

1

k!
E[ak+(x)] ≤ (1 +

1

e2
)E[−a(x)]. (16)

In particular, E[ak+(x)] ≤ 2k!E[−a(x)] for all k ≥ 2.

Bounding the second moment of a. We have that

E[a(x)2] = E[a2+(x) + a2−(x)]

and E[a2+(x)] ≤ 4E[−a(x)] by (16). We now bound E[a2−(x)]. Note that |a−(x)| ≤ 2
1−1/e2 |∆−(x)|

by the construction of a. Therefore
a2−(x) ≤ 6∆2

−(x)

and so by (15),
E[a2−(x)] ≤ 6E[∆2

−(x)] ≤ 12E[−a(x)].
Thus

E[a2(x)] ≤ 16E[−a(x)]. (17)

Bernstein Concentration. Now we can apply Bernstein’s inequality (Theorem 2.10 of [8]).

We apply the theorem to Xi := ai(xi), which are independent. The theorem uses that
n∑

i=1

E[X2
i ] = n E

i,x
[ai(x)

2] ≤ 16n E
i,x
[−ai(x)] =: v

by (17), and since
n∑

i=1

E[(Xi)
k
+] = n E

i,x
[ai,+(x)

k] ≤ 2k! E
i,x
[−ai(x)] ≤

1

2
vk!

so we can set c = 1. Applying the theorem, we have that S =
∑

ai(xi)− E[ai(xi)] satisfies

S ≤
√

2v log
1

δ
+ log

1

δ
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with probability 1− δ. Plugging in v and rescaling by n, with probability 1− δ we have:

E
i
[ai(xi)] ≤ E

i,x
[ai(x)] +O(1) ·

√
E[−a(x)] 1

n
log

1

δ
+

1

n
log

1

δ

By our assumption on n for a sufficiently large constant in the big O, this implies

E
i
[ai(xi)] ≤ E

i,x
[ai(x)] +

1

6
ε
√

E
i,x
[−ai(x)] + ε2/8

Since by (15), ε ≤
√
Ei[dTV (pi, qi)2] ≤

√
Ei,x[−2ai(x)], this means

E
i
[γi(xi)] ≤ E

i
[ai(xi)] ≤ (−1 +

√
2

6
) E
i,x
[−ai(x)] + ε2/8

≤ (−1 +
√
2

6
)
1

2
ε2 +

1

8
ε2

≤ −1

4
ε2

as desired.

Lemma B.2. For any y = ϕ(θ + η),

γθ(y) =

{
log Φ(−θ)− log Φ(−θ∗) if y = 0

η(θ − θ∗)− (θ−θ∗)2

2 if y > 0

and therefore, for all y,
γθ(y) ≤ |η|2/2.

Proof. Let Φ(x) be the cdf of a standard Gaussian. For y > 0,

γθ(y) =
1

2
((y − θ∗)2 − (y − θ)2)

=
1

2
(η2 − (η + θ∗ − θ)2)

= η(θ − θ∗)− (θ − θ∗)2

2

Thus:

γθ(y) =

{
log Φ(−θ)− log Φ(−θ∗) if y = 0

η(θ − θ∗)− (θ−θ∗)2

2 if y > 0

Now suppose |η| ≤ B. We can upper bound γθ(y) for all θ:

• If y = 0, then −θ∗ ≥ −B, so

γθ(0) ≤ − log Φ(−θ∗) ≤ − log e−B2/2 = B2/2.

• If y > 0, then

γθ(y) = (θ − θ∗)η − (θ − θ∗)2

2
≤ η2/2 ≤ B2/2.

as desired.

Lemma B.3 (One-dimensional net). Let A > B2 > 1. There exists a partition of R into O(A/ε)
intervals such that, for each interval I in the partition and every y = ϕ(θ∗ + η) with |η| ≤ B, one of
the following holds:

• For all θ ∈ I , γθ(y) ≤ −A

• For all θ, θ′ ∈ I , |γθ(y)− γθ′(y)| ≤ ε

19



Proof. To define our partition, we actually define two partitions, depending on whether y = 0, then
intersect them for our final partition.

First, consider y = 0. By Lemma B.2, γθ(0) is monotonically decreasing in θ, from its maximum
of at most B2/2. We can thus define a partition P1 consisting of intervals of the form Ii := {θ |
γθ(0) ∈ (B2/2− (i+ 1)ε,B2/2− iε)}, for i ∈ {0, 1, . . . , (A+B2/2)/ε}, plus a special interval
I ′ of {θ | γθ(0) < −A}. When y = 0, this partition satisfies the desired conclusion to the lemma:
|γθ(0)− γθ′(0)| ≤ ε for all θ, θ′ ∈ Ii, while γθ(0) < −A for θ ∈ I ′. Call this partition P0, which
has size O(A/ε).

Second, consider y > 0. Define R =
√
2A+B. Note that R2 ≲ A and (R−B)2 ≥ 2A. Therefore

for |θ − θ∗| ≥ R,

γθ(y) ≤ −
1

2
max(0, |θ − θ∗| − η)2 ≤ −A.

Consider any θ, θ′ ∈ [θ∗ −R, θ∗ +R] with α := |θ − θ′|. We have

|γθ(y)− γθ′(y)| ≤ |η(θ − θ′)|+ 1

2

∣∣(θ′ − θ∗)2 − (θ − θ∗)2
∣∣

≤ Bα+
1

2
|(θ′ − θ)(−2θ∗ + (θ′ + θ))|

≤ Bα+
1

2
α(2R) = α(B +R).

Thus, for α = ε
2R , this is at most ε. If we partition [θ∗ −R, θ∗ +R] into length-α intervals, we get a

size O(R2/ε) = O(A/ε) partition P1 of R that has the desired property for all y > 0.

Our final partition is defined by all endpoints in either P0 and P1. This has size O(A/ε), and within
each interval the conclusion holds for both y = 0 and y > 0, as needed.

Lemma B.4. Let x1, . . . , xn be fixed, and yi ∼ ϕ(xT
i w

∗ + ηi) for ηi ∼ N (0, 1). For n ≥ 1
ε2 k log

1
ε ,

the MLE ŵ satisfies
d̃(ŵ, w∗) ≤ ε.

Proof. For any w ∈ Rk, and a sample (xi, yi), let pw(y|xi) be the conditional distribution of
y = ϕ(⟨xi, w⟩+ η), and let γi,w be the log-likelihood ratio between w and w∗ on this sample:

γi,w(y) := log
pw(y|xi)

pw∗(y|xi)
.

Then
E
y
[γi,w(y)] = −dKL(pi,w∗(y|xi)||pi,w(y|xi)).

Define

dKL(w
∗, w) :=

1

n

n∑
i=1

dKL(pi,w∗(y|xi)||pi,w(y|xi)).

Concentration. From Lemma B.1, we see that if d̃(w∗, w) ≥ ε, then for n ≥ O( 1
ε2 log

1
δ ),

γw :=
1

n

n∑
i=1

γi,w(yi) < −
ε2

4
, (18)

with probability 1− δ.

Of course, whenever γw < 0, the likelihood under w∗ is larger than the likelihood under w. Thus, for
each fixed w with d̃(w∗, w) ≥ ε, maximizing likelihood would prefer w∗ to w with probability 1− δ
if n ≥ O( 1

ε2 log
1
δ ).

Nothing above is specific to our ReLU-based distribution. But to extend to the MLE over all w, we
need to build a net using properties of our distribution.
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Building a net. First, with high probability, |ηi| ≤ B = O(
√
log n) for all i. Suppose this happens.

For each i, by an abuse of notation, let γi,w(y) = γ⟨xi,w⟩(y) where the value of θ∗ when considering
i is ⟨xi, w

∗⟩. By Lemma B.2,
γi,w(yi) ≤ B2/2

for all i. Let A = O(n log n) > nB2. By Lemma B.3, for each i ∈ [n], there exists a partition Pi of
R into O(A/ε2) intervals, such that for interval I ∈ Pi, and any w,w′ with xT

i w, x
T
i w

′ ∈ I , either

|γi,w(yi)− γi,w′(yi)| ≤ ε2/2 (19)

or γi,w(yi) < −A.

These individual partitions Pi on ⟨xi, w⟩ induce a partition P on Rk, where w,w′ lie in the same cell
of P if ⟨xi, w⟩ and ⟨xi, w

∗⟩ are in the same cell of Pi for all i ∈ [n]. Since P is defined by n sets of
O
(
A
ε2

)
parallel hyperplanes in Rk, the number of cells in P is:

2

(
2Aen

ε2k

)k

.

We choose a net N to contain, for each cell in P , the w in the cell maximizing d̃(w∗, w). This has
size

log|N | ≲ k log
n

ε
.

By (18), for our n ≥ O
(

1
ε2 k log

k
ε

)
, we have with high probability that γw ≤ − ε2

4 , for all w ∈ N
with d̃(w∗, w) ≥ ε. Suppose that both this happens, and |ηi| ≤ B for all i. We claim that the MLE ŵ

must have d̃(w∗, ŵ) < ε.

Consider any w ∈ Rd with d̃TV (w
∗, w) ≥ ε. Let w′ ∈ N lie in the same cell of P . By our choice of

N , we know d̃TV (w
∗, w′) ≥ d̃TV (w

∗, w) ≥ ε, so γw′ ≤ −ε2. Now we consider two cases. In the
first case, there exists i with γi,w(yi) < −A. Then

γw =
1

n

∑
i

γi,w(yi) ≤ −
A

n
+B2/2 < 0.

Otherwise, by (19),

γw ≤ γw′ + |γw − γw′ | ≤ −ε2 +max
i
|γi,w(yi)− γi,w′(yi)| ≤ −ε2/2.

In either case, γw < 0 and the likelihood under w∗ exceeds that under w. Hence the MLE ŵ must
have d̃(w∗, ŵ) ≤ ε.

Theorem B.5. Let y = ϕ
(
xTw∗ + η

)
, for w∗ ∈ Rk, x ∼ Dx, and η ∼ N (0, 1). Then for a

sufficiently large constant C > 0,

n = C · k
ε2

log
1

ε
samples of {(yi, xi)}ni=1 suffices to guarantee that the MLE ŵ satisfies

d(ŵ, w∗) ≤ ε.

Proof. Let Dx denote the dataset {xi}i∈[n] that is used to find the MLE. Notice that the MLE is
found using this finite subset, but we would like to make a claim about Dx without making any
parametric or simplifying assumptions on the distribution Dx.

An application of Lemma 4.3 tells us that with probability 1 − e−Ω(nε2), the expectation over the
distribution Dx and the dataset Dx are within ε/2 of one another:

d(ŵ, w∗) ≤ d̃(ŵ, w∗) + ε/2.

Now, all we need to show is that the MLE has a small TV distance on the finite dataset, and Lemma B.4
tells us that with probability 1− e−Ω(nε2),

d̃(ŵ, w∗) ≤ ε/2.

Substituting in the above inequality, we get d(ŵ, w∗) ≤ ε.
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C ReLU Activations with d > 1, Unknown Covariance

We recommend the reader review Appendix B, which contains the proof recipe for the case of scalar
y. The proofs in this section generalize those of Appendix B.

Consider a sample (x, y) ∈ Rk×d, with

y = ϕ(W ∗x+ η), (20)

where W ∗ ∈ Rd × k, and noise η ∼ N (0,Σ∗). The matrices W ∗ and Σ∗ are unknown. For
each matrix W ∈ Rd×k, let θ = Wx ∈ Rd, denote a reparametrization of W , and let θ∗ denote
θ∗ = W ∗x. Let S denote the co-ordinates of y that are zero-valued. Then the log-likelihood for each
θ,Σ is given by

fθ,Σ(y) := log pW,Σ(y | x) = c− 1

2
log|Σ|+ log

∫
t:tS≤0,tSc=ySc

exp
{
−(t− θ)

T
Σ−1(t− θ)/2

}
.

where c is a normalization constant which does not depend on θ or Σ. Let

P := Σ−1

and let P ∗ be the precision matrix of the noise η, and PS , PSSc , PScS , PSc be the block matrices of
P corresponding to the index sets S and its complement Sc.

By some arithmetic involving completion of squares, we can decompose the integral in f into the
sum of two functions g, h, such that

fθ,Σ(y) = c− 1

2
log|Σ|+ gθ,Σ(y) + hθ,Σ(y).

The first term g corresponds to the quadratic term involving the observed positive-valued coordinates
ySc :

gθ,Σ(y) = −(ySc − θSc)
T
(PSc − PScS(PS)

−1PSSc)(ySc − θSc)/2.

As the matrix PSc − PScS(PS)
−1PSSc = ((P−1)Sc)−1 = Σ−1

Sc is the precision matrix of ηS , if Σ
were the covariance of η, we can simplify the above equation as

gθ,Σ(y) = −(ySc − θSc)
T
(ΣSc)−1(ySc − θSc)/2. (21)

The second term corresponds to the probability under θ, P of observing zero-valued coordinates
corresponding to the index set S, given the positive coordinates ySc :

hθ,Σ(y) = log

∫
t≤0

exp
(
−∥P

1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥2/2

)
. (22)

The log-likelihood ratio is the difference between fθ,Σ and fθ∗,Σ∗ , which we denote by

γθ,Σ(y) := fθ,Σ(y)− fθ∗,Σ∗(y)

Over a dataset {(xi, yi)}i∈[n], the average log-likelihood ratio is given by

γ̄W,Σ :=
1

n

∑
i

γWxi,Σ(yi).

