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Appendix A Architectures of deep neural networks in Section 3.3.1

A.1 Architecture of deep neural classifier in Section 3.3

We consider a general class of neural networks as what is introduced in [50], which includes widely
used MLPs and CNNs. We define a deep neural network with LC convolutional layers followed by
L− LC − 1 fully-connected layers as follows:

f(x;w) =

m∑
k=1

akz(L−1),k

zl = σ
(
A⊤

l z(l−1)

)
, l ∈ [L− 1]− [LC ] ,

zl = pool (yl) , l ∈ [LC ] ,

yl = σ
(
wl ∗ z(l−1)

)
, l ∈ [LC ] ,

z0 = x

where m is the demension of z(L−1), σ(z) is the ReLU function max{z, 0}, * is the convolutional
operation, and pool(·) is the average pooling operation. When LC = 0, this is an MLP. For
output layer l = L, let wL := (a1, · · · , am)

⊤. For fully-connected layer l ∈ [L − 1] − [LC ], we
let wl := vector (Al). For convolution layer l ∈ [LC ], we consider the structure Convolution
→ ReLU → Pooling, and denotes the weights as wl.

A.2 Architecture of GAN in Section 3.3

The abstract form of GAN. The architecture of GAN in Theorem 3.3 is consistent with that
in Theorem 19, [49]. We denote by F =

{
fω(x) : Rd → R

}
the discriminator function space.

Besides, we let G =
{
gθ(z) : Rd → Rd

}
be the generator function space. The generator receives

z ∼ unif[0, 1]d as the random input. In reality, we estimate the parameters of GAN as

θ̂m,n ∈ argmin
θ:gθ∈G

max
ω:fω∈F

{
Ênfω

(
gθ(Z)

)
− Êmfω(X)

}
,

where n and m denote the number of simulated and target distribution samples, respectively. We just
let m = n in this paper.

The architecture of the generator network. The generator gθ is parametrized by a MLP:

h0 = z,

hl = σa (Wlhl−1 + bl) , 0 < l < L

x = WLhL−1 + bL,

where hl denotes the hidden units in the l-th layer, and x is the final output of the MLP. The activation
is leaky ReLU [77].

σa(t) = max{t, at}, for some fixed 0 < a ≤ 1

The space for the generator weights is denoted by

Θ(d, L) :=

{
θ =

(
Wl ∈ Rd×d,bl ∈ Rd, 1 ≤ l ≤ L

)
| rank (Wl) = d, ∀1 ≤ l ≤ L

}
.

Note that the Wl is required to be full rank so that the generator transformation gθ is invertible. The
generator has the capacity to express complex distributions

The architecture of the discriminator network. We consider a discriminator network which
includes feed-forward neural networks fω that satisfies
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h1 = σ1/a (V1x+ c1)

· · ·
hL−1 = σ1/a (VL−1hL−2 + cL−1)

qω(x) :=

L−1∑
j=1

d∑
i=1

log(1/a)1hji≤0 + cL.

The parameter space is defined as

Ω(d, L) :=

{
ω =

(
Vl ∈ Rd×d, cl ∈ Rd, cL ∈ R, 1 ≤ l ≤ L− 1

)
| rank (Vl) = d,∀1 ≤ l ≤ L− 1

}
.

Finally, the discriminator parameterized by ω = (ω1,ω2), where ω1,ω2 ∈ Ω(d, L), is defined as

fω(x) = qω1
(x)− qω2

(x).

Appendix B Proofs

B.1 Proof of Theorem 3.1

Proof. We first list some moment inequalities which are important to this proof.

Lemma B.1 (Lemma 1, [26]). If ∥Y ∥p ≤ √
pa + pb for any p ≥ 1, then for any δ ∈ (0, 1), with

probability at least 1− δ,

|Y | ≤ e

a

√
log

(
e

δ

)
+ b log

(
e

δ

) .

Lemma B.2 (Lemma 2, [26]). Consider a function f of independent random variables X1, . . . , Xn

where Xi ∈ X . Suppose that for any i = 1, . . . , n and any x1, . . . , xn, x
′
i ∈ X it holds that

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ β. (3)

Then, we have for any p ≥ 2,

∥f(X1, . . . , Xn)− Ef(X1, . . . , Xn)∥p ≤ 2
√
npβ .

Lemma B.3 (Theorem 4, [26]). Let Z = (Z1, . . . , Zn) be a vector of independent random variables
each taking values in Z , and let g1, . . . , gn be some functions gi : Zn → R such that the following
holds for any i ∈ [n]:

•
∣∣E[gi(Z)|Zi]

∣∣ ≤ M ,

• E[gi(Z)|Z\i] = 0,

• gi has a bounded difference β with respect to all variables except the i-th variable, that
is, for all j ̸= i, Z = (Z1, . . . , Zn) and Zj = (Z1, . . . , Z

′
j , . . . , Zn) ∈ Rn, we have∣∣gi(Z)− gi(Z

j)
∣∣ ≤ β.

Then, for any p ≥ 2, ∥∥∥∥∥∥
n∑

i=1

gi(Z)

∥∥∥∥∥∥
p

≤ 12
√
2pnβ log n+ 4M

√
pn.

Now, we are ready to prove Theorem 3.1. Formally, we need to bound Gen-error = |RD(A(S̃))−
R̂S̃(A(S̃))|. Recall that D̃(S) has been defined as the mixed distribution after augmentation, to
derive such a bound, we first decomposed Gen-error as

|Gen-error| ≤
∣∣∣RD(A(S̃))− R

D̃(S)
(A(S̃))

∣∣∣︸ ︷︷ ︸
Distributions’ divergence

+
∣∣∣RD̃(S)

(A(S̃))− R̂S̃(A(S̃))
∣∣∣︸ ︷︷ ︸

Generaliztion error w.r.t. mixed distribution, Φ(S,SG)

.
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The distributions’ divergence term in the right hand can be bounded by the divergence (e.g.,
DTV,DKL) between augmented distribution D̃(S) and the true distribution D. It is heavily de-
pendent on the ability of the chosen generative model. It can be bounded as follows.

∣∣∣RD(A(S̃))− R
D̃(S)

(A(S̃))
∣∣∣ = mG

mT

∣∣∣RD(A(S̃))− RDG(S)(A(S̃))
∣∣∣

=
mG

mT

∣∣∣∣∫
z

ℓ(A(S̃), z)
(
PD(z)− PDG(S)(z)

)
dz

∣∣∣∣
≤ mG

mT

∫
z

∣∣∣∣ℓ(A(S̃), z)
(
PD(z)− PDG(S)(z)

)∣∣∣∣ dz
≤ mG

mT
M

∫
z

∣∣∣PD(z)− PDG(S)(z)
∣∣∣ dz

≲
mG

mT
MDTV

(
D,DG(S)

)
.