Remark C.1. For ease of analysis, we will interchange between the precision matrix P in γθ,P and
the covariance matrix Σ in γθ,Σ, and it should be understood that P = Σ−1. The same applies to the
functions gθ,Σ and hθ,Σ. Finally, the matrix P ∗ refers to the ground truth precision matrix (= Σ∗−1).

Analogous to Appendix B, we start by showing that the log-likelihood ratio is bounded by the noise
in the sample. The proofs of results in this Section are in Subsection C.1.
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Lemma C.2. Assume P ∗ := Σ∗−1 satisfies Assumption 4.4.

For all y = ϕ(θ∗ + η) such that S denotes the zero-coordinates of y, and η such that

∥P ∗ 1
2

S ηS∥, ∥P
∗ 1

2

Sc ηSc∥ ≤ B, if the max eigenvalue λmax(P ) satisfies

λmax(P )

λmin(P ∗)
≤ C,

then for all θ ∈ Rd, we have

γθ,P ≤
d

2
log(C) + 3B2.

For the ease of stating the next Lemma, we assume that across the samples of y in the training data,
at least one coordinate has sufficiently many positive samples. The proof of our theorem separately
handles cases violating this assumption.
Assumption C.3. Let δ ∈ (0, 1) be a parameter corresponding to the failure probability of our
algorithm. Then, there exists a coordinate j ∈ [d], such that for at least n′ = O

(
log 1

δ

)
samples

yi1 , . . . , yin′ in the dataset, the j-th coordinate is positive.

This is a very weak assumption: if it is violated, then W = 0d×k,Σ = 0 will achieve a TV distance
smaller than 2ε2

d .

Appendix B assumed that the variance in y was 1. Since Section 4.2 considers an unknown Σ∗, we
need the following Lemma to show that the MLE will select a precision matrix P , whose eigenvalues
are reasonably bounded wrt Σ∗−1.

Lemma C.4. Under Assumption 4.4, C.3, consider P ∈ Rd×d
+ such that λmax(P )

λmin(P ) ≤ κ and

λmax(P )

λmax(P ∗)
≥ O

(
κ3d2n2

k2
+

B2nκ

k

)
.

Then, for all W ∈ Rd×k, and for all yi = ϕ(W ∗xi + ηi) with ∥P ∗ 1
2

Sc ηSc∥, ∥P ∗ 1
2

S ηS∥ ≤ B, we have

γ̄W,P :=
1

n

∑
i∈[n]

γWxi,P (yi) < 0.

Lemma C.2 and Lemma C.4 show that the MLE will only select precision matrices P that have max
eigenvalues in a certain range of the true precision matric P ∗.

Now, for matrices in the above eigenvalue range, we first construct a geometric net over the max
eigenvalue ρ of the precision matrix, and then cover the matrices whose max eigenvalue is smaller
than ρ.

Lemma C.5 (Σ cover). For B > 1, and 0 < L < U , let A > max
{√

log 1
ε , B

2Uκ, d
2 log

(
κU
L

)
, 1
}

.

Let P ∗ := Σ∗−1 be the precision matrix of η. Let Ω ⊂ Rd×d
+ denote the set of positive definite

matrices P ∈ Rd×d
+ with condition number κ and whose maximum eigenvalue lies in [Lλmin(P

∗), U ·
λmax(P

∗)].

Then, there exists a partition of Ω of size(
poly

(
A,

1

ε

))d2

such that for all θ ∈ Rd and all y = ϕ(θ∗ + η) ∈ Rd with ∥P ∗ 1
2

S ηS∥, ∥P
∗ 1

2

Sc ηSc∥ ≤ B, and each cell
I in the partition, one of the following holds:

• for all P ∈ I , γθ,P (y) < −A, or

• for all P, P ′ ∈ I , we have |γθ,P (y)− γθ,P ′(y)| ≤ ϵ.
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Analogous to Appendix B, we now construct a partition over W for a fixed precision matrix P , such
that each cell in the partition has very small log-likelihood (in which case the MLE will not choose it)
or the log-likelihood changes slowly.
Lemma C.6 (W -net). Let ηSc , ηS be such that

∥P ∗ 1
2

Sc ηSc∥ ≤ B1, ∥P
∗ 1

2

S ηS∥ ≤ B2,

for B1, B2 ≥ 0.

Let A > max{B2
1 , B

2
2 ,poly(C, κ)}. Let P ∗ = Σ∗−1 be the precision matrix of η. For a fixed

matrix P ∈ Rd×d whose condition number satisfies Assumption 4.4 and whose eigenvalues satisfy
λmax(P ) ∈ [e−

2A
d λmin(P

∗), Cλmax(P
∗)], there exists a partition I of Rd with size(
poly

(
A,

1

ε

))3d

such that for each interval I ∈ I, we have one of the following:

• for all θ ∈ I , γθ,P (y) < −A, or

• for all θ, θ′ ∈ I , |γθ,P (y)− γθ′,P (y)| ≤ ϵ.

Using the above lemmas, we can show that the MLE will only pick out Ŵ , P̂ such that they have
small TV on the dataset of {xi}.
Lemma C.7. Let x1, . . . , xn be fixed, and yi = ϕ(W ∗xi + ηi) for ηi ∼ N (0,Σ∗), and W ∗ ∈ Rd×k

with Σ∗ ∈ Rd×d satisfying Assumption 4.4 and Assumption C.3. For a sufficiently large constant
C > 0,

n = C · (d
2 + kd)

ε2
log

kdκ

ε

samples suffice to guarantee that with high probability, the MLE Ŵ , Σ̂ satisfies

d̃
(
(Ŵ , Σ̂), (W ∗,Σ∗)

)
≤ ε.

Lemma C.8. Let {xi}ni=1 be i.i.d. random variables such that xi ∼ Dx.

Let P ∗ := Σ∗−1. Let λ∗
min, λ

∗
max be the minimum and maximum eigenvalues of P ∗. For 0 < L < U ,

let Ω denote the following set of precision matrices

Ω :=

{
P ∈ Rd×d

+ :
λmax(P )

λmin(P )
≤ κ and λmax(P ) ∈ [L · λ∗

min, U · λ∗
max]

}
.

Then, for a sufficiently large constant C > 0, and for

n = C ·
(
kd+ d2

ε2

)
log

(
kdκ

ε
log

(
U

L

))
,

we have:

Pr
xi∼Dx

[
sup

W∈Rd×k,P∈Ω

∣∣∣d̃((W,P ), (W ∗, P ∗))− d((W,P ), (W ∗, P ∗))
∣∣∣ > ε

]
≤ e−Ω(nε2).

Theorem 4.5. Let Rd×d
κ denote the set of positive definite matrices with condition number κ. Given n

samples {(xi, yi)}ni=1 satisfying Assumption 4.4, where xi ∼ Dx i.i.d., and yi is generated according
to (7), let Ŵ , Σ̂ := argmaxW∈Rd×k,Σ∈Rd×d

κ

1
n

∑
i log pW,Σ(yi | xi). Then, for a sufficiently large

constant C > 0,

n = C ·
(
kd+ d2

ε2

)
log

(
κkd

εδ

)
samples suffice to ensure that with probability 1− δ, we have

dTV

(
(Ŵ , Σ̂), (W ∗,Σ∗)

)
≤ ε.
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Proof of Theorem 4.5. First, we consider the cases violating Assumption C.3.

As n ∝ d2

ε2 log 1
δ , if assumption C.3 is violated, then it implies that each coordinate is non-zero in

atmost a ε2/d2 fraction of the samples, and a union bound implies that the probability of seeing a
non-zero vector is atmost ε2/d. Hence, with high probability over the draws of the data, returning the
all-zeros vector always will achieve a TV distance smaller than 2ε2

d .

Let P̂ , P ∗ = Σ̂−1,Σ∗−1. Now, if Assumption C.3 holds, Lemma C.7 guarantees that the MLE has
small TV on the xi observed in the dataset:

d̃((Ŵ , P̂ ), (W ∗, P ∗)) ≤ ε.

The above result is over the finite xi observed in our dataset. To generalize it over x ∼ Dx, we use
Lemma C.8, which gives

d((Ŵ , P̂ ), (W ∗, P ∗))− d̃((Ŵ , P̂ ), (W ∗, P ∗)) ≤ ε.

Rescaling ε gives the conclusion of the Theorem.

C.1 Proofs of Appendix C.

Lemma C.2. Assume P ∗ := Σ∗−1 satisfies Assumption 4.4.

For all y = ϕ(θ∗ + η) such that S denotes the zero-coordinates of y, and η such that

∥P ∗ 1
2

S ηS∥, ∥P
∗ 1

2

Sc ηSc∥ ≤ B, if the max eigenvalue λmax(P ) satisfies

λmax(P )

λmin(P ∗)
≤ C,

then for all θ ∈ Rd, we have

γθ,P ≤
d

2
log(C) + 3B2.

Proof. We have

γθ,Σ ≤
1

2
log
|Σ∗|
|Σ|

+ gθ,Σ − gθ∗,Σ∗ + hθ,Σ − hθ∗,Σ∗ . (23)

From Lemma C.9, C.10, we have

gθ,Σ − gθ∗,Σ∗ + hθ,Σ − hθ∗,Σ∗ ≤ gθ,Σ +
1

2
log
|P ∗

S |
|PS |

+ 3B2.

Substituting in Eqn (23), we get

γθ,Σ ≤ gθ,Σ +
1

2
log
|Σ∗|
|Σ|

+
1

2
log
|P ∗

S |
|PS |

+ 3B2.

As (P ∗
S)

−1 = Σ∗
S − Σ∗

SScΣ
∗−1
Sc Σ∗

ScS , by the matrix determinant rule, we have

log|Σ∗|+ log|P ∗
S | = log|Σ∗

Sc |.

This gives

γθ,Σ ≤ gθ,Σ +
1

2
log
|Σ∗

Sc |
|ΣSc |

+ 3B2.

This gives

γθ,Σ ≤ gθ,Σ +
d

2
log

λmax(Σ
∗)

λmin(Σ)
+ 3B2,

= gθ,Σ +
d

2
log

λmax(P )

λmin(P ∗)
+ 3B2. (24)
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As the matrix Σ−1
Sc is positive definite, we trivially get

gθi,Σ(y) = −(yi,Sc − θi,Sc)
T
(ΣSc)−1(yi,Sc − θi,Sc)/2 ≤ 0.

Substituting in Eqn (24), we get

γθ,Σ ≤
d

2
log

λmax(P )

λmin(P ∗)
+ 3B2.

As the Lemma assumes

λmax(P ) ≤ Cλmin(P
∗),

we get

γθ,Σ ≤
d

2
log(C) + 3B2.

Lemma C.9. Consider the function g defined in Eq (21). For the ground truth parameters θ∗,Σ∗,
the function gθ∗,Σ∗ satisfies

−gθ∗,Σ∗ ≤ 1

2
∥ηSc∥2ΣSc ,

which is, with probability 1− e−Ω(d),

−gθ∗,Σ∗ ≤ O(d).

Proof. As ySc are the positive valued coordinates in y, we have

ySc − θ∗Sc = ηSc ,

which gives

gθ∗,Σ∗(y) = −(ySc − θ∗Sc)
T
(Σ∗

Sc)−1(ySc − θ∗Sc)/2,

= −∥ηSc∥2ΣSc /2.

As ηSc is Gaussian with covariance Σ∗
Sc , the expected norm is |Sc|

2 , which implies that with probability
1− e−Ω(|Sc|), we have

−gθ∗,Σ∗(y) ≤ O(|Sc|).

Lemma C.10. Consider y generated according to Eqn (20) by

y = ϕ(θ∗ + η), η ∼ N (0,Σ∗).

For all θ ∈ Rd,Σ ∈ Rd×d
+ , and the function hθ,Σ defined in Eqn (22), the difference hθ,Σ(y) −

hθ∗,Σ∗(y) satisfies

hθ,Σ(y)− hθ∗,Σ∗(y) ≤ 1

2
log
|P ∗

S |
|PS |

+ ∥P ∗ 1
2

Sc ηSc∥2 + 2∥P ∗ 1
2

S ηS∥2 − ∥ηSc∥2ΣSc +O(|S|), (25)

where P ∗ = Σ∗−1 is the precision matrix of η.

Proof. For θ ∈ Rd,Σ ∈ Rd×d
+ , and P = Σ−1, we have

hθ,Σ(y) = log

∫
t≤0

exp
(
−∥P

1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥2/2

)
,

≤ log

∫
t∈R|S|

exp
(
−∥P

1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥2/2

)
,

≤ |S|
2

log(2π)− 1

2
log|PS |, (26)
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where the last step follows from the integral of a Gaussian pdf. This gives a sufficient upper bound
on hθ,Σ(y), and now we will focus on lower bounding hθ∗,Σ∗(y).

For the coordinates of y in Sc, we have ySc − θ∗Sc = ηSc . Substituting in Eqn (22), we get

hθ∗,Σ∗(y) = log

∫
t≤0

exp
(
−∥P ∗ 1

2

S (t− θ∗S) + (P ∗
S)

−1/2P ∗
SScηSc∥2/2

)
,

= log

∫
t≤0

exp
(
−∥P ∗ 1

2

S (t− θ∗S) + (P ∗
S)

−1/2P ∗
SScηSc∥2/2

)
.

Using ∥a+ b∥2 ≤ 2a2 + 2b2, we get

hθ∗,Σ∗(y) ≥− ∥(P ∗
S)

−1/2P ∗
SScηSc∥2 + log

∫
t≤0

exp
(
−∥P ∗ 1

2

S (t− θ∗S)∥2
)
.

Set u := P
∗ 1

2

S (t− θ∗S), and by the change of variables formula, we get:

hθ∗,Σ∗(y) ≥− ∥(P ∗
S)

−1/2P ∗
SScηSc∥2 + log

∫
P

∗− 1
2

S u+θ∗
S≤0

∣∣∣(P ∗
S)

−1/2
∣∣∣ · exp(−∥u∥2),

=− ∥(P ∗
S)

−1/2P ∗
SScηSc∥2 + 1

2
log
∣∣P ∗−1

S

∣∣+ log

∫
P

∗− 1
2

S u+θ∗
S≤0

exp
(
−∥u∥2

)
.

For i ∈ S, we have θ∗i + ηi ≤ 0. This gives

P
∗− 1

2

S u ≤ ηS ⇒ P
∗− 1

2

S u+θ∗S ≤ 0⇒ log

∫
P

∗− 1
2

S u+θ∗
S≤0

exp
(
−∥u∥2

)
≥ log

∫
P

∗− 1
2

S u≤ηS

exp
(
−∥u∥2

)
,

using which we get

hθ∗,Σ∗(y) ≥− ∥(PS)
∗−1/2P ∗

SScηSc∥2 − 1

2
log|P ∗

S |+ log

∫
P

∗− 1
2

S u≤ηS

exp
(
−∥u∥2

)
.

By another change of variables via v := P
∗− 1

2

S u− ηS , we get

hθ∗,Σ∗(y) ≥− ∥(P ∗
S)

−1/2P ∗
SScηSc∥2 − 1

2
log|P ∗

S |+ log

∫
v≤0

∣∣∣P ∗ 1
2

S

∣∣∣ exp(−∥P ∗ 1
2

S (v + ηS)∥2
)
,

≥− ∥(P ∗
S)

−1/2P ∗
SScηSc∥2 − 1

2
log|P ∗

S | − 2∥P ∗ 1
2

S ηS∥2 + log

∫
v≤0

∣∣∣P ∗ 1
2

S

∣∣∣ exp(−2∥P ∗ 1
2

S v∥2
)
,

=− ∥(P ∗
S)

−1/2P ∗
SScηSc∥2 − 1

2
log|P ∗

S | − 2∥P ∗ 1
2

S ηS∥2 +O(|S|).

As (Σ∗
Sc)−1 = P ∗

Sc − P ∗
ScS(P

∗
S)

−1P ∗
SSc , we have

−∥(PS)
∗−1/2P ∗

SScηSc∥2 = ∥ηSc∥2Σ∗
Sc
− ∥P ∗1/2

Sc ηSc∥2,
which gives

hθ∗,Σ∗(y) ≥∥ηSc∥2Σ∗
Sc
− ∥P ∗ 1

2

Sc ηSc∥2 − 1

2
log|P ∗

S | − 2∥P ∗ 1
2

S ηS∥2 +O(|S|). (27)

From Eqn (26) − Eqn (27), we get

hθ,Σ(y)− hθ∗,Σ∗(y) ≤ ∥P ∗ 1
2

Sc ηSc∥2 + 2∥P ∗ 1
2

S ηS∥2 − ∥ηSc∥2Σ∗
Sc

+
1

2
log
|P ∗

S |
|PS |

+O(|S|). (28)

Lemma C.4. Under Assumption 4.4, C.3, consider P ∈ Rd×d
+ such that λmax(P )

λmin(P ) ≤ κ and

λmax(P )

λmax(P ∗)
≥ O

(
κ3d2n2

k2
+

B2nκ

k

)
.

Then, for all W ∈ Rd×k, and for all yi = ϕ(W ∗xi + ηi) with ∥P ∗ 1
2

Sc ηSc∥, ∥P ∗ 1
2

S ηS∥ ≤ B, we have

γ̄W,P :=
1

n

∑
i∈[n]

γWxi,P (yi) < 0.
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Proof of Lemma C.4. For each W ∈ Rd×k, let

θi := Wxi.

From Eqn (24) in Lemma C.2, for each i ∈ [n], we have,

γθi,Σ ≤ gθi,Σ +
d

2
log

λmax(P )

λmin(P ∗)
+ 3B2,

≤ gθi,Σ +
d

2
log

κλmax(P )

λmax(P ∗)
+ 3B2.

Now consider

gθi,Σ(y) = −
1

2
(yi,Sc − θi,Sc)

T
(ΣSc)−1(yi,Sc − θi,Sc),

≤ −1

2
∥y − θ∥2λmin

(
Σ−1

Sc

)
,

≤ −1

2
∥y − θ∥2λmin

(
Σ−1

)
= −1

2
∥y − θ∥2λmin(P ),

≤ −1

2
∥y − θ∥2λmax(P )

κ
,

where the second inequality comes from the eigenvalue interlacing Theorem, and the last line follows
from the condition number assumption on Σ, P .

By Assumption C.3, there exist at least ε2n samples for a coordinate j such that (yi)j > 0. Averaging
gθi,Σ, by Lemma A.1, we get that with high probability,∑

i

∥yi − θi∥2 ≥
σ∗2
j k

2
,

which gives

1

n

∑
i

gθi,Σ(yi) ≤ −
σ∗2
j kλmax(P )

4nκ
,

≤ − kλmax(P )

4nκλmax(P ∗)
.

This gives

γ̄W,Σ ≤ −
λmax(P )k

4nκλmax(P ∗)
+

d

2
log

(
κ · λmax(P )

λmax(P ∗)

)
+ 3B2,

≤ − λmax(P )k

4nκλmax(P ∗)
+ d

√
κ · λmax(P )

λmax(P ∗)
+ 3B2.

Completing the squares, we get

γ̄W,Σ ≤ −

(√
λmax(P )k

4nκλmax(P ∗)
− κd

√
n

k

)2

+
κ2d2n

k
+ 3B2.

For

λmax(P )

λmax(P ∗)
≥ O

(
κ3d2n2

k2
+

B2nκ

k

)
,

the above inequality satisfies

γ̄W,Σ ≤ 0.
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Lemma C.11. Assume P ∗ := Σ∗−1 satisfies Assumption 4.4 with condition number κ.

For all y = ϕ(θ∗ + η) such that S denotes the zero-coordinates of y, and η such that

∥P ∗ 1
2

S ηS∥, ∥P
∗ 1

2

Sc ηSc∥ ≤ B, consider precision matrices P whose max eigenvalue λmax(P ) sat-
isfies

λmax(P )

λmin(P ∗)
≤ C.

Let A ≥ 4max{d2 logC, 3B
2}. Then for V := (P−1)Sc and RP defined as

RP := 2B
√
C +

√
3

2
A, (29)

we have

∥θSc − θ∗Sc∥V ≥ RP =⇒ γθ,P ≤ −A.

Proof of Lemma C.11. Consider Eqn (24) in Lemma C.2. We have

γθ,P ≤ gθ,P +
d

2
log

λmax(P )

λmin(P ∗)
+ 3B2,

≤ gθ,P +
d

2
logC + 3B2,

where the last inequality follows from λmax(P )
λmin(P∗) ≤ C in the statement of the Lemma.

By the definition of gθ,P , we have

gθ,P := −1

2
(ySc − θSc)T (PSc − PScSP

−1
S PSSc)(ySc − θSc).

We can rewrite the matrix (PSc − PScSP
−1
S PSSc) as

(PSc − PScSP
−1
S PSSc) =

(
(P−1)Sc

)−1
.

By setting
V := (P−1)Sc ,

we can rewrite gθ,P as

gθ,P := −1

2
∥ySc − θSc∥2V = −1

2
(ySc − θSc)TV −1(ySc − θSc).

Now, as ySc = ηSc + θ∗Sc , we have

gθ,P = −1

2
∥ηSc + θ∗Sc − θSc∥2V ,

= −1

2
∥θ∗Sc − θSc∥2V + ∥ηSc∥V ∥θ∗Sc − θS∥ −

1

2
∥ηSc∥2V .

Ignoring the ∥ηSc∥2V term, we get

gθ,P ≤ −
1

2
∥θ∗Sc − θSc∥2V + ∥ηSc∥V ∥θ∗Sc − θS∥V .

By the Cauchy-Schwartz inequality and the eigenvalue interlacing theorem, we have

∥ηSc∥V ≤ λ
1
2
max(V

−1) · ∥ηSc∥2 =
∥ηSc∥2
λ

1
2

min(V )
=

∥ηSc∥2
λ

1
2

min(P
−1
Sc )
≤ ∥ηSc∥2

λ
1
2

min(P
−1)

= λ
1
2
max(P ) · ∥ηSc∥2
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By the statement of the Lemma, we have ∥P ∗ 1
2

Sc ηSc∥ ≤ B =⇒ ∥ηSc∥2 ≤ B

λ
1
2
min(P

∗
Sc )

. Substituting

in the above inequality, we get

∥ηSc∥V ≤
λ

1
2
max(P ) · ∥ηSc∥2
λ

1
2

min(P
∗
Sc)

≤
√
CB.

Substituting in the function gθ,P , we get

gθ,P ≤ −
1

2
∥θ∗Sc − θSc∥2V +B

√
C∥θ∗Sc − θS∥V .

Hence, for θ satisfying

∥θSc − θ∗Sc∥V ≥ RP := 2B
√
C + 2

√
A,

we get

γθ,P ≤ −A.

In order to cover our precision matrices, we will consider a subset of matrices whose entries are
quantized by an interval size β:
Definition C.12 (Quantized Precision Matrices). For κ > 0, define Ω ⊂ Rd×d as the set of positive
definite matrices with condition number κ.

For ρ > 0, define the set Ωρ ⊂ Ω as

Ωρ :=
{
P ∈ Ω : λmax(P ) ∈

[ρ
2
, ρ
]}

For a quantization size β > 0, define Ω̃ρ,β ⊂ Ωρ as:

Ω̃ρ,β := {P ∈ Ωρ : Pij ∈ {−ρ,−ρ(1− β),−ρ(1− 2β), · · · , ρ(1− 2β), ρ(1− β), ρ}.}

Lemma C.5 (Σ cover). For B > 1, and 0 < L < U , let A > max
{√

log 1
ε , B

2Uκ, d
2 log

(
κU
L

)
, 1
}

.

Let P ∗ := Σ∗−1 be the precision matrix of η. Let Ω ⊂ Rd×d
+ denote the set of positive definite

matrices P ∈ Rd×d
+ with condition number κ and whose maximum eigenvalue lies in [Lλmin(P

∗), U ·
λmax(P

∗)].

Then, there exists a partition of Ω of size(
poly

(
A,

1

ε

))d2

such that for all θ ∈ Rd and all y = ϕ(θ∗ + η) ∈ Rd with ∥P ∗ 1
2

S ηS∥, ∥P
∗ 1

2

Sc ηSc∥ ≤ B, and each cell
I in the partition, one of the following holds:

• for all P ∈ I , γθ,P (y) < −A, or

• for all P, P ′ ∈ I , we have |γθ,P (y)− γθ,P ′(y)| ≤ ϵ.

Proof. In order to construct the net over the precision matrices, we will consider geometrically spaced
values of ρ ∈ [L · λmin(P

∗), U · λmax(P
∗)], and for each ρ, we will construct a net over matrices

that have max eigenvalue ≤ ρ.

Now consider ρ > 0 that lies in the following discrete set:{
λmin(P

∗)2j , j ∈ ⌈log2(κU
L )⌉
}

This set is a geometric partition over the possible max eigenvalues that the MLE can return.

For the current ρ, let Ωρ follow Definition C.12. Now consider P ∈ Ωρ.
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Constructing the interval for which γθ,P < −A. By Lemma C.11, for V = (P−1)Sc , and

RP = O
(
B
√

ρ
λmin(P∗) +

√
A
)
= O(

√
A), we have

∥θSc − θ∗Sc∥V ≥ RP =⇒ γθ,P < −A.

For any θ, notice that the set of matrices P satisfying ∥θSc − θ∗Sc∥V ≥ RP is connected (as its
complement is compact). This forms the set I for which γθ,P < −A.

Constructing intervals for which |γθ,P − γθ,P ′ | ≤ ε. We will now construct a partition over those
P which satisfy ∥θSc − θ∗Sc∥V < RP , and show that the log-likelihood changes by atmost ε for each
cell in this partition.