For the second term Φ(S, SG), we note that classical stability bounds (e.g. Theorem 2.1) can not be
used directly, because points in S̃ are drawn non-i.i.d.. In contrast, a core property of S̃ is that S
satisfies i.i.d. assumption, and SG satisfies conditional i.i.d. assumption when S is fixed. Inspired by
this property, we furthermore decomposed this term and utilized sharp moment inequalities [39; 26]
to obtain an upper bound. Similarly to [26], we bound the Lp norm of mTΦ(S, SG), and then derive
a concentration bound. We can write

∥∥mTΦ(S, SG)
∥∥
p
=

∥∥∥∥mT

(
R

D̃(S)
(A(S̃))− R̂S̃(A(S̃))

)∥∥∥∥
p

=

∥∥∥∥∥∥mSRD(A(S̃)) +mGRDG(S)(A(S̃))−
∑
zi∈S

ℓ(A(S̃), zi)−
∑

zi∈SG

ℓ(A(S̃), zi)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥mSRD(A(S̃))−
mS∑
i=1

ℓ(A(S̃), zi)

∥∥∥∥∥∥
p︸ ︷︷ ︸

∥Φ1(S,SG)∥
p

+

∥∥∥∥∥∥mGRDG(S)(A(S̃))−
mG∑
i=1

ℓ(A(S̃), zGi )

∥∥∥∥∥∥
p︸ ︷︷ ︸

∥Φ2(S,SG)∥
p

.

We will bound
∥∥Φ1(S, SG)

∥∥
p

and
∥∥Φ2(S, SG)

∥∥
p

respectively. We note that for any function f(S), if
we have an bound ∥f∥p(SV ) ≤ C for some SV ⊆ S, then we have

∥f∥p = (EE[|f |p|SV ])
1/p ≤ (E[Cp])1/p ≤ C. (4)

Fix S, then data in SG are independent. We use this property and lemma B.3 to bound∥Φ2∥p (S).
We introduce functions fi(SG) which play the same role as gis in Lemma B.3, as

fi(SG) = Ez′
i∼DG(S)

[
Ez∼DG(S)ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ Si
G), z

G
i )
]
,

where zGi is the i-th data in SG, and Si
G obtained by replacing zGi by z′i. We note that |fi| ≤ M ,

E[fi|S\i
G ] = 0 and fi has a bounded difference 2βmT

with respect to all variables except the i-th
variable, which can be proved as follows.

|fi| =
∣∣∣∣Ez′

i∼DG(S)

[
Ez∼DG(S)ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ Si
G), z

G
i )
]∣∣∣∣

=

∣∣∣∣Ez′
i∼DG(S)Ez∼DG(S)

[
ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ Si
G), z

G
i )
]∣∣∣∣
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≤ Ez′
i∼DG(S)Ez∼DG(S)

∣∣∣ℓ(A(S ∪ Si
G), z)− ℓ(A(S ∪ Si

G), z
G
i )
∣∣∣

≤ Ez′
i∼DG(S)Ez∼DG(S)[M ] = M,

E[fi|S\i
G ] = EzG

i ∼DG(S)

[
Ez′

i∼DG(S)

[
Ez∼DG(S)ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ Si
G), z

G
i )
]
|S\i

G

]
= Ez′

i∼DG(S)

[[
Ez∼DG(S)ℓ(A(S ∪ Si

G), z)− EzG
i ∼DG(S)ℓ(A(S ∪ Si

G), z
G
i )
]
|S\i

G

]
= Ez′

i∼DG(S)

[
0|S\i

G

]
= 0,

∣∣∣fi(SG)− fi(S
j
G)
∣∣∣ = ∣∣∣∣Ez′

i∼DG(S)

[
Ez∼DG(S)ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ Si
G), z

G
i )
]

− Ez′
i∼DG(S)

[
Ez∼DG(S)ℓ(A(S ∪ (Sj

G)
i), z)− ℓ(A(S ∪ (Sj

G)
i, zGi )

] ∣∣∣∣
=

∣∣∣∣Ez′
i∼DG(S)

[
Ez∼DG(S)ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ Si
G), z

G
i )

− Ez∼DG(S)ℓ(A(S ∪ (Sj
G)

i), z) + ℓ(A(S ∪ (Sj
G)

i, zGi )

]∣∣∣∣
≤
∣∣∣∣Ez′

i∼DG(S)Ez∼DG(S)

[
ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ (Sj
G)

i), z)
]∣∣∣∣

+

∣∣∣∣Ez′
i∼DG(S)

[
ℓ(A(S ∪ Si

G), z
G
i )− ℓ(A(S ∪ (Sj

G)
i), zGi )

]∣∣∣∣
≤ Ez′

i∼DG(S)Ez∼DG(S)

∣∣∣ℓ(A(S ∪ Si
G), z)− ℓ(A(S ∪ (Sj

G)
i), z)

∣∣∣
+ Ez′

i∼DG(S)

∣∣∣ℓ(A(S ∪ Si
G), z

G
i )− ℓ(A(S ∪ (Sj

G)
i), zGi )

∣∣∣
≤ βmT

+ βmT
= 2βmT

.

Therefore, for any fixed S, by Lemma B.3, for any p ≥ 2, we have

∥∥∥∥∥∥
mG∑
i=1

fi(SG)

∥∥∥∥∥∥
p

≲ pmGβmT
logmG +M

√
pmG. (5)

We note the gap between Φ2 and
∑mG

i=1 fi is small, then for any fixed S, we can bound∥Φ2∥p (S) by
(5) as follows.

∥Φ2∥p (S) =

∥∥∥∥∥∥mGRDG(S)(A(S ∪ SG))−
mG∑
i=1

ℓ(A(S ∪ SG), z
G
i )

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
mG∑
i=1

(
Ez∼DG(S)ℓ(A(S ∪ SG), z)− ℓ(A(S ∪ SG), z

G
i )
)∥∥∥∥∥∥

p

≤

∥∥∥∥∥∥
mG∑
i=1

(
Ez′

i∼DG(S)

[
Ez∼DG(S)ℓ(A(S ∪ Si

G), z)− ℓ(A(S ∪ Si
G), z

G
i )
])∥∥∥∥∥∥

p

+
∥∥2mGβmT

∥∥
p
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=

∥∥∥∥∥∥
mG∑
i=1

fi(SG)

∥∥∥∥∥∥
p

+
∥∥2mGβmT

∥∥
p

≲ pmGβmT
logmG +M

√
pmG + 2mGβmT

≲ pmGβmT
logmG +M

√
pmG.

Therefore, by using (4), we have∥∥Φ2(S, SG)
∥∥
p
≲ pmGβmT

logmG +M
√
pmG. (6)

Now, we use a similar idea to bound
∥∥Φ1(S, SG)

∥∥
p
. We decompose

∥∥Φ1(S, SG)
∥∥
p

as the following.

∥∥Φ1(S, SG)
∥∥
p
=
∥∥∥Φ1 − ESG∼D

mG
G (S)Φ1 + ESG∼D

mG
G (S)Φ1

∥∥∥
p

≤
∥∥∥Φ1 − ESG∼D

mG
G (S)Φ1

∥∥∥
p︸ ︷︷ ︸

∆1

+
∥∥∥ESG∼D

mG
G (S)Φ1

∥∥∥︸ ︷︷ ︸
∆2

,

We then bound each term and obtain a bound for
∥∥Φ1(S, SG)

∥∥
p
. We note that ∆1 can be bounded by

using Lemma B.2 and ∆2 can be bounded by using Lemma B.3.