If P ∈ Ωρ, then each of its elements Pij ∈ [−ρ, ρ]. For a parameter β > 0 that we will specify later,
consider the partition Ω̃ρ,β of Ωρ, following Definition C.12. Clearly, the size of Ω̃ρ,β can be upper
bounded by ∣∣∣Ω̃ρ,β

∣∣∣ ≤ ( 2

β

)d2

.

We will now analyze the effect of rounding down P ∈ Ωρ to its nearest element in Ω̃ρ,β .

By Claim C.13, for γ = 2κβd2, we have

(1− γ)∥t− θ∥2Σ ≤ ∥t− θ∥2Σ′ ≤ (1 + γ)∥t− θ∥2Σ, (30)

Consider the log-likelihood at θ, P ′:

fθ,P ′(y) =
1

2
log|P ′|+ log

∫
t:tS≤0,tSc=ySc

exp
(
−∥t− θ∥2Σ′

)
.

We will use the LHS of Eqn (30) to show that

fθ,P ′(y)− 1

2
log|P ′| ≤ fθ,P (y)−

1

2
log|P |+ ε,

and deal with the log|P ′| term later. The lower bound for the log-likelihood at P ′ can be obtained via
analogous proof using the RHS of Eqn (30).

By the LHS of Eqn (30), we get

fθ,P ′(y)− 1

2
log|P ′| ≤ log

∫
t:tS≤0,tSc=ySc

exp
(
−(1− γ)∥t− θ∥2Σ

)
.

Rearranging the terms, we get

fθ,P ′(y)− 1

2
log|P ′| ≤ − (1− γ)

2
∥ySc − θSc∥2ΣSc

+ log

∫
t≤0

exp

(
− (1− γ)

2
∥P

1
2

S (t− θ)S + P
− 1

2

S PSSc(ySc − θSc)∥2
)

The non-integral term corresponds to gθ,P in Eqn (21), while the integral term corresponds to hθ,P in
Eqn (22).

Handling the non-integral term. As we are only considering θ such that ∥ySc − θSc∥ΣSc ≤ RP ,
we have that for

β = O

(
ε

R2
P d

2κ

)
= O

(
ε

poly(A)

)
,

the non-integral term corresponds to gθ,P + ε, which gives

fθ,P ′(y)− 1

2
log|P ′| ≤gθ,P + ε+ log

∫
t≤0

exp

(
− (1− γ)

2
∥P

1
2

S (t− θ)S + P
− 1

2

S PSSc(ySc − θSc)∥2
)

(31)
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Handling the integral. Now we consider the integral term. Define the integral

I1 = log

∫
t≤0

exp

(
− (1− γ)

2
∥P

1
2

S (t− µ)∥2
)

for γ = 2d2κβ and µ = θS − P−1
S PSSc(ySc − θSc).

Define the analogous integral that does not have the (1− γ) term in the exponential:

I2 = log

∫
t≤0

exp

(
−1

2
∥P

1
2

S (t− µ)∥2
)

Clearly, I1 ≥ I2.

We only need to consider µ such that ∥µ∥∞ ≤ O(
√
Aρ): otherwise the likelihood will be smaller

than −A.

By Lemma C.14, for γ = O
(

ε
poly(A)

)
, we have

I1 ≤ I2 + ε.

Handling the log-determinant term. Now consider the log|P | term. As we are decreasing each
element by atmost βρ, none of the eigenvalues can increase. Moreover, as

Tr(P ′)− Tr(P ) ≥ −dβρ,
we can conclude that each eigenvalue decreases by at most −dβρ. Also, as ρ ≤ κλj(P ) ∀ j ∈ [d],
we can conclude that each eigenvalue satisfies

λj(P
′) ≥ λj(P )(1− dβκ).

Hence, the log-determinant satisfies

log|P ′| ≥ log|P |+ d log(1− βdκ) ≥ log|P | − d2βκ

1− dβκ
≥ log|P | −O(ε) for β ≤ ε

κd2
≤ ε

κr2d2
.

This finally gives
|γθ,P − γθ,P ′ | ≤ O(ε).

Bounding the size of the net As β = O
(

ε
poly(A)

)
, and the max radius is also O(poly(A)), we

have a cover of size
(

poly(A)
ε

)
per entry of the precision matrix (for a fixed Ωρ).

Intersecting the d2 nets means that for each Ωρ, we have a net of size(
poly

(
A,

1

ε

))d2

.

As we are considering poly(A) many Ωρs, the size of the net remains the same as the above.

Claim C.13. In the setting of Lemma C.5, if P ∈ Ωρ and P ′ ∈ Ω̃ρ,β is its nearest neighbor, then for
γ = 2κβd2, we have

(1− γ)∥t− θ∥2Σ ≤ ∥t− θ∥2Σ′ ≤ (1 + γ)∥t− θ∥2Σ, (32)

where Σ := P−1,Σ′ := P
′−1.

Proof. Consider P ∈ Ωρ and P ′ ∈ Ω̃ρ,β such that P = P ′ +∆. Since P ′ is the rounding down of
P , we have ∆ij ∈ [0, βρ].

As Tr(∆) ∈ [0, ρβd], and ∥∆∥F ≤ ρβd, we have

λmax(∆) ≤ ρβd and λmin(∆) ≥ −ρβd2.
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This implies that when considering untruncated Gaussians with precision matrices P, P ′, we have
that for all t, θ ∈ Rd,

∥t− θ∥2Σ − ρβd2∥t− θ∥2 ≤ ∥t− θ∥2Σ′ ≤ ∥t− θ∥2Σ + ρβd∥t− θ∥2.
Since λmin(P ) ≥ ρ

2κ , we have
ρ∥t− θ∥2 ≤ 2κ∥t− θ∥2Σ.

Substituting in the previous inequality, we get

∥t− θ∥2Σ − ρβd2∥t− θ∥2 ≤ ∥t− θ∥2Σ′ ≤ ∥t− θ∥2Σ + ρβd∥t− θ∥2,
=⇒ (1− 2κβd2)∥t− θ∥2Σ ≤ ∥t− θ∥2Σ′ ≤ (1 + 2κβd)∥t− θ∥2Σ,

For the sake of symmetry, we will use the weaker bound of

(1− 2κβd2)∥t− θ∥2Σ ≤ ∥t− θ∥2Σ′ ≤ (1 + 2κβd2)∥t− θ∥2Σ,

Setting γ = 2κβd2 completes the proof.

Lemma C.14. Consider a bounded mean vector µ with ∥µ∥∞ ≤ α and precision matrix P with max
eigenvalue ρ and condition number κ.

For γ = O
(
min

{
ε

αρ1/2d3/2 ,
ε

α2d3ρ

})
, we have

log

∫
t≤0

exp

(
− (1− γ)

2
∥P 1

2 (t− µ)∥2
)
≤ ε+ log

∫
t≤0

exp

(
−1

2
∥P 1

2 (t− µ)∥2
)
.

Proof of Lemma C.14. Wlog, consider µ ≥ 0. The case where the entries are possibly negative
follow a similar proof.

Define the integral on the LHS and RHS of the Lemma statement by I1 and I2 respectively.

By a change of variables, we set t′ =
√
1− γ(t− µ) + µ in I1, to get

I1 = log
1√
1− γ

+ log

∫
t′≤(1−

√
1−γ)µ

exp

(
−1

2
∥P 1

2 (t′ − µ)∥2
)
.

Since γ < 1, we have (1−
√
1− γ)µ < γµ. Substituting in I1, and for γ = O(ε), we get

I1 ≤ log
1√
1− γ

+ log

∫
t′≤γµ

exp

(
−1

2
∥P 1

2 (t′ − µ)∥2
)
,

≤ O(ε) + log

∫
t′≤γµ

exp

(
−1

2
∥P 1

2 (t′ − µ)∥2
)
.

The integrating set in the above inequality can be split into two parts: one over the negative orthant
(which is exactly to eI2 ) and another over the shell

C = {t′ ≤ γµ} \ {t′ ≤ 0}.

This gives

I1 ≤ O(ε) + log

(
eI2 +

∫
t′∈C

exp

(
−1

2
∥P 1

2 (t′ − µ)∥2
))

.

In the above inequality, let eI3 denote the integral over the shell C. We will now show that I3 satisfies

eI3 ≤ εeI2 .

Let f(x) denote the Gaussian density with mean µ and precision matrix P .

For a subset of co-ordinates S ⊆ [d], S ̸= ∅, and t ∈ Rd, let x+, x− ∈ Rd be such that

x+,S(i) =

{
γµi if i ∈ S,

ti if i /∈ S,
, x−,S(i) =

{
−γ

εµi if i ∈ S,

ti if i /∈ S.

33



By the monotonicity of the Gaussian density, the integral over the shell C can be upper bounded by
breaking up into a sum of integrals over lower-dimensional strips, where for a fixed subset S ∈ [d],
the variables tSc are integrated over (−∞, γµSc ], while the variables in S are fixed to γµS .

This gives

eI3 ≤
∑
S⊆[d]

∫
tSc≤γµSc

f(x+,S)
∏
i∈S

γµi,

≤
∑
S⊆[d]

∫
tSc≤γµSc

f(x+,S)(γα)
|S|,

≤
d∑

k=1

(
d

k

)
(γα)k max

S⊆[d]:|S|=k

∫
tSc≤γµSc

f(x+,S).

By Claim C.15, for any S, and γ = O
(
min

{
ε

α
√
ρd
, ε
α2d2ρ

})
each summand satisfies

f(x+,S) ≤ 2f(x−,S)

Furthermore, for any S ⊆ [d], we have∫
tSc≤γµSc

f(x−,S)
(γ
ε
α
)|S|
≤ eI2 .

This gives

eI3 ≤
d∑

k=1

dk2εkeI2 ≤ 3εdeI2 if εd ≤ 1

3
.

Rescaling ε← ε
3d completes the proof.

Claim C.15. Let f be the Gaussian density with mean µ ∈ [0, α]d and precision matrix P ∈ Rd×d

with max eigenvalue ρ and condition number κ.

Let γ = O
(
min

{
ε

α
√
ρd
, ε
α2d2ρ

})
. For any subset of co-ordinates S ⊆ [d], S ̸= ∅, and t ∈ Rd, let

x+, x− ∈ Rd be such that

x+(i) =

{
γµi if i ∈ S,

ti if i /∈ S,
, x−(i) =

{
−γ

εµi if i ∈ S,

ti if i /∈ S.

we have

f(x+) ≤ 2f(x−)

Proof. WLOG, let S be a contiguous set such that we can separate the coordinates of x+ and x−
into disjoint sets. For the coordinates belonging to S, let µS denote the coordinates of µ belonging to
µ, and µSc the coordinates not belonging to S (similarly for tS and tSc ).

Taking the logarithm on both sides of the claimed inequality, we want to show that

−1

2

∥∥∥P 1
2

[
γµS − µS

tSc − µSc

]∥∥∥2 ≤ −1

2

∥∥∥P 1
2

[
−γ

εµS − µS

tSc − µSc

]∥∥∥2 + log 2

Let a and b denote the vectors whose norms correspond to the log-densities in the claimed inequality,
and let δ = a− b.

This gives

b = P
1
2

[
−µS(1− γ)
tSc − µSc

]
, a = P

1
2

[
−µS(1 +

γ
ε )

tSc − µSc

]
, δ := a− b = P

1
2

[
−µSγ

(
1
ε + 1

)
0Sc

]
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We want to show that

−1

2
∥b∥2 ≤ −1

2
∥a∥2 + log 2,

⇔ ⟨δ, b⟩+ 1

2
∥δ∥2 ≤ log 2. (33)

As ∥P∥ ≤ ρ and ∥µ∥∞ ≤ α, we have

∥δ∥22 ≤ ρ(α2|S|)γ2

(
1 +

1

ε

)2

.

For γ = O
(

ε
α
√
ρd

)
, we get

∥δ∥22 ≤
1

2
log 2. (34)

Similarly, consider the inner product ⟨δ, b⟩ in Eqn (33). By the trace trick, we get

⟨δ, b⟩ = Tr(∆P ),

where

∆ =

[
−µS(1− γ)
tSc − µSc

][
−µSγ

(
1
ε + 1

)
0Sc

]T
Notice that the diagonal elements of ∆ are all non-negative. This implies that all singular values are
non-negative. The trace of ∆ is

Tr(∆) = ∥µS∥22(1− γ)γ

(
1

ε
+ 1

)
.

Hence, by Von Neumann’s trace inequality, we get

⟨δ, b⟩ ≤ Tr(∆)Tr(P ) ≤ ∥µS∥22(1− γ)γ

(
1

ε
+ 1

)
ρd.

For γ = O
(

ε
α2|S|ρd

)
, this gives

⟨δ, b⟩ ≤ 1

2
log 2. (35)

Substituting Eqn (34) and Eqn (35) in Eqn (33) completes the proof.

Lemma C.6 (W -net). Let ηSc , ηS be such that

∥P ∗ 1
2

Sc ηSc∥ ≤ B1, ∥P
∗ 1

2

S ηS∥ ≤ B2,

for B1, B2 ≥ 0.

Let A > max{B2
1 , B

2
2 ,poly(C, κ)}. Let P ∗ = Σ∗−1 be the precision matrix of η. For a fixed

matrix P ∈ Rd×d whose condition number satisfies Assumption 4.4 and whose eigenvalues satisfy
λmax(P ) ∈ [e−

2A
d λmin(P

∗), Cλmax(P
∗)], there exists a partition I of Rd with size(
poly

(
A,

1

ε

))3d

such that for each interval I ∈ I, we have one of the following:

• for all θ ∈ I , γθ,P (y) < −A, or

• for all θ, θ′ ∈ I , |γθ,P (y)− γθ′,P (y)| ≤ ϵ.
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Proof of Lemma C.6. Recall that the log-likelihood ratio γθ can be decomposed into the difference
of two terms that depend on θ:

γθ,P (y)−
1

2
log
|P |
|P ′|

=gθ,P (y)− gθ∗,P∗(y) + hθ,P (y)− hθ∗,P∗(y).

Without loss of generality, consider the net for the first coordinate θ1. The final net will be the
intersection of the per-coordinate nets.

We will construct three partitions: the first is Ih,0 for h when y1 = 0, the second is is Ih,1 for h
when y1 > 0, and the last is Ig for g when y1 > 0. The final partition will be the intersection of these
partitions.

Case 1: Net over h, y1 = 0. As y1 = 0, we have 1 ∈ S. For θ ∈ Rd, we have

hθ,P (y) = log

∫
t≤0

exp
(
−∥P

1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥2/2

)
,

By Claim C.16, if θ1 ≥ Θ(
√
CκA
p1

), then the log-likelihood is smaller than −A.

Now, consider θ1 < O(
√
CκA
p1

). Let θ′ = θ + αe1 for α > 0. As h is monotonically decreasing per
coordinate, θ1 < θ′1 =⇒ hθ,P ≥ hθ′,P . We would like to now upper bound hθ,P in terms of hθ′,P .

Let

µ :=θS + (PS)
−1PSSc(ySc − θSc),

µ′ :=θ′S + (PS)
−1PSSc(ySc − θSc)

In the function hθ, break the integrating set into two domains: one where t− µ is small,

Ω1 =
{
t ∈ R|S| : ∥P

1
2

S (t− µ)∥ ≤ r
}
,

and another where it is large:

Ω2 =
{
t ∈ R|S| : ∥P

1
2

S (t− µ)∥ > r
}
,

for some r > 0 that we will specify later.

Let I1 and I2 denote the integrals over Ω1 and Ω2 respectively.

I2 corresponds to the tail of an unnormalized Gaussian distribution, and hence we have

hθ,P (y) = log

(
I2 +

∫
t≤0,t∈Ω1

exp
(
−∥P

1
2

S (t− µ)∥2/2
))

,

where I2 ≤ (2π)
|S|
2

∣∣∣P− 1
2

S

∣∣∣e−r2 .

We can simplify I2 be comparing |P | to |P ∗|:

I2 ≤ (2π)
|S|
2

∣∣∣P−1/2
S

∣∣∣∣∣∣P ∗−1/2
S

∣∣∣
∣∣∣P ∗−1/2

S

∣∣∣e−r2 ≤ (2π)
|S|
2

(
λ∗
max

λmin(P )

)|S|∣∣∣P ∗− 1
2

S

∣∣∣e−r2 ,

≤ (2π)
|S|
2

(
κe

A
d

)|S|∣∣∣P ∗− 1
2

S

∣∣∣e−r2 .

By Lemma C.10, we have

(2π)
|S|
2

∣∣∣P ∗− 1
2

S

∣∣∣ ≤ ehθ∗,P∗ (y)+O(d+B2
2+B2

3)

36



As we are only consider θ′ such that hθ∗,P∗(y)−A < hθ′,P (y), for

r2 = O(d log κ+A+ log
1

ε
) = O(A),

we have

I2 ≤ εehθ′,P (y)

Subsituting in hθ,P (y), we get

hθ,P (y) ≤ log

(
εehθ′,P (y) +

∫
t≤0,t∈Ω1

exp (−∥P
1
2

S (t− µ)∥2/2)
)

Now consider the integral I1 =
∫
t≤0,t∈Ω1

exp
(
−∥P

1
2

S (t− µ)∥2/2
)

.

By Claim C.17, as Ω1 is defined for t bounded by r, and µ− µ′ = αe1, we have

I1 ≤ exp
(
2αp1r + α2p21

)
· I ′1,

where I ′1 =

∫
t≤0,t∈Ω1

exp
(
−∥P

1
2

S (t− µ′)∥2/2
)
≤ ehθ′,P (y).

Substituting in the expression for hθ,P , we get

hθ,P (y) ≤ log
(
ehθ′,P (y) ·

(
ε+ exp

(
2αp1r + α2p21

)))
As log(ε+ ex) ≤ ε+ x for x ≥ 0, we have

hθ,P (y) ≤ hθ′,P (y) + ε+ 2αp1r + α2p21.

Setting α = O( ε
p1r

), we get

hθ,P (y) ≤ hθ′,P (y) + 2ε.

This shows that hθ,P changes by at most ε for the considered net. We need to defined the other end

point for the net. By a similar argument to the positive end point, if θ1 = −O

(√
Cκ log( 1

ε )
p1

)
, the

log-likelihood ratio changes by at most ε until θ1 = −∞.

As we are only trying to cover θ such that |θ1| ≤ O(
√
CκA
p1

), this net has size

O

(√
CκA

p1α

)
= O

(√
CκA

p1

p1r

ε

)
=

A

ε
.

Case 2: Net over h, y > 0. A similar argument to Case 1 works here as well.

Case 3: Net over g, y1 > 0. By Lemma C.11, if |θ − θ∗|PSc
> R1 for

R1 = O(
√
A),

then

gθ,P − gθ∗,P < −A.

Now consider θ such that

|θ1 − θ∗1 | ≤ R,

and θ, θ′ such that θ − θ′ = αe1.
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The difference in gθ − gθ′ is

gθ(y)− gθ′(y) = ηTSc(ΣSc)−1(θSc − θ′Sc)−
1

2
∥θ∗Sc − θSc∥2ΣSc +

1

2
∥θ∗Sc − θ′Sc∥2ΣSc ,

The second and third terms in the RHS can bounded by observing that

|2θ∗ − θ′ − θ| ≤ 2R1 = O(
√
A), |θ′ − θ| ≤ α,

and hence we get

−1

2
∥θ∗Sc − θSc∥2ΣSc +

1

2
∥θ∗Sc − θ′Sc∥2ΣSc ≤ O(

√
A)α.

Now, for the first term in the RHS, we have

∥ηSc∥P∗
Sc
≤ B1 =⇒ ∥ηSc∥ ≤ B1

λ
1
2

min(P
∗)
≤ B1

√
κ

λ
1
2
max(P ∗)

.

This further implies that

ηTSc(ΣSc)−1(θSc − θ′Sc) ≤
B1
√
κ

λ
1
2
max(P ∗)

√
p1α = poly(A)α.

Setting

α = O

(
ϵ

poly(A)

)
,

we get

|gθ(y)− gθ′(y)| ≤ ϵ

d
.

As we are covering a set of size R1 using a grid size of α, the size of this partition is

O(
R1

α
) =

poly(A)

ε
.

Claim C.16. In the setting of Lemma C.6, we have λmax(P ) ≤ Cλmax(P
∗). Let p1 denote the first

diagonal element of P .

If θ1 ≥ Θ(
√
CκA
p1

), then the function hθ,P is such that

hθ,P − hθ∗,P < −A.

Proof of Claim C.16. Recall that the function hθ,P is defined as:

hθ,P (y) = log

∫
t≤0

exp
(
−∥P

1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥2/2

)
.

Consider the term ∥P
1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥. By the triangle inequality, we have

∥P
1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥

≥∥P
1
2

S (t− θS) + (PS)
−1/2PSSc(θ′Sc − θ∗Sc)∥ − ∥P− 1

2

S PSSc(ySc − θ∗Sc)∥,

≥∥P
1
2

S (t− θS) + (PS)
−1/2PSSc(θ′Sc − θ∗Sc)∥ −

√
CκA,
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where the last inequality follows as

∥P− 1
2

S PSSc(ySc − θ∗Sc)∥ = ∥P− 1
2

S PSSc(ηSc)∥ ≤ ∥P
1
2

Sc∥∥ηSc∥ ≤
√

Cλ∗
max√

λ∗
min

B ≤
√
CκA.

Similarly, the function gθ,P only considers θ such that ∥P
1
2

Sc(θSc − θ∗Sc)∥ ≤
√
CκA ( otherwise, the

log-likelihood ratio is smaller than −A by virtue of gθ,P , irrespective of hθ,P ). For these θ, we have

∥P
1
2

S (t− θS) + (PS)
−1/2PSSc(θ∗Sc − θSc)∥

≥∥P
1
2

S (t− θS)∥ −
√
CκA,

which gives

∥P
1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥ ≥∥P

1
2

S (t− θS)∥ − 2
√
CκA.

Hence, if θ1 ≥ O(
√
CκA
p1

), then we have

∥P
1
2

S (t− θS) + (PS)
−1/2PSSc(ySc − θSc)∥ ≥Ω(

√
CκA) ∀ t ≤ 0,

and hence the Gaussian integral is at most (2π)|S|/2
∣∣∣P− 1

2

S

∣∣∣e−Ω(CκA).

By Lemma C.10, we have hθ∗,P∗ ≥ − 1
2 log|P

∗
S | −O(A), which gives

hθ,P (y)− hθ∗,P∗(y) <
1

2
log
|P ∗

S |
|PS |

− Ω(CκA)

<
d

2
log

λ∗
max

λmin(P )
− Ω(CκA) < O(A log κ)− Ω(CκA) = −Ω(CκA).

This gives a contiguous interval over θ1 for which γθ,P < −A.

Claim C.17. In the setting of Lemma C.6, let µ, µ′ be such that µ− µ′ = αe1

Then, for all t such that
∥P

1
2

S (t− µ)∥ ≤ r,

and p1 := P11, we have

∥P
1
2

S (t− µ)∥2 ≥− 2αp1r − α2p21 + ∥P
1
2

S (t− µ′)∥2.

Proof of Claim C.17. Consider the term ∥P
1
2

S (t− µ)∥2.

Adding and subtracting ∥P
1
2

S (t− µ′)∥2, we get

∥P
1
2

S (t− µ)∥2 = ∥P
1
2

S (t− µ)∥2 − ∥P
1
2

S (t− µ′)∥2 + ∥P
1
2

S (t− µ′)∥2,

= ⟨P
1
2

S (2t− µ′ − µ), P
1
2

S (µ′ − µ)⟩+ ∥P
1
2

S (t− µ′)∥2,

= ⟨P
1
2

S (2t− 2µ− (µ′ − µ)), P
1
2

S (µ′ − µ)⟩+ ∥P
1
2

S (t− µ′)∥2,

= 2⟨P
1
2

S (t− µ), P
1
2

S (µ′ − µ)⟩ − ∥P
1
2

S (µ− µ′)∥2 + ∥P
1
2

S (t− µ′)∥2.
As µ− µ′ = αe1, we have

∥P
1
2

S (µ− µ′)∥2 = α2p21.

By the Cauchy-Schwartz inequality, and since µ−µ′ = αe1, the inner product can be lower bounded
as

2⟨P
1
2

S (t− µ), P
1
2

S (µ′ − µ)⟩ ≥ −2∥P
1
2

S (t− µ)∥∥P
1
2

S (µ′ − µ)∥ ≥ −2αp1r.
Substituting, we get

∥P
1
2

S (t− µ)∥2 ≥ −2αp1r − α2p21 + ∥P
1
2

S (t− µ′)∥2.

This completes the proof.
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Lemma C.18. Following Definition C.12 let Ωρ be the set of precision matrices with condition
number κ satisfying λmax(P ) ∈ [ρ2 , ρ], and let Ω̃ρ,β be the quantized net with quantization level β.

For any P ∈ Ωρ, let P̃ ∈ Ω̃ρ,β be its element-wise rounding down. Then, for any µ ∈ Rd, we have

dTV (N (µ;P ),N (µ; P̃ )) ≤ O
(
d2βκ

)
. (36)

Proof of Lemma C.18. Let Σ = P−1 and Σ̃ = P̃−1.

By Theorem 1.1 in [16], the TV between two Gaussians with the same mean is

dTV (N (µ; Σ),N (µ; Σ̃)) = Θ

min

1,

√∑
i

ξ2i


,

where ξi are the eigenvalues of Σ̃−1Σ− Id.

We can convert the bound on the eigenvalues to the Frobenius norm of Σ̃−1Σ− Id:√∑
i

ξ2i ≤ ∥Σ̃
−1Σ− Id∥F .

Recall that P̃ is the rounding down per entry of P . Hence,

Σ̃−1Σ− Id = (Σ−1 − [νij ])Σ− Id, where 0 ≤ νij < βρ,

= −νΣ.

Taking the Frobenius norm, we get

∥Σ̃−1Σ− Id∥F = ∥νΣ∥F ,

≤ (dβρ)(dρmax(Σ)) = (dβρ)

(
d

ρmin(P )

)
,

≤ (dβρ)

(
dκ

ρmax(P )

)
≤ 2d2βκ.

where the first inequality follows as each element of ν is at most βρ, the second inequality follows as
P has condition number κ, and the third follows as P ∈ Ωρ =⇒ ρmax(P ) ≥ ρ

2 .