To bound ∆1, we first fix S and bound
∥∥∥Φ1 − ESG∼D

mG
G (S)Φ1

∥∥∥
p
(S). We use the conditional

independence property of SG again. To use Lemma B.2, we need to prove that Φ1 has the bounded
difference with respect to SG when S is fixed. We can write

∣∣∣Φ1(S, SG)− Φ1(S, S
i
G)
∣∣∣

=

∣∣∣∣∣∣mSRD(A(S ∪ SG))−
mS∑
i=1

ℓ(A(S ∪ SG), zi)−mSRD(A(S ∪ Si
G)) +

mS∑
i=1

ℓ(A(S ∪ Si
G), zi)

∣∣∣∣∣∣
≤ mS

∣∣∣RD(A(S ∪ SG))− RD(A(S ∪ Si
G))
∣∣∣+ mS∑

i=1

∣∣∣ℓ(A(S ∪ SG), zi)− ℓ(A(S ∪ Si
G), zi)

∣∣∣
≤ mSβmT

+mSβmT
= 2mSβmT

.

Thus, by Lemma B.2, we have

∆1 ≤ 4
√
mGpmSβmT

≲
√
mGpmSβmT

. (7)

We now construct some functions and use Lemma B.3 again to bound ∆2. We define hi(S) which
play the same role as gis in Lemma B.3, as

hi(S) = Ez′
i∼DESG∼D

mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

]
,

where zi is the i-th data in S, and Si obtained by replacing zi by z′i. We note that |hi| ≤ M ,
E[hi|S\i] = 0 and hi has a bounded difference 2βmT

+ 2MT(mS ,mG) with respect to all variables
except the i-th variable, where T(mS ,mG) = supi DTV

(
DmG

G (S),DmG

G (Si)
)
. These can be proved

as follows.

|hi| =
∣∣∣∣Ez′

i∼DESG∼D
mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

]∣∣∣∣
=

∣∣∣∣Ez′
i∼DESG∼D

mG
G (Si)Ez∼D

[
ℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

]∣∣∣∣
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= Ez′
i∼DESG∼D

mG
G (Si)Ez∼D

∣∣∣ℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)
∣∣∣

≤ M,

E[hi|S\i] = Ezi∼D

[
Ez′

i∼DESG∼D
mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

]
|S\i

]
= Ez′

i∼DESG∼D
mG
G (Si)

[[
Ez∼Dℓ(A(Si ∪ SG), z)− Ezi∼Dℓ(A(Si ∪ SG), zi)

]
|S\i

]
= 0,

∣∣∣hi(S)− hi(S
j)
∣∣∣ = ∣∣∣∣Ez′

i∼DESG∼D
mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

]
− Ez′

i∼DESG∼D
mG
G ((Sj)i)

[
Ez∼Dℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

] ∣∣∣∣
≤
∣∣∣∣Ez′

i∼DESG∼D
mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

]
− Ez′

i∼DESG∼D
mG
G (Si)

[
Ez∼Dℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

] ∣∣∣∣
(8)

+

∣∣∣∣Ez′
i∼DESG∼D

mG
G (Si)

[
Ez∼Dℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

]
− Ez′

i∼DESG∼D
mG
G ((Sj)i)

[
Ez∼Dℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

] ∣∣∣∣.
(9)

We bound (8) and (9) respectively. The first can be bounded by using the property of uniform stability.

∣∣∣∣Ez′
i∼DESG∼D

mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

]
− Ez′

i∼DESG∼D
mG
G (Si)

[
Ez∼Dℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

] ∣∣∣∣
=

∣∣∣∣Ez′
i∼DESG∼D

mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

− Ez∼Dℓ(A((Sj)i ∪ SG), z) + ℓ(A((Sj)i ∪ SG), zi)
]∣∣∣∣

≤
∣∣∣∣Ez′

i∼DESG∼D
mG
G (Si)Ez∼D

[
ℓ(A(Si ∪ SG), z)− ℓ(A((Sj)i ∪ SG), z)

]∣∣∣∣
+

∣∣∣∣Ez′
i∼DESG∼D

mG
G (Si)

[
ℓ(A(Si ∪ SG), zi)− ℓ(A((Sj)i ∪ SG), zi)

]∣∣∣∣
≤ Ez′

i∼DESG∼D
mG
G (Si)Ez∼D

∣∣∣ℓ(A(Si ∪ SG), z)− ℓ(A((Sj)i ∪ SG), z)
∣∣∣

+ Ez′
i∼DESG∼D

mG
G (Si)

∣∣∣ℓ(A(Si ∪ SG), zi)− ℓ(A((Sj)i ∪ SG), zi)
∣∣∣

≤ βmT
+ βmT

= 2βmT
.

We denote ℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi) by B for convenience, then we have∣∣∣∣Ez′
i∼DESG∼D

mG
G (Si)

[
Ez∼Dℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

]
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− Ez′
i∼DESG∼D

mG
G ((Sj)i)

[
Ez∼Dℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

] ∣∣∣∣
=

∣∣∣∣Ez′
i∼DEz∼DESG∼D

mG
G (Si)

[
ℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

]
− Ez′

i∼DEz∼DESG∼D
mG
G ((Sj)i)

[
ℓ(A((Sj)i ∪ SG), z)− ℓ(A((Sj)i ∪ SG), zi)

] ∣∣∣∣
=

∣∣∣∣Ez′
i∼DEz∼DESG∼D

mG
G (Si) [B]− Ez′

i∼DEz∼DESG∼D
mG
G ((Sj)i) [B]

∣∣∣∣
=

∣∣∣∣Ez′
i∼DEz∼D

[
ESG∼D

mG
G (Si) [B]− ESG∼D

mG
G ((Sj)i)[B]

] ∣∣∣∣
≤ Ez′

i∼DEz∼D

∣∣∣∣ESG∼D
mG
G (Si) [B]− ESG∼D

mG
G ((Sj)i)[B]

∣∣∣∣
= Ez′

i∼DEz∼D

∣∣∣∣∣
∫
SG

(
P(SG|Si)− P(SG|(Sj)i)

)
BdSG

∣∣∣∣∣
≤ Ez′

i∼DEz∼D

[∫
SG

∣∣∣∣(P(SG|Si)− P(SG|(Sj)i)
)
B

∣∣∣∣ dSG

]

≤ MEz′
i∼DEz∼D

[∫
SG

∣∣∣P(SG|Si)− P(SG|(Sj)i)
∣∣∣ dSG

]
≤ 2M sup

i
DTV

(
DmG

G (Si),DmG

G (S)
)
= 2MT(mS ,mG).