This completes the proof.

Lemma C.7. Let x1, . . . , xn be fixed, and yi = ϕ(W ∗xi + ηi) for ηi ∼ N (0,Σ∗), and W ∗ ∈ Rd×k

with Σ∗ ∈ Rd×d satisfying Assumption 4.4 and Assumption C.3. For a sufficiently large constant
C > 0,

n = C · (d
2 + kd)

ε2
log

kdκ

ε

samples suffice to guarantee that with high probability, the MLE Ŵ , Σ̂ satisfies

d̃
(
(Ŵ , Σ̂), (W ∗,Σ∗)

)
≤ ε.

Proof of Lemma C.7. For any W ∈ Rd×k, Σ ∈ Rd×d and a sample (xi, yi), let pi,W,Σ(y|xi) be the
conditional distribution of y = ϕ(Wx+ η), and let γi,W,Σ be the log-likelihood ratio between (W,Σ)
and (W ∗,Σ∗) on this sample:

γi,W,Σ(y) := log
pi,W,Σ(y | xi)

pi,W∗,Σ∗(y | xi)
.

Then
E
y
[γi,W,Σ(y)] = −KL(pi,W∗,Σ∗(y | xi)∥pi,W,Σ(y | xi)).

40



Concentration. From Lemma B.1, we see that if dTV ((W
∗,Σ∗), (W,Σ)) ≥ ε, then for n ≥

O( 1
ε2 log

1
δ ),

γW,Σ :=
1

n

n∑
i=1

γi,W,Σ(yi) < −
ε2

2
, (37)

with probability 1− δ.

Of course, whenever γW,Σ < 0, the likelihood under W ∗,Σ∗ is larger than the likelihood under W,Σ.
Thus, for each fixed W,Σ with dTV ((W

∗,Σ∗), (W,Σ)) ≥ ε, maximizing likelihood would prefer
W ∗,Σ∗ to W,Σ with probability 1− δ if n ≥ O( 1

ε2 log
1
δ ).

Nothing above is specific to our ReLU-based distribution. But to extend to the MLE over all W,Σ,
we need to build a net using properties of our distribution.

Building a net. First, for a given sample yi, let Si be the set of coordinates of yi that are zero, and
Sc
i be its complement. Then, with high probability,

∥P ∗ 1
2

Si
(ηi)Si

∥, ∥P ∗ 1
2

Sc
i
(ηi)Si

∥ ≤ B = O(
√

κd log n) ∀ i ∈ [n],

where P ∗ = Σ∗−1, and P ∗
S , P

∗
Sc are the block matrices in P ∗.

Supposing the above event happens, we will construct a net over the precision matrices P = Σ−1.
Note that as we are only considering matrices with bounded condition number, this is a bijective
mapping.

Net over Σ−1. By Lemma C.4, any precision matrix P = Σ−1 satisfying Assumption 4.4 and
whose max eigenvalue satisfies

λmax(P ) ≥ U · λmax(P
∗),

for U = O
(

κ3d2n2

k2 + κ2dn logn
k

)
, will have γ̄W,P−1 < 0, irrespective of W .

Similarly, by Lemma C.2, any precision matrix satisfying Assumption 4.4 and whose max eigenvalue
satisfies

λmax(P ) ≤ L · λmin(P
∗)

for L = e−O(κ logn) has γi,W,P−1 ≤ 0 for all i ∈ [n], and hence its average γ̄W,P−1 is also < 0.

This shows that for all precision matrices P whose max eigenvalue is extremely small / large when
compared to the min / max eigenvalues of P ∗, has

γ̄W,P−1 < 0,

irrespective of W , and the MLE, which has non-negative γ̄, will never pick these P .

Let A = poly(n, d, κ, 1
ε ) be large enough such that A > n(d log(Uκ) +B2), and such that it meets

the requirements of Lemma C.5 and Lemma C.6.

Then, by Lemma C.5 with U = poly(d, κ, n) and log( 1
L ) = poly(κ, n), there exists a parti-

tion P of precision matrices whose max-eigenvalue lies in [L · λmax(P
∗), U · λmax(P

∗)] into(
poly

(
d, κ, n, 1

ε

))d2

cells, such that for each cell I ∈ P , and P, P ′ ∈ I , the following holds for all
i ∈ [n] and W ∈ Rd×k:

|γi,W,P (yi)− γi,W,P ′(yi)| ≤
ε2

16
(38)

or γi,W,P (yi) < −A.

Using Lemma C.18, we also have that for all W ,

dTV ((W,P ), (W,P ′)) ≤ ε2

16
. (39)
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We can choose a net N consisting of precision matrices from each cell in P . This net has size

log|N | ≲ d2 log

(
dκn

ε

)
.

This gives a sufficient net over the precision matrices.

Now we will construct a net over W for each precision matrix in the net.

W -net. Now, for each P̃ ∈ NP , by Lemma C.6, for each i ∈ [n], there exists a partition PP̃ ,i of

Rd into
(
poly

(
d, k, κ, n, 1

ε

))d
cells such that for each cell I ∈ PP̃ ,i, and W,W ′ ∈ I , one of the

following holds: ∣∣∣γi,W,P̃ (yi)− γi,W ′,P̃ (yi)
∣∣∣ ≤ ε2

16
(40)

or γi,W,P̃ (yi) < −A.

Let Wj be the j-th row of W . The individual partitions PP̃ ,i on ⟨xi,Wj⟩ induce a partition PP̃ ,i,j

on Rk, where Wj ,W
′
j lie in the same cell of PP̃ ,i,j if ⟨xi,Wj⟩ and ⟨xi,W

′
j⟩ are in the same cell of

PP̃ ,i for all i ∈ [n]. Since PP̃ ,i,j is defined by n sets of
(
poly

(
d, k, κ, n, 1

ε

))
parallel hyperplanes in

Rk, the number of cells in PP̃ ,i,j is (
poly

(
d, k, κ, n,

1

ε

))k

.

As there are d rows in W , we can intersect PP̃ ,i,j over j ∈ [d], which induces poly(d, k, κ, n, 1
ε )

kd

cells in Rk. We choose a net NP̃ to contain, for each cell in
⋂

j∈[d] PP̃ ,i,j , the W in the cell

maximizing dTV ((W
∗, P ∗), (W, P̃ )). This has size

log
∣∣NP̃

∣∣ ≲ kd log

(
κdkn

ε

)
.

Proving MLE works. By (37), for our n ≥ O
(

(kd+d2)
ε2 log kdκ

ε

)
, we have with high probability

that

γW,P ≤ −
ε2

2
,

for all P ∈ N and for all W ∈ NP̃ with dTV ((W
∗, P ∗), (W,P )) ≥ ε. Suppose that both this

happens, and
∥P ∗ 1

2

Si
(ηi)Si

∥, ∥P ∗ 1
2

Sc
i
(ηi)Si

∥ ≤ B = O(
√

κd log n) ∀ i ∈ [n].

We claim that the MLE Ŵ , Σ̂ must have dTV ((W
∗,Σ∗), (Ŵ , Σ̂)) < 17

16ε.

Consider any W ∈ Rd×k and P ∈ Rd×d with dTV ((W
∗, P ∗), (W,P )) ≥ 17

16ε. Using our net on
precision matrices, we can find P̃ ∈ N such that

dTV ((W
∗, P ∗), (W, P̃ )) ≥ dTV ((W

∗, P ∗), (W,P ))− dTV ((W,P ), (W, P̃ )).

Recall that we are only currently considering W,P such that dTV ((W
∗, P ∗), (W,P )) ≥ 17

16ε. By
Eqn (39), we have dTV ((W,P ), (W, P̃ )) ≤ ε2

16 , which gives

dTV ((W
∗, P ∗), (W, P̃ )) ≥ ε

17

16
− ε2

16
≥ ε.

Now, for this P̃ , we can find a W̃ ∈ NP̃ , and by our choice of NP̃ , we know that

dTV ((W
∗, P ∗), (W̃ , P̃ )) ≥ dTV ((W

∗, P ∗), (W, P̃ )) ≥ ε,
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and by (37), we have γ̄
W̃ ,P̃

≤ − ε2

2 .

Now we consider two cases. In the first case, there exists i with γi,W,P (yi) < −A. Then

γW,P =
1

n

∑
i

γi,W,P (yi) ≤ −
A

n
+B2/2 < 0.

Otherwise, by Eqn (38) and Eqn (40), we have

γW,P ≤ γ
W̃ ,P̃

+
∣∣∣γW̃ ,P̃

− γW,P̃

∣∣∣+ ∣∣∣γW,P̃ − γW,P

∣∣∣,
≤ −ε2

2
+ max

i

∣∣∣γi,W̃ ,P̃
− γi,W,P̃

∣∣∣+max
i

∣∣∣γi,W,P̃ − γi,W,P

∣∣∣,
≤ −ε2

2
+

ε2

16
+

ε2

16
< 0.

In either case, γW,P < 0 and the likelihood under w∗ exceeds that under w. Hence the MLE ŵ must
have dTV (w

∗, w) ≤ 17
16ε. Rescaling ε gives the conclusion of the Lemma.

Lemma C.8. Let {xi}ni=1 be i.i.d. random variables such that xi ∼ Dx.

Let P ∗ := Σ∗−1. Let λ∗
min, λ

∗
max be the minimum and maximum eigenvalues of P ∗. For 0 < L < U ,

let Ω denote the following set of precision matrices

Ω :=

{
P ∈ Rd×d

+ :
λmax(P )

λmin(P )
≤ κ and λmax(P ) ∈ [L · λ∗

min, U · λ∗
max]

}
.

Then, for a sufficiently large constant C > 0, and for

n = C ·
(
kd+ d2

ε2

)
log

(
kdκ

ε
log

(
U

L

))
,

we have:

Pr
xi∼Dx

[
sup

W∈Rd×k,P∈Ω

∣∣∣d̃((W,P ), (W ∗, P ∗))− d((W,P ), (W ∗, P ∗))
∣∣∣ > ε

]
≤ e−Ω(nε2).

Proof of Lemma C.8. For P = Σ−1 and P ∗ = Σ∗−1, let

f(W,P ) := d((W,Σ), (W ∗,Σ∗))

and
fn(W,P ) := d̃((W,Σ), (W ∗,Σ∗)) =

1

n

∑
i

[dTV (pW,P (y|xi), pW∗,P∗(y|xi))].

Since the function is bounded, for any fixed W,P , the Chernoff bound gives

Pr[|fn(W,P )− f(W,P )| > α] ≤ e−2nα2

. (41)

for any α > 0. The challenge lies in constructing a net to be able to union bound over Rk without
assuming any bound on W or the covariate x. As before, we do so by constructing a “ghost” sample,
symmetrizing, and constructing a net based on these samples.

Ghost sample. First, we construct a “ghost” dataset D′
x consisting of n fresh samples IID samples

{x′
i}i∈[n] of Dx. This gives another metric

f ′
n(W,P ) := d̃′((W,Σ), (W ∗,Σ∗)) =

1

n

∑
i

[dTV (pW,P (y|x′
i), pW∗,P∗(y|x′

i))].

Similar to the proof in Lemma 4.3, it is sufficient to consider the difference between fn(W,P ) and
f ′
n(W,P ) i.e.,

Pr

[
sup
W,P
|f(W,P )− fn(W,P )| > ε

]
≤ 2Pr

[
sup
W,P
|fn(W,P )− f ′

n(W,P )| > ε/2

]
. (42)
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Symmetrization. Since Dx and D′
x each have n independent samples, we could instead draw the

datasets by first sampling 2n elements x1, . . . , x2n from Dx, then randomly partition this sample into
two equal datasets. Let si ∈ {±1} so si = 1 if zi lies in D′

x and −1 if it lies in Dx. Then

fn(W,P )− f ′
n(W,P ) =

1

n

2n∑
i=1

si · dTV (pW,P (y|xi), pW∗,P∗(y|xi)).

For a fixed W,P and x1, . . . , x2n, the random variables (s1, . . . , s2n) are a permutation distribution,
so negatively associated. Then the variables si · dTV (pW,P (y|xi), pW∗,P∗(y|xi)) are monotone
functions of si, so also negatively associated. They are also bounded in [−1, 1]. Hence we can apply
a Chernoff bound:

Pr[|fn(W,P )− f ′
n(W,P )| > ε] < e−nε2/2, (43)

for any fixed W,P .

Constructing a net. We will first construct a net over the precision matrices P (independent of
W ), and then for each element in the P -net, we will construct a net over W .

Net over Σ−1. In the following, λmax(P ) denotes max eigenvalue of a matrix P , λmin(P ) denotes
the min eigenvalue, and λi(P ) denotes the i-th eigenvalue, in decreasing order.

In order to construct the net over the precision matrices, we will consider geometrically spaced values
of λ ∈ [L · λmin(P

∗), U · λmax(P
∗)], and for each λ, we will construct a net over matrices that have

max eigenvalue ≤ λ.