Therefore, hi has a bounded difference 2βmT
+ 2MT(mS ,mG) with respect to all variables except

the i-th variable. By Lemma B.3, we have

∥∥∥∥∥∥
mS∑
i=1

hi(S)

∥∥∥∥∥∥
p

≤ 12
√
2pmS

(
2βmT

+ 2MT(mS ,mG)
)
logmS + 4M

√
pmS (10)

≲ pmS

(
βmT

+MT(mS ,mG)
)
logmS +M

√
pmS . (11)

We note the gap between ∆2 and
∥∥∑mS

i=1 hi(S)
∥∥
p

is small, then we can bound ∆2 by (10) as follows.

∆2 =
∥∥∥ESG∼D

mG
G (S)Φ1

∥∥∥
p

=

∥∥∥∥∥∥ESG∼D
mG
G (S)

mSRD(A(S̃))−
mS∑
i=1

ℓ(A(S̃), zi)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
mS∑
i=1

ESG∼D
mG
G (S)

[
mSRD(A(S̃))− ℓ(A(S̃), zi)

]∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
mS∑
i=1

(
Ez′

i∼DESG∼D
mG
G (Si)

[
Ez∼Dℓ(A(Si ∪ SG), z)− ℓ(A(Si ∪ SG), zi)

])∥∥∥∥∥∥
p

(12)

+

∥∥∥∥2mSβmT
+ 2mSM sup

i
DTV

(
DmG

G (S),DmG

G (Si)
)∥∥∥∥

p

=

∥∥∥∥∥∥
mS∑
i=1

hi(S)

∥∥∥∥∥∥
p

+
∥∥2mSβmT

+ 2mSMT(mS ,mG)
∥∥
p
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≲ pmS

(
βmT

+MT(mS ,mG)
)
logmS +M

√
pmS

+mSβmT
+mSMT(mS ,mG)

≲ pmS

(
βmT

+MT(mS ,mG)
)
logmS +M

√
pmS . (13)

Combine (7) and (13), we have

∥∥Φ1(S, SG)
∥∥
p
≲

√
mGpmSβmT

+ pmS

(
βmT

+MT(mS ,mG)
)
logmS +M

√
pmS

=
√
p
(
M

√
mS +

√
mGmSβmT

)
+ pmS

(
βmT

+MT(mS ,mG)
)
logmS (14)

In addition, by (14) and (6), we have

∥∥mTΦ(S, SG)
∥∥
p
≲

√
p
(
M

√
mS +M

√
mG +

√
mGmSβmT

)
+ p

(
mSβmT

logmS +mGβmT
logmG +mS logmSMT(mS ,mG)

)
.

By Lemma B.1, we can bound the generalization error w.r.t. mixed distribution
∣∣Φ(S, SG)

∣∣ =∣∣∣RD̃(S)
(A(S̃))− R̂S̃(A(S̃))

∣∣∣ as follows.

∣∣∣RD̃(S)
(A(S̃))− R̂S̃(A(S̃))

∣∣∣
≲

M(
√
mS +

√
mG) +mS

√
mGβmT

mT

√
log

(
1

δ

)
+

βmT
(mS logmS +mG logmG) +mS logmSMT(mS ,mG)

mT
log

(
1

δ

)
.

Finally, we conclude that

∣∣∣RD(A(S̃))− R̂S̃(A(S̃))
∣∣∣

≲
mG

mT
MDTV

(
D,DG(S)

)
+

M(
√
mS +

√
mG) +mS

√
mGβmT

mT

√
log

(
1

δ

)
+

βmT
(mS logmS +mG logmG) +mS logmSMT(mS ,mG)

mT
log

(
1

δ

)
≲

mG

mT
MDTV

(
D,DG(S)

)
+

M(
√
mS +

√
mG) +mS

√
mGβmT

mT

√
log

(
1

δ

)
+

βmT
(mS logmS +mG logmG) +mS logmSMT(mS ,mG)

mT
log

(
1

δ

)
,

which completes the proof.

B.2 Proof of Theorem 3.2

We need to bound terms M , βmT
, DTV

(
D,DG(S)

)
and T(mS ,mG) in Theorem 3.1. For M

(Lemma B.5) and βmT
(Lemma B.6), we mainly use the boundedness of the multivariate Gaussian

variable with high probability (Lemma B.4). In addition, we bound DTV

(
D,DG(S)

)
(Lemma B.7)

by discussing the distance between the estimated parameters and the true parameters of bGMM.
Besides, the concentration property of T(mS ,mG) (Lemma B.9) can be induced by the preceding
discussion.
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Lemma B.4 ("Boundedness" of multivariate Gaussian distribution). Let X = (X1, . . . , Xd) be a
d-dimension isotropic Gaussian random variable, which satisfies ∥µ∥2 = 1 and σ2

i = σ2 for any
i ∈ {1, . . . , d}. For any δ ∈ (0, 1), with probability at least 1− δ, it holds that

∥X∥2 ≲ σ

√
d+ log(

1

δ
).

Proof. The proof idea is to bound the distance between∥X∥22 and its expectation with high probability.
Let Z be the standard d-dimension isotropic Gaussian random variable, we have

P

∣∣∣∣∣∥X∥22
d

− σ2 − 1

d

∣∣∣∣∣ ≥ ϵ


= P


∣∣∣∣∣∣1d

d∑
i=1

(
X2

i − σ2 − µ2
i

)∣∣∣∣∣∣ ≥ ϵ


= P


∣∣∣∣∣∣1d

d∑
i=1

(
(σZi + µi)

2 − σ2 − µ2
i

)∣∣∣∣∣∣ ≥ ϵ


= P


∣∣∣∣∣∣1d

d∑
i=1

(
σ2(Z2

i − 1) + 2σµiZi

)∣∣∣∣∣∣ ≥ ϵ


≤ P


∣∣∣∣∣∣1d

d∑
i=1

(
σ2(Z2

i − 1)
)∣∣∣∣∣∣+

∣∣∣∣∣∣1d
d∑

i=1

(2σµiZi)

∣∣∣∣∣∣ ≥ ϵ


≤ P


∣∣∣∣∣∣1d

d∑
i=1

(
σ2(Z2

i − 1)
)∣∣∣∣∣∣ ≥ ϵ

2
∪

∣∣∣∣∣∣1d
d∑

i=1

(2σµiZi)

∣∣∣∣∣∣ ≥ ϵ

2


≤ P


∣∣∣∣∣∣1d

d∑
i=1

(
σ2(Z2

i − 1)
)∣∣∣∣∣∣ ≥ ϵ

2

+ P


∣∣∣∣∣∣1d

d∑
i=1

(2σµiZi)

∣∣∣∣∣∣ ≥ ϵ

2


= P


∣∣∣∣∣∣1d

d∑
i=1

(
Z2
i − 1

)∣∣∣∣∣∣ ≥ ϵ

2σ2

+ P


∣∣∣∣∣∣1d

d∑
i=1

µiZi

∣∣∣∣∣∣ ≥ ϵ

4σ

 .

We bound each of the two terms respectively. For the first term, we note that Z2
i obeys χ2(1)

distribution and is a sub-exponential random variable, so it can be bounded by using Bernstein’s
inequality (e.g., Proposition 2.9, [78]). By Example 2.8 in [78], for any λ ∈ (0, 1/4), we have

E
[
exp

(
λ(Z2

i − 1)
)]

=
exp(−λ)√
1− 2λ

≤ exp(2λ2).

In addition, through Bernstein’s inequality, we have

P


∣∣∣∣∣∣1d

d∑
i=1

(
Z2
i − 1

)∣∣∣∣∣∣ ≥ ϵ

2σ2

 ≤

{
2 exp(− dϵ2

32σ4 ) if 0 ≤ ϵ ≤ 2σ2,

2 exp(− dϵ
32σ2 ) if ϵ > 2σ2.

For the second term, we bound it directly by using Hoeffding’s inequality (e.g., Proposition 2.5, [78]).
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P


∣∣∣∣∣∣1d

d∑
i=1

µiZi

∣∣∣∣∣∣ ≥ ϵ

4σ

 ≤ 2 exp(− dϵ2

32σ4
∑d

i=1 µ
2
i

) = 2 exp(− dϵ2

32σ4
).

Therefore, for any ϵ ≤ 2σ2, we have

P
(∣∣∣∥X∥22 − σ2d− 1

∣∣∣ ≥ dϵ

)
= P

∣∣∣∣∣∥X∥22
d

− σ2 − 1

d

∣∣∣∣∣ ≥ ϵ

 ≤ 4 exp(− dϵ2

32σ4
).

Let 4 exp(− dϵ2

32σ4 ) = δ, then with probability at least 1− δ, it holds that

∥X∥22 ≤ σ2d+ 1 + dσ2

√
32

d
log(

4

δ
) ≲ σ2

(
d+

√
d log(

1

δ
)

)
which means that

∥X∥2 ≲ σ

√
d+

√
d log(

1

δ
) ≤ σ

√
d+

1

2
d+

1

2
log(

1

δ
) ≲ σ

√
d+ log(

1

δ
).

Similarly, for any ϵ > 2σ2, we have

P

∣∣∣∣∣∥X∥22
d

− σ2 − 1

d

∣∣∣∣∣ ≥ ϵ

 ≤ 2 exp(− dϵ

32σ2
) + 2 exp(− dϵ2

32σ4
)

≤ 2 exp(− dϵ

32σ2
) + 2 exp(− dϵ

16σ2
)

≤ 4 exp(− dϵ

32σ2
).

Let 4 exp(− dϵ
32σ2 ) = δ, then with probability at least 1− δ, it holds that

∥X∥22 ≤ σ2d+ 1 + dσ2 32

d
log(

4

δ
) ≲ σ2

(
d+ log(

1

δ
)

)
,

which also implies

∥X∥2 ≲ σ

√
d+ log(

4

δ
) ≤ σ

√
d+ log(

1

δ
).

The proof is completed.

Based on the "boundedness" of multivariate Gaussian distribution, we can bound M , βm,
DTV(DG(S),DG) and T(mS ,mG), respectively. They are listed as the following.
Lemma B.5 (Concentration bound for M ). For any δ ∈ (0, 1), with probability at least 1 − δ, it
holds that ∣∣ℓ(A(S), z)

∣∣ ≲ d+ log(
m

δ
).

Proof. Given a set S = {(x1, y1), . . . , (xm, ym)} and z sampled from binary mixture Gaussian
distribution, by Lemma B.4, we know that for any δ ∈ (0, 1), with probability at least 1− δ,

max
i

∥xi∥2 ≲ σ

√
d+ log(

m+ 1

δ
).

Under this condition, we have∣∣ℓ(A(S), z)
∣∣
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=

∣∣∣∣ 1

2σ2
(x− yθ)⊤(x− yθ)

∣∣∣∣
=

1

2σ2

∣∣∣x⊤x− 2yx⊤θ + θ⊤θ
∣∣∣

≤ 1

2σ2

(∣∣∣x⊤x
∣∣∣+ 2

∣∣∣x⊤θ
∣∣∣+∣∣∣θ⊤θ∣∣∣)

≤ 1

2σ2

(
∥x∥22 + 2∥x∥2∥θ∥2 + ∥θ∥22

)
=

1

2σ2

∥x∥22 + 2∥x∥2∥
1

m

m∑
i=1

yixi∥2 + ∥ 1

m

m∑
i=1

yixi∥22


≤ 1

2σ2

∥x∥22 + 2
1

m

m∑
i=1

∥x∥2∥xi∥2 +

 1

m

m∑
i=1

∥xi∥2

2


≲
1

2σ2

σ2

(
d+ log(

m+ 1

δ
)

)
+

2

m

m∑
i=1

σ2

(
d+ log(

m+ 1

δ
)

)
+

 1

m

m∑
i=1

σ

√
d+ log(

m+ 1

δ
)

2


=
1

2σ2
4σ2

(
d+ log(

m+ 1

δ
)

)
= 2

(
d+ log(

m+ 1

δ
)

)
≲ d+ log(

m

δ
).

Lemma B.6 (Concentration bound for βm). For any δ ∈ (0, 1), with probability at least 1 − δ, it
holds that ∣∣∣ℓ(A(S), z)− ℓ(A(Si), z)

∣∣∣ ≲ 1

m

(
d+ log(

m

δ
)

)
.

Proof. Given m+2 samples S, z and z′i randomly sampled from binary mixture Gaussian distribution,
for any δ ∈ (0, 1), with probability at least 1− δ, we have∣∣∣ℓ(A(S), z)− ℓ(A(Si), z)

∣∣∣
=

∣∣∣∣ 1

2σ2
(x− yθ)⊤(x− yθ)− 1

2σ2
(x− yθ′)⊤(x− yθ′)

∣∣∣∣
=

1

2σ2

∣∣∣∣2y (x⊤θ′ − x⊤θ
)
+ θ⊤θ − θ′⊤θ′

∣∣∣∣
=

1

2σ2

∣∣∣∣2y (x⊤θ′ − x⊤θ
)
+ (θ + θ′)⊤(θ − θ′)

∣∣∣∣
≤ 1

2σ2

(
2

∣∣∣∣(x⊤(θ′ − θ)
)∣∣∣∣+∣∣∣(θ + θ′)⊤(θ − θ′)

∣∣∣)

≤ 1

2σ2

(
2∥x∥2∥θ′ − θ∥2 + ∥θ + θ′∥2∥θ − θ′∥2

)
=

1

2σ2

(
2∥x∥2 + ∥θ + θ′∥2

)
∥θ′ − θ∥2

=
1

2σ2

(
2∥x∥2 + ∥θ + θ′∥2

)
∥ 1

m
(yixi − y′ix

′
i)∥2

≤ 1

2mσ2

(
2∥x∥2 + ∥θ∥2 + ∥θ′∥2

) (
∥xi∥2 + ∥x′

i∥2
)

≲
8

2mσ2
σ2

(
d+ log(

m+ 2

δ
)

)
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≲
4

m

(
d+ log(

m

δ
)

)
≲

1

m

(
d+ log(

m

δ
)

)
.

Lemma B.7 (Concentration bound for DTV(D,DG(S))). With high probability at least 1 − δ, it
holds that

DTV(D,DG(S)) ≲ min

1,

√
d

m
log

(
d

δ

) .