Now consider λ > 0 that lies in the following discrete set:{
λmin(P

∗)2j , j ∈ ⌈log2(κU
L )⌉
}

This set is a geometric partition over the possible max eigenvalues that the MLE can return.

Following definition C.12, let Ωλ denote the subset of positive definite matrices in Rd×d that have
condition number κ and max-eigenvalue in

[
λ
2 , λ

]
. Similarly, following Definition C.12, let Ω̃λ,β

denote the gridded version of Ωλ, where entries in the matrix are multiples of λβ.

For any P ∈ Ωλ, let P̃ ∈ Ω̃λ,β be the matrix obtained by rounding down every element in P .

By the Data Processing Inequality, for any W ∈ Rd×k, we have

dTV

(
pW,P (y|x), pW,P̃ (y|x)

)
≤ dTV (N (Wx;P ),N (Wx; P̃ )).

By Lemma C.18, we can upper bound the RHS of the above inequality by

dTV (N (Wx;P ),N (Wx; P̃ )) ≤ O(d2βκ).

Setting

β = O
( ε

d2κ

)
,

we have a partition of size O
(
(d2κ/ε)d

2
)

per λ such that:

dTV

(
pW,P (y|x), pW,P̃ (y|x)

)
≤ O(ε).

We will now construct a net over W , so as to show Eqn (43) for all W,P .

W -net. By repeated triangle inequalities, we have

|fn(W,P )− f ′
n(W,P )| ≤

∣∣∣fn(W,P )− fn(W, P̃ )
∣∣∣+ ∣∣∣fn(W, P̃ )− f ′

n(W, P̃ )
∣∣∣+ ∣∣∣f ′

n(W, P̃ )− f ′
n(W,P )

∣∣∣.
Using the cover over P , the first and last term on the RHS are O(ε). This gives

|fn(W,P )− f ′
n(W,P )| ≤ O(ε) +

∣∣∣fn(W, P̃ )− f ′
n(W, P̃ )

∣∣∣. (44)
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For a fixed W̃ , P̃ , we will have (43) using a Chernoff bound. Since P̃ is already finite, we will now
construct a net over W for each P̃ .

It is sufficient to bound dTV (pW,P̃ (y|xi), pW ′,P̃ (y|xi)) as the triangle inequality implies that this is
larger than the RHS above.

We want, for any W,W ′ in a cell,

|dTV (pW,P̃ (y|xi), pW∗,P∗(y|xi))− dTV (pW ′,P̃ (y|xi), pW∗,P∗(y|xi)| ≤ O(ε).

for all i ∈ [2n]. It is also sufficient to bound dTV (pW,P̃ (y|xi), pW ′,P̃ (y|xi)) as the triangle inequality
implies that this is larger than the left hand side above.

Lemma C.19 implies that we can find O
(

d
ϵ3/2

√
log( 2dϵ )

)
per row of W such that for any W,W ′ in

a cell, either

dTV (pW,P̃ (y|xi), pW∗,P∗(y|xi)) ≥ dTV (pW,P̃ (yj |xi), pW∗,P∗(yj |xi) ≥ 1− ε

which implies
dTV (pW,P̃ (y|xi), pW ′,P̃ (y|xi) ≤ ϵ

or
dTV (pW,P̃ (y|xi), pW ′,P̃ (y|xi) ≤

∑
j

dTV (pW,P̃ (y|xi)j |zi, pW ′,P̃ (yj |xi)) ≤ ϵ/d.

Therefore, for each i regardless of the value of W ∗
j zi there are at most O

(
d

ϵ3/2

√
log( 2dϵ )

)
partition-

ing hyperplanes.

We then take the intersection of all 2n partitions (for each data point zi). The cells of this partition

are defined by 2n sets of O
(

d
ϵ3/2

√
log( 2dϵ )

)
parallel hyperplanes. Since z ∈ Rk, the number of

cells is at most O

((
nd
ϵ3/2

√
log
(
2d
ϵ

))k
)
.

Hence the total number of cells for d rows is at most O

((
nd
ϵ3/2

√
log
(
2d
ϵ

))dk
)

.

Putting everything together. Finally, for any W ∈ Rd let W̃ ∈ NP̃ be the representative of its
cell. Recall that each representative P̃ of P induces a different cover NP̃ over W . Let N be the net
over the precision matrices P .

By definition of the cells,∣∣dTV (pW,P̃ (y|xi), pW∗,P∗(y|xi))− dTV (pW̃ ,P̃
(y|xi), pW∗,Σ∗(y|xi))

∣∣ < O(ε).

for all i ∈ [2n]. Thus∣∣∣(f ′
n(W, P̃ )− fn(W,P )

)
−
(
f ′
n(W̃ , P̃ )− fn(W̃ , P )

)∣∣∣ ≤ O(ε).

and so

Pr[ sup
W∈Rd×k,P∈Rd×d

|f ′
n(W,P )− fn(W,P )| > ε]

≤ Pr

[
max

w∈NP ,P∈N
|f ′

n(W,P )− fn(W,P )| > ε

4

]
≤ elog |N |+log |NP |−( ε

4 )
2n/2

As there are log κU
L partitions over P (corresponding to the maximum possible eigenvalue of P ),

each with (O(d
2κ
ε ))d

2

elements, we have

log |N | ≲ d2 log

(
d2κ

ε

)
+ log log

(
κ
U

L

)
.
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and each cover NP over W has size

log |NP | = 2kd log

(
d

ϵ3/2

√
log

(
2d

ϵ

))
.

This implies that

n = C ·
(
kd+ d2

ε2

)
log

(
kdκ

ε
log

(
U

L

))
,

suffices for
Pr[sup

W,P
f ′
n(W,P )− fn(W,P ) > ε] < e−Ω(ε2n).

Lemma C.19. Let y = ϕ(µ∗ + ησ∗) where µ∗, σ∗ are fixed, and yµ,σ = ϕ(µ + ησ). We partition
the space R of µ s.t. for µ, µ′ in a cell, either

dTV (pµ,σ(y), pµ′,σ(y)) ≤ ϵ/2d.

or
dTV (pµ,σ(y), pµ∗,σ∗(y)) ≥ 1− ϵ and dTV (pµ′,σ(y), pµ∗,σ∗(y)) ≥ 1− ϵ.

Then the number of cells is at most O( d
ϵ3/2

√
log( 2dϵ )).

Proof. In one dimension

dTV (pµ,σ(y), pµ∗,σ∗(y)) = dTV (pcµ,cσ(y), pcµ∗,cσ∗(y))

where c is a constant. So, we can assume WLOG that σ∗ = 1. The number of cells in the grid only
depends on σ/σ∗.

Now, we show that, regardless of the value of µ∗ we only need to make a grid on a segment of length
at most 3max(σ, 1)

√
log(2d/ϵ). This is because for any µ outside the ranges specified below the

dTV (pµ,σ(y), pµ∗,σ∗(y)) ≥ 1− ϵ.

• If µ∗ ≤ −
√
log(2d/ϵ) and for any µ such that µ ≥ σ

√
log(2d/ϵ), the

dTV (pµ∗,σ∗(y), pµ,σ(y)) ≥ the difference in the probabilities at 0 which is bigger than
1− ϵ.

• If 0 ≥ µ∗ ≥ −
√
log(2d/ϵ) and for any µ s.t. µ ≥ max(σ, 1)

√
log(2d/ϵ), the

dTV (pµ∗,σ∗(y), pµ,σ(y)) is the same as in the linear case and since, µ − µ∗ ≥
max(σ, 1)

√
log(2d/ϵ), the dTV (pµ∗,σ∗(y), pµ,σ(y)) ≥ 1− ϵ.

• If 0 ≤ µ∗ ≤
√
log(2d/ϵ), for any µ s.t. µ − µ∗ ≥ max(σ, 1)

√
log(2d/ϵ), the

dTV (pµ∗,σ∗(y), pµ,σ(y)) ≥ 1− ϵ.

• If µ∗ ≥
√
log(2d/ϵ) then for any µ s.t. µ − µ∗ ≥ max(σ, 1)

√
log(2d/ϵ) using the same

argument as above, we have, the dTV (pµ∗,σ∗(y), pµ,σ(y)) ≥ 1− ϵ. Moreover, this is also
true for µ s.t. −σ

√
log(2d/ϵ) ≤ µ ≤ µ∗ −max(σ, 1)

√
log(2d/ϵ). Therefore, in this case,

we have an additional cell.

In addition to the above, for any µ, µ′ ≤ −σ
√

log(2d/ϵ), the dTV (pµ,σ(y), pµ′,σ(y)) ≤ ϵ/2d since
both yµ,σ, yµ′,σ are only non-zero with probability at most ϵ/2d. Therefore, for all the above cases,
we only need to partition a segment of length at most 3max(σ, 1)

√
log(2d/ϵ)

Moreover, for σ sufficiently small we can do better. We only need to partition a space of σ
√
log(2d/ϵ).

This is primarily because when σ sufficiently small, for any µ in the linear case we have that
dTV (pµ,σ(y), pµ∗,σ∗(y)) ≥ 1− ϵ.
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It is easy to see that dTV (pµ,σ(y), p0,1(y)) ≥ dTV (p0,σ(y), p0,1(y)). The PDFs of N (0, σ) and

N (0, 1) intersect at x = ±σ
√

log(1/σ2)
1−σ2 . To show that dTV (p0,σ(y), p0,1(y)) ≥ 1 − ϵ, it is now

sufficient to show that
1− 2Φ(−|x|/σ) ≥ 1− ϵ and 1− 2ϕ(−|x|) ≤ ϵ,

where Φ(x) is the CDF of the standard normal distribution. By using classical bounds on Φ(x), we
have that

Φ(−|x|/σ) ≤ exp−x2/2σ2

|x|/σ
=

exp
− log(1/σ2)

2(1−σ2)

|x|/σ
which is ≤ ϵ/2 if σ2 ≤ ϵ/2. And,

Φ(−|x|) ≥ |x| exp
−x2/2

x2 + 1

which is ≥ (1− ϵ)/2 if

When µ∗ ≤ −
√
log(2d/ϵ) the same argument as above shows that if µ > σ

√
log(2d/ϵ) then the

dTV (pµ∗,σ∗(y), pµ,σ(y)) ≥ the difference in the probabilities at 0 which is bigger than 1 − ϵ.We
consider the case where µ∗ ≥ −

√
log(2d/ϵ.

Since, when σ is small, for any µ in the linear case the TV distance is large it is sufficient to have µ
large enough so that the intersection of the PDFs are positive and we are in the linear case.

The point of intersection assuming σ∗ = 1 is given by

x =
µ1 − µ2/σ

2 ±
√
(µ1 − µ2)2/σ2 +

(
1
σ2 − 1

)
log(σ2)

1
σ2 − 1

which is positive whenever

µ2 ≥ σ
√
log(1/σ2 + µ2

1 ≥ σ
√
log(2d/ϵ.

For the rest of the space, we partition µ ∈ Rk s.t. for any µ, µ′ in a cell,
|µ− µ′| ≤ σϵ/2d.

This implies that for any µ, µ′ in a cell, either,
dTV (pµ,σ(y), pµ′,σ(y)) ≤ ϵ/2d

or
dTV (pµ,σ(y), pµ∗,σ∗(y)) ≥ 1− ϵ and dTV (pµ′,σ(y), pµ∗,σ∗(y)) ≥ 1− ϵ.

Then the number of cells is the max of O(d
√

log(2d/ϵ)/ϵ) (when σ small) or
O(d

√
log(2d/ϵ)/σϵ) ≤ d

√
log(2d/ϵ)/ϵ3/2 (when σ large).

D Proof of composition of layers

Proof. We can use the triangle inequality to compose our single layer guarantees. Suppose, for layer
j and j + 1 we have

dTV (X
j , X̂j) ≤ ϵ/2 and

dTV (ϕ(Ŵ
j
MLEXj + ηj), ϕ(W

jXj + ηj)) ≤ ϵ/2

then,
dTV (ϕ(Ŵ

j
MLEX̂j + ηj), ϕ(W

jXj + ηj))

≤ dTV (ϕ(Ŵ
j
MLEX̂j + ηj), ϕ(Ŵ

j
MLEXj + ηj))

+ dTV (ϕ(Ŵ
j
MLEXj + ηj), ϕ(W

jXj + ηj))

≤ ϵ

where we use the fact that dTV (f(X), f(Y )) ≤ dTV (X,Y ).
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Figure 4: (a) Plots Pinsker’s upper bound on the TV distance as d gets large. We set Σ∗ = Id and
W ∗ = 1d×1, thus setting input dimension k = 1. n = 5000 samples are taken. As we might expect,
the upper bound is increasing in d. each point is determined by 2000 samples. (b) Plot of TV vs. n
for additional distributions of x. All three distributions follow roughly the same trend, each point is
determined by 2500 samples.

E Simulations

E.1 Additional Simulations

In this section, we provide additional simulations to supplement some of the discussion in Section 5.

E.2 Simulation Details

E.2.1 Figure 2

In these experiment, we set d = 1, and plot the results for various values of the number of samples n
in Figure 2a and various values of the input dimension k in Figure 2b. For each plot, we fix the true
σ∗ = 1 and the w∗ = 1k×1. In each case the MLE is solved via gradient descent with backtracking
line search, and we check a first order condition ∥∇w,σ log pw,σ((y | x))∥2 < δ = 10−3 as the exit
condition. We verify that increasing or decreasing δ by one order of magnitude makes no difference
to the Figure.