The idea of the proof of Lemma B.7 built upon the estimation for Gaussian distribution. As the
sample size increases, parameters can be estimated more accurately, which leads to a smaller distance
between the estimated and true Gaussian distributions. The concentration bound of the estimated
parameters can be inscribed by the following lemma.

Lemma B.8. Let m = O

(
1
ϵ2 log

(
d
δ

))
, then with high probability at least 1 − δ, for any i ∈

{1, . . . , d}, it holds that ∣∣∣∣∣∣ σ̂
2
i

σ2
− 1

∣∣∣∣∣∣ ≤ ϵ,

∣∣µ̂yi − µyi

∣∣
σ

≤ ϵ.

Proof. Let ϵ ≤ 1/4, and my be the number of samples from category y. By Hoeffding’s inequality
(Proposition 2.5, [78]), we have

P

(∣∣∣∣my −
m

2

∣∣∣∣ ≥ mϵ

)
≤ 2 exp(− m2ϵ2

2m(1/2)2
) = 2 exp(−2mϵ2) = δ1,

which means my ≥ m/2− ϵm ≥ m/4, and my ≤ m/2 + ϵm ≤ 3m/4. We can bound σ̂2
i and µ̂yi

based on the concentration property of my . In terms of µ̂yi, give a fixed my , we can write

P

(∣∣µ̂yi − µyi

∣∣
σ

≥ ϵ | my

)
= P

 1

σ

∣∣∣∣∣
∑

yi=y xi

my
− µyi

∣∣∣∣∣ ≥ ϵ


= P


∣∣∣∣∣∣
∑
yi=y

xi −myµyi

∣∣∣∣∣∣ ≥ σmyϵ


≤ exp

(
−
σ2m2

yϵ
2

2myσ2

)
= exp

(
−myϵ

2

2

)
.

Furthermore, by the law of total probability, we have

P

(∣∣µ̂yi − µyi

∣∣
σ

≥ ϵ

)

= P

(∣∣µ̂yi − µyi

∣∣
σ

≥ ϵ | my ≥ m/2− ϵm

)
P(my ≥ m/2− ϵm)

+ P

(∣∣µ̂yi − µyi

∣∣
σ

≥ ϵ | my ≤ m/2− ϵm

)
P(my ≤ m/2− ϵm)

≤ exp

(
− (m/4)ϵ2

2

)
+ δ1 = exp

(
−mϵ2

8

)
+ δ1 = δ2.
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For the estimation of σ̂2
i , we can obtain its concentration bound in a similar way.

P


∣∣∣∣∣∣ σ̂

2
i

σ2
− 1

∣∣∣∣∣∣ ≥ ϵ | my

 = P


∣∣∣∣∣∣
∑
y

my

mσ2

∑
yi=y(xi − µ̂yi)

2

my − 1
− 1

∣∣∣∣∣∣ ≥ ϵ


= P


∣∣∣∣∣∣
∑
y

my

m

(∑
yi=y(xi − µ̂yi)

2

(my − 1)σ2
− 1

)∣∣∣∣∣∣ ≥ ϵ


≤ P

∑
y

∣∣∣∣∣∣my

m

(∑
yi=y(xi − µ̂yi)

2

(my − 1)σ2
− 1

)∣∣∣∣∣∣ ≥ ϵ


≤ P

∪y={−1,1}

∣∣∣∣∣∣my

m

(∑
yi=y(xi − µ̂yi)

2

(my − 1)σ2
− 1

)∣∣∣∣∣∣ ≥ ϵ/2


≤
∑
y

P


∣∣∣∣∣∣my

m

(∑
yi=y(xi − µ̂yi)

2

(my − 1)σ2
− 1

)∣∣∣∣∣∣ ≥ ϵ/2


≤
∑
y

P


∣∣∣∣∣∣my

m

(∑
yi=y(xi − µ̂yi)

2

σ2
− (my − 1)

)∣∣∣∣∣∣ ≥ (my − 1)ϵ/2


=
∑
y

P

∣∣∣∣∣
∑

yi=y(xi − µ̂yi)
2

σ2
− (my − 1)

∣∣∣∣∣ ≥ (my − 1)m

2my
ϵ


=
∑
y

P

(∣∣∣χ2(my − 1)− (my − 1)
∣∣∣ ≥ (my − 1)m

2my
ϵ

)

=
∑
y

P


∣∣∣∣∣∣ 1

my − 1

my−1∑
i=1

χ2(1)− 1

∣∣∣∣∣∣ ≥ m

2my
ϵ


≤
∑
y

2 exp

(
−my − 1

8
(
m

2my
ϵ)2

)
(Bernstein’s inequality)

=
∑
y

2 exp

(
− (my − 1)m2ϵ2

32m2
y

)
Without loss of generality, we assume that m ≥ 8, then by the law of total probability, it holds that

P


∣∣∣∣∣∣ σ̂

2
i

σ2
− 1

∣∣∣∣∣∣ ≥ ϵ

 = P


∣∣∣∣∣∣ σ̂

2
i

σ2
− 1

∣∣∣∣∣∣ ≥ ϵ |
∣∣my −m/2

∣∣ ≤ ϵm

P(
∣∣my −m/2

∣∣ ≤ ϵm)

+ P


∣∣∣∣∣∣ σ̂

2
i

σ2
− 1

∣∣∣∣∣∣ ≥ ϵ |
∣∣my −m/2

∣∣ ≥ ϵm

P(
∣∣my −m/2

∣∣ ≥ ϵm)

≤
∑
y

2 exp

(
− (my − 1)m2ϵ2

32m2
y

| 1
4
m ≤ my ≤ 3

4
m

)
+ δ1

29



≤
∑
y

2 exp

(
− (3m/4− 1)m2ϵ2

32(3m/4)2

)
+ δ1 (

x− 1

x2
decreases when x ≥ 2)

≤ 4 exp

(
−mϵ2

36

)
+ δ1 = δ3

We can conclude that

P

∪d
i=1 ∪y

∣∣µ̂yi − µyi

∣∣
σ

≥ ϵ ∪ ∪d
i=1

∣∣∣∣∣∣ σ̂
2
i

σ2
− 1

∣∣∣∣∣∣ ≥ ϵ


= 2dδ2 + dδ3

= 2dδ1 + 2d exp

(
−mϵ2

8

)
+ dδ1 + 8d exp

(
−mϵ2

36

)

= 6d exp(−2mϵ2) + 2d exp

(
−mϵ2

8

)
+ 8d exp

(
−mϵ2

36

)

≤ 16d exp

(
−mϵ2

36

)

Equivalently, when m = 36
ϵ2 log

(
16d
δ

)
= O

(
1
ϵ2 log

(
d
δ

))
, for any δ ∈ (0, 1), with probability at

least 1− δ, for any i ∈ {1, . . . , d}, we have

∣∣∣∣∣∣ σ̂
2
i

σ2
− 1

∣∣∣∣∣∣ ≤ ϵ,

∣∣µ̂yi − µyi

∣∣
σ

≤ ϵ,

which completes the proof of Lemma B.8.

Based on the Lemma B.8, we can prove Lemma B.7 as follows.

Proof. Without loss of generality, we let m = O

(
1
ϵ2 log

(
d
δ

))
as that in Lemma B.8. We can bound

DKL(DG(S)∥D) as follows.

DKL(DG(S)∥D)

=

∫
pG(x, y) log

pG(x, y)

p(x, y)

=

∫
pG(x, y) log

pG(x | y)pG(y)
p(x | y)p(y)

=

∫
pG(x, y) log

pG(x | y)
p(x | y)

(pG(y) = p(y))

=

∫
y

pG(y)

∫
x

pG(x | y) log pG(x | y)
p(x | y)

=
∑
y

1

2

∫
x

pG(x | y) log pG(x | y)
p(x | y)
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=
∑
y

1

2

d∑
i=1

1

2

 σ̂2
i

σ2
− 1− log

 σ̂2
i

σ2

+
(µ̂yi − µyi)

2

σ2


≤
∑
y

1

2

d∑
i=1

1

2


 σ̂2

i

σ2
− 1

2

+
(µ̂yi − µyi)

2

σ2

 (x− log(x+ 1) ≤ x2, |x| ≤ 1/2)

≤
∑
y

1

2

d∑
i=1

1

2

(
ϵ2 + ϵ2

)
= dϵ2 ≲

d

m
log

(
d

δ

)
. (Lemma B.8)

Finally, by the Pinsker’s inequality (such as, [79]), we have

DTV(D,DG(S)) ≤ min
(
1,
√
2 log 2DKL(DG(S),D)

)
≲ min

1,

√
d

m
log

(
d

δ

) ,

which completes the proof of Lemma B.7.

Lemma B.9 (Concentration bound for T(mS ,mG)). Let δ in Lemma B.7 be δ1, and δ in Lemma B.4
be δ2, then With probability at least 1− δ1 − δ2, it holds that

T(mS ,mG) ≲ min

(
1,

√
mGd

mS
log

(
mSd

δ2

))
.

Proof. By the triangle inequality, we have

DTV

(
DmG

G (S),DmG

G (Si)
)
≤ DTV

(
DmG

G (S),DmG

G (S\i)
)
+DTV

(
S\i),DmG

G (Si)
)
.

In order to bound DTV

(
DmG

G (S),DmG

G (Si)
)
, We discuss the concentration property of

DTV

(
DmG

G (S),DmG

G (S\i)
)

, and the same result will hold for DTV

(
S\i),DmG

G (Si)
)

. In a similar

way as the proof of Lemma B.7, we discuss KL divergence DKL

(
DmG

G (S),DmG

G (S\i)
)

at first.

As stated in Lemma B.8, without loss of generation, we assume that ϵ ≤ 1/4, and my be the number
of samples from category y, we have my ≥ m/2 − ϵm ≥ m/4, my ≤ m/2 + ϵm ≥ 3m/4, and∣∣∣σ̂2

i /σ
2 − 1

∣∣∣ ≤ ϵ with probability at least 1− δ1.

In addition, by Lemma B.4, given a set S = {(x1, y1), . . . , (xm, ym)}and z′i sampled from the binary
mixture Gaussian distribution, with probability at least 1− δ2 we have

max
i

∥xi∥2 ≲ σ

√
d+ log(

m+ 1

δ2
).

Therefore, by the union bound, the above statements hold with high probability at least 1− δ1 − δ2.
We use σ̂2

k,\i to denote the kth-dimension variance learned on the set S\i, and µ̂yk,\i to denote the

learned kth-dimension mean of the class y. We can simplify DKL

(
DmG

G (S),DmG

G (S\i)
)

as follows,

DKL

(
DmG

G (S),DmG

G (S\i)
)

= mGDKL

(
DG(S),DG(S

\i)
)

= mG

∫
pG(x, y) log

pG(x, y)

pG\i(x, y)

= mG

∫
pG(x, y) log

pG(x | y)pG(y)
pG\i(x | y)pG\i(y)
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= mG

∫
pG(x, y) log

pG(x | y)
pG\i(x | y)

(pG(y) = pG\i(y))

= mG

∫
y

pG(y)

∫
x

pG(x | y) log pG(x | y)
pG\i(x | y)

= mG

∑
y

1

2

∫
x

pG(x | y) log pG(x | y)
pG\i(x | y)

= mG

∑
y

1

2

d∑
k=1

1

2

 σ̂2
k

σ̂2
k,\i

− 1− log

(
σ̂2
k

σ̂2
k,\i

)
+

(µ̂yk − µ̂yk,\i)
2

σ̂2
k,\i


≤ mG

∑
y

1

2

d∑
k=1

1

2

( σ̂2
k

σ̂2
k,\i

− 1

)2

+
(µ̂yk − µ̂yk,\i)

2

σ̂2
k,\i

 (x− log(x+ 1) ≤ x2, |x| ≤ 1/2)

= mG

∑
y

1

4

 d∑
k=1

(
σ̂2
k

σ̂2
k,\i

− 1

)2

+

d∑
k=1

(µ̂yk − µ̂yk,\i)
2

σ̂2
k,\i

 . (15)

What we need to bound is
∣∣∣σ̂2

k − σ̂2
k,\i

∣∣∣ and
∣∣∣µ̂yk − µ̂yk,\i

∣∣∣. They can be bounded by using the
boundedness of the data. Without the loss of generation, we assume that yi = 0, then we have

∣∣∣µ̂0k − µ̂0k,\i

∣∣∣ =
∣∣∣∣∣∣
∑
j

xjk

m0
−
∑
j ̸=i

xjk

m0 − 1

∣∣∣∣∣∣
≲

∣∣∣∣∣∣
∑
j

xjk

m0
−
∑
j ̸=i

xjk

m0

∣∣∣∣∣∣
≲

∣∣∣∣xjk

m0

∣∣∣∣ ≲ ∣∣∣∣xjk

m

∣∣∣∣
≤ 1

m

∣∣∣∣∣∣µ0k +
√
2σ

√
log

(
(m+ 1)d

δ2

)∣∣∣∣∣∣
≲

1

m
σ

√
log

(
(m+ 1)d

δ2

)
,∣∣∣µ̂1k − µ̂1k,\i

∣∣∣ = 0.