The expected total variation distance for the two distributions is calculated as follows. We sample
x according to the true distribution (in this case either Laplace or Normal). Then we compute
dTV (pŵ,σ̂(y | x), pw,σ(y | x)) via the MATLAB integral function which uses vectorized adaptive
quadrature. We repeat this a total of 100 times and take the average to compute our expected total
variation. We then repeat the entire process 2000 times, each time optimizing to find an MLE, and
then compute its average total variation distance. Lines indicate the average of these experiments,
and the error bars, (not easily visible due to their size) indicates one standard error.

E.2.2 Figure 3

In these experiments we fix d = 3 to retain reasonable complexity for computing the TV distance,
and take input dimension k = 1 with deterministic x in order to compare with [35]. In Figure 3a we
fix Σ∗ = Id and take let W ∗ = b1d×1, where b will vary across our experiments. We set n = 10000.
In Figure 3b we set n = 5000 and adjust Σ such that one diagonal entry is κ1/2, and the other is
κ−1/2, making the total condition number κ.

In both of these experiments, we restrict the MLE computation to be over diagonal Σ only. This is
not because computation of the MLE is too difficult, but rather because computing the TV distance is
greatly simplified in this case. The algorithm of Wu et al. is hence modified to use the knowledge that
the output must be diagonal. This is simply done, because the procedure of Wu et al. essentially first
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estimates the diagonal entries of the matrix as if it were diagonal and then computes the correlations.
Removing this second phase allows us to achieve our goal.

Since x is deterministic, we do not need to consider randomness in computing the expected TV
distance, though other challenges remain. Since our distribution is degenerate, we must be very
careful in computing the TV distance in higher dimensions. Specifically, in the diagonal case, the TV
may be written as:

dTV

(
(Ŵ , Σ̂), (W ∗,Σ∗)

)
=

1

2

∫
Rd

≥0

∣∣∣pŴ ,Σ̂
(y | x)− pW∗,Σ∗(y | x)

∣∣∣dy
=

1

2

∫
R3

≥0

∣∣∣∣∣
d∏

i=1

p
Ŵ ,Σ̂

(yi | x)−
d∏

i=1

pW∗,Σ∗(yi | x)

∣∣∣∣∣dy,
where yi is the ith element of y. Though at first glace it seems that this is a single high-dimensional
integral, the reality is that due to the truncation, the probability mass on the boundary of the non-
negative orthant cone R3

≥0 has a complex structure that cannot be ignored. Instead we perform a
series of integrals of continuous bounded functions, which are much more amenable to Monte-Carlo
integration techniques:

dTV

(
(Ŵ , Σ̂), (W ∗,Σ∗)

)
=

1

2

∑
S′∈2[d]

∫
R|S

′|
≥0

∣∣∣∣∣∣
∏
i∈S′

p
Ŵ ,Σ̂

(yi | x)
∏

i∈(S′)c

Φ
(
Σ̂

−1/2
ii Ŵi

)
−
∏
i∈S′

pW∗,Σ∗(yi | x)
∏

i∈(S′)c

Φ
(
Σ

−1/2
ii Wi

)∣∣∣∣∣∣dyS′ .

(45)

Essentially, for each possible support of y, S′, we integrate over the absolute deviation in those
coordinates.

E.2.3 Figure 4

In Figure 4a, we plot an upper bounds for the TV distance of the MLE as the output dimension
d grows. We set the input dimension k = 1 with deterministic x and fix the number of samples
n = 5000. To estimate the KL divergence, we repeatedly sample y according to the true distribution,
and compute the empirical average log-likelihood ratio.

In Figure 4b we fix the output dimension d = 1 and input dimension k = 5, and compute the TV over
a range of values of n. In addition to x sampled i.i.d. from the Normal and Laplace distributions, we
also plot a performance with a Normal mixture, where with probability 0.01, the normal distribution
has mean shifted by 100. We observe, as our theory suggests, that in all cases, there is only very
minor differences in the expected TV distance.

Note that in the case where x is distributed according to a Normal mixture, we observe that the
optimization may become very challenging, and in the plot above, we have omitted some of the
instances where optimization failed due to lack of smoothness in the objective and numerical
imprecision. Omitting these point may lead to a small systematic error in the figure, which may
explain why it is lower than the other plots. In practice, for a fixed optimization budget, we may
observe meaningful differences in TV for different distributions of x, since computing the MLE
becomes more challenging for more complex heavy-tailed distributions.

F The Likelihood Function

In this section, we discuss the likelihood function, proving log-concavity, as well as discussing
computational challenges.

F.1 One Dimensional Case

In this section, we consider the case where the output dimension d = 1, with some σ∗ and some
W ∗ ∈ R1,k and describe how to compute the likelihood function. We defer the proof of the
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log-concavity to the follwing section, which covers the more general case with d ≥ 1 When we
re-parameterize as u = −W/σ, v = 1/σ, the likelihood function is written as:

fu,v(y) = −
1

2

∑
i∈S′

(vyi − u · xi)
2 + |S′| log(v) +

∑
i∈S

log Φ(−u · xi) (46)

where in this case we let S = {i | yi = 0}, where yi is the ith sample in the set {yi, xi}ni=1. Note
this is distinct from how we define S and S′ in the multidimensional case, where it corresponds to the
zero and non-zero coordinates of a single sample yi. The case of d > 0 with uncorrelated η follows a
similar approach.

Numerical concerns. In (46), the term log Φ(−u · xi) presents some numerical concerns when
u ·xi ≫ 0 if we naively compute Φ(−u ·xi) and then take the logarithm. Instead we compute it from
the mills ratio m(x) [27], defined to be the ratio of the standard normal pdf and the complementary
cdf. The mills ratio is easily computed, with many well-known expansions, see for example, [13].
Then we can write:

log Φ(−x) = − logm(x)− 1

2
log(2π)− 1

2
x2, x > 0.

Since m(x) changes relatively slowly in x compared to Φ(−x), this greatly improves numerical
stability.

F.2 Multidimensional Case

In the multi-dimensional case, we will generally use the more standard natural parameters:

U :=
Σ−1

2
,

v := −Σ−1Wx.

Note that in the one-dimensional case, we could have also use the natural parameters, but due to the
truncation structure, the parameters we used make the computation simpler, in a way that does not
apply to the multidimensional case. Also note that here we are considering a fixed x and writing v as
a vector. In full generality, we should take V = −Σ−1W , however, this is a simple extension which
we omit here for readability. It turns out that density is log-concave in these natural parameters:
Lemma F.1. The log-likelihood function in Eqn (8) is concave in the natural parameter space.

Proof. First, let’s write the un-truncated density in terms of these parameters:

fW,Σ(y|x) = exp

(
−1

2
(y −Wx)

T
Σ−1(y −Wx)− 1

2
log|2πΣ|

)
, (47)

= exp

(
−1

2
yTΣ−1y + xTWTΣ−1y − xTWTΣ−1Wx− 1

2
log|2πΣ|

)
(48)

= exp

(
−1

2
yTUy − vT y − vTU−1v − 1

2
log((2π)

n
/|U |)

)
(49)

(50)

Thus, the untrucated conditional density can be written as:

fU,v(y) = exp

(
−1

2
yTUy + yT v −A(U, v)

)
,

where A(U, v) is the cumulant function (note this is distinct from the related cumulant generating
function). A well known result is that A is jointly convex in its arguments, U and v. Taking logs and
using this fact, shows us that fU,v(y) is log-concave in U, v.

Our truncated density is simply:

fU,v(y|x) =
∫
yS≤0

pU,v(y|x)dyS ,

For any log-concave density f(x), integration over a convex subset of the coordinates preserves
log-concavity ([9], Example 3.42-3.44). Thus the objective is log-concave.
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Then the likelihood function at U, v can be rewritten as

fU,v(y) = log

∫
tS≤0,tS′=yS′

exp

(
−tTUt− tT v − vTU−1v

4
+

1

2
log|2U |

)
,

= −vTU−1v

4
+

1

2
log|2U |+ log

∫
tS≤0,tS′=yS′

exp
(
−tTUt− tT v

)
,

Separating the terms corresponding to S and S′, we get

fU,v(y) = −
vTU−1v

4
+

1

2
log|2U | − yTS′US′yS′ − yTS′vS′ + log

∫
tS≤0

exp
(
−tTSUStS − 2yTS′US′StS − vTS tS

)
.

The last term resembles the log Φ term that appears in the univariate case. This resemblance can be
made more clear as follows. Let rS = USS′y′S + 1

2vS and MTM = US .

= log

∫
tS≤0

exp
(
−
(
tTSM

TMtS + 2tTS rS
))

= log

∫
tS≤0

exp
(
−
(
(MtS)

TMtS + 2tTS rS + rTSM
−1M−T rS − rTSM

−1M−T rS
))

= log

∫
tS≤0

exp
(
−
∥∥MtS +M−T rS

∥∥2 + rTSM
−1M−T rS

)
= rTSM

−1M−T rS + log

∫
tS≤0

exp
(
−
∥∥tS + U−1

S rS
∥∥2
US

)
= rTSU

−1
s rS + log

∫
tS≤0

(2π)d/2
∣∣U−1

S /2
∣∣1/2

(2π)d/2
∣∣U−1

S /2
∣∣1/2 exp

(
−
∥∥tS + U−1

S rS
∥∥2
US

)
= rTSU

−1
s rS −

1

2
log|2US |+ log

∫
tS≤0

1

(2π)d/2
∣∣U−1

S /2
∣∣1/2 exp

(
−1

2

∥∥tS + U−1
S rS

∥∥2
2US

)
+ c

= rTSU
−1
s rS −

1

2
log|2US |+ logΦ

(
0;µ = −U−1

S rS ,Σ =
1

2
U−1
S

)
+ c

Putting this together, fU,v can be written as:

fU,v(y) = −
vTU−1v

4
+

1

2
log|U | − yTS′US′yS′ − yTS′vS′ + rTSU

−1
S rS −

1

2
log|US |+ |S′| log(2)

2

+ logΦ

(
0;µ = −U−1

S rS ,Σ =
1

2
U−1
S

)
+ c (51)

Thus, it appears that evaluating the likelihood for even a single sample involves the high-dimensional
integral that is the rectangular cdf in equation (51).

F.3 Computing Gradients

F.3.1 One Dimensional Case

In the one-dimensional case, the gradient with respect to u is easily computed as:

∇ufu,v(y) =
∑
i∈S′

(vyi − u · xi)xi −
∑
i∈S

1

m(u · xi)
xi,

where we have previously defined m(x) as the mills ratio. Furthermore, we have:

∇vfu,v(y) = |S′|1
v
−
∑
i∈S′

yi(vyi − u · xi)
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F.3.2 Multidimensional Case

First we consider the non-integral terms in the likelihood. Differentiating each term wrt U , we get

−∇U
vTU−1v

4
=

1

4
(U−1vvTU−1),

∇U
1

2
log|2U | = 1

2
U−1,

−∇Uy
T
S′US′yS′ =

(
0 0
0 −yS′yTS′

)
Differentiating each term wrt v, we get

−∇v
vTU−1v

4
= −1

2
U−1v,

−∇vy
T
S′vS′ =

(
0
−yS′

)
Now consider the integral term. Differentiating wrt U , we get

∇U log

∫
tS≤0

exp
(
−tTSUStS − 2yTS′US′StS − vTS tS

)

=

∫
tS≤0

−tStTS −tSyTS′

−yS′tTS 0

 exp
(
−tTSUStS − 2yTS′US′StS − vTS tS

)
∫
tS≤0

exp
(
−tTSUStS − 2yTS′US′StS − vTS tS

)
Let M be a matrix such that

MTM = US

Then via completion of squares in the exponential term, we get

∇U log

∫
tS≤0

exp
(
−tTSUStS − 2yTS′US′StS − vTS tS

)
(52)

=

∫
tS≤0

−tStTS −tSyTS′

−yS′tTS 0

 exp
(
−∥MtS + (M−1)T

(
USS′yS′ + vS

2

)
∥2
)

∫
tS≤0

exp
(
−∥MtS + (M−1)T

(
USS′yS′ + vS

2

)
∥2
) (53)

Notice that this density is Gaussian, with mean and covariance:

N
(
−M−1

(
M−1

)T(
USS′yS′ +

vS
2

)
;
U−1
S

2

)
.

And hence, the gradient can be estimated as

∇U log

∫
tS≤0

exp
(
−tTSUStS − 2yTS′US′StS − vTS tS

)
= E

tS

−tStTS −tSyTS′

−yS′tTS 0


where tS is the truncation of

z ∼ N
(
−M−1

(
M−1

)T(
USS′yS′ +

vS
2

)
;
U−1
S

2

)
.

to the negative quadrant. A similar calculation gives the gradient for v as

∇v log

∫
tS≤0

exp
(
−tTSUStS − 2yTS′US′StS − vTS tS

)
= E

tS

[(
−tS
0

)]
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