Therefore, we have

d∑
i=1

(µ̂0k − µ̂0k,\i)
2

σ̂2
k,\i

≲
d∑

k=1

1

σ̂2
k,\i

1

m2
σ2 log

(
(m+ 1)d

δ2

)

≲
d∑

k=1

1

m2
log

(
(m+ 1)d

δ2

)
≲

d

m2
log

(
(m+ 1)d

δ2

)
, (16)

d∑
i=1

(µ̂1k − µ̂1k,\i)
2

σ̂2
k,\i

= 0. (17)

In terms of
∣∣∣σ̂2

k − σ̂2
k,\i

∣∣∣, we can write
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∣∣∣σ̂2
k − σ̂2

k,\i

∣∣∣ = ∣∣∣∣∣m0

m

∑
j(xjk − µ̂0k)

2

m0 − 1
− m0 − 1

m

∑
j ̸=i(xjk − µ̂0k,\i)

2)2

m0 − 2

∣∣∣∣∣
≲

∣∣∣∣∣m0

m

∑
j(xjk − µ̂0k)

2

m0 − 1
− m0

m

∑
j ̸=i(xjk − µ̂0k,\i)

2

m0 − 1

∣∣∣∣∣
=

m0

m(m0 − 1)

∣∣∣x2
ik + (m0 − 1)µ̂2

0k,\i −m0µ̂
2
0k

∣∣∣
≲

m0

m(m0 − 1)

∣∣∣x2
ik +m0µ̂

2
0k,\i −m0µ̂

2
0k

∣∣∣
≲

m0

m(m0 − 1)

∣∣∣∣x2
ik +m0

(
µ̂2
0k,\i − µ̂2

0k

)∣∣∣∣
=

m0

m(m0 − 1)

∣∣∣∣x2
ik +m0

(
µ̂0k,\i − µ̂0k

)(
µ̂0k,\i + µ̂0k

)∣∣∣∣
=

m0

m(m0 − 1)

∣∣∣∣∣∣x2
ik +m0

∑
j ̸=i

xjk

m0 − 1
−
∑
j

xjk

m0

∑
j ̸=i

xjk

m0 − 1
+
∑
j

xjk

m0

∣∣∣∣∣∣
≲

m0

m(m0 − 1)

∣∣∣∣∣∣x2
ik +m0

xik

m0

∑
j ̸=i

xjk

m0 − 1
+
∑
j

xjk

m0

∣∣∣∣∣∣
≲

1

m

∣∣∣x2
ik

∣∣∣+
∣∣∣∣∣∣xik

∑
j ̸=i

xjk

m0 − 1
+
∑
j

xjk

m0

∣∣∣∣∣∣


≲
1

m

(
σ2 log

(
(m+ 1)d

δ2

)
+ 2σ2 log

(
(m+ 1)d

δ2

))

≲
σ2

m
log

(
(m+ 1)d

δ2

)
.

Thus, we can obtain

d∑
k=1

(
σ̂2
k

σ̂2
k,\i

− 1

)2

≲
d∑

k=1

σ4

σ̂4
k,\im

2
log2

(
(m+ 1)d

δ2

)
≲

d

m2
log2

(
(m+ 1)d

δ2

)
. (18)

By plugin (16), (17) and (18) into (15), we have

DKL

(
DmG

G (S),DmG

G (S\i)
)
≤ mG

∑
y

1

4

 d∑
k=1

(
σ̂2
k

σ̂2
k,\i

− 1

)2

+

d∑
k=1

(µ̂yk − µ̂yk,\i)
2

σ̂2
k,\i


≲ mG

d

m2
log2

(
(m+ 1)d

δ2

)
,

which implies

DTV

(
DmG

G (S),DmG

G (S\i)
)
≲ min

(
2,
√

DKL

(
DmG

G (S),DmG

G (S\i)
))
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≲ min

(
2,
√

DKL

(
DmG

G (S),DmG

G (S\i)
))

≲ min

(
2,

√
mGd

m
log

(
(m+ 1)d

δ2

))
,

and

DTV

(
DmG

G (S),DmG

G (Si)
)
≤ DTV

(
DmG

G (S),DmG

G (S\i)
)
+DTV

(
S\i),DmG

G (Si)
)

≲ max

(
1,

√
mGd

m
log

(
(m+ 1)d

δ2

))

≲ max

(
1,

√
mGd

m
log

(
md

δ2

))
.

Because it holds for all i, the proof of Lemma B.9 is completed.

Now we are ready to prove Theorem 3.2.

Proof. Let δ in Lemma B.7 be δ1 and that in Lemma B.4 be δ2. With probability at least 1− δ/2,
the bounds in Lemma B.7 hold with δ1 = δ/2.Then with probability at least 1− δ/2. Besides, the
bounds in Lemma B.5 and Lemma B.6 hold with δ2 = δ/2. Thus, by the union bound, we know that
with high probability 1 − δ, the above bounds hold. Furthermore, from the proof of Lemma B.9,
we know that it holds naturally in this case, where the boundedness of data points and the accurate
estimation of the true distribution hold.

Finally, we plugin Lemma B.5, B.7, B.6, B.9 into Theorem 3.1, and can conclude the statement of
Theorem 3.2 with high probability at least 1− δ,

|Gen-error|

≲
mG

mT

(
d+ log

(
mS

δ

))
min

1,

√
d

mS
log

(
d

δ

)
+

√
mS +

√
mG

mT

(
d+ log

(
mS

δ

))√
log

(
1

δ

)
+

mS
√
mG

m2
T

(
d+ log

(
mT

δ

))√
log

(
1

δ

)

+
mS logmS +mG logmG

m2
T

(
d+ log

(
mT

δ

))
log

(
1

δ

)

+
mS logmS

mT

(
d+ log

(
mS

δ

))
min

(
1,

√
mGd

mS
log

(
mSd

δ

))
log

(
1

δ

)
(19)

≲



log(mS)√
mS

if fix d and mG = 0,
log2(mS)√

mS
if fix d and mG = Θ(mS),

log(mS)√
mS

if fix d and mG = m∗
G,order,

d if fix mS .

Corollary B.1. We denote the generalization error upper bound (Equation (19)) by Error(mG),
where mG is the augmentation size. We compare the cases where mG = 0 (without GDA) and
mG → +∞. If d > mS , then the following holds:

Error(+∞) ≤ 1

log(mS)
Error(0).
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Proof. By Equation (19), when d > mS , we have

Error(0) =

 1
√
mS

√
log

(
1

δ

)
+

log(mS)

mS
log

(
1

δ

)
+ logmS log

(
1

δ

)(d+ log

(
mS

δ

))
,

and

Error(+∞) = d+ log

(
mS

δ

)
.

When δ is sufficiently small, we have

Error(0) =

 1
√
mS

√
log

(
1

δ

)
+

log(mS)

mS
log

(
1

δ

)
+ logmS log

(
1

δ

)Error(+∞)

≥ logmSError(+∞),

which completes the proof.

B.3 Proof of Theorem 3.3

The theorem is built upon the recent theoretical works on GAN [49] and SGD [35; 50]. We first list
some lemmas from these works.
Lemma B.10 (Upper bounds for output and gradient, Proposition 5.2, [50]). For deep CNNs or
MLPs in Appendix A.1, we have

|f(w,x)| ≤

 L∏
l=1

∥wl∥2

 ∥x∥2,

∥∥∥∥∂f(w,x)

∂wl

∥∥∥∥
2

≤

∏
i̸=l

∥wl∥2

 ∥x∥2.

Lemma B.11 (Uniform stability of SGD in the non-convex case, Theorem 5, [35]). Assume f is
β-smooth and ρ-Lipschitz. Running T > m iterations of SGD with step size αt =

c
βt , the stability of

SGD satisfies

βm ≤ 16ρ2T c

m1+c
.

Lemma B.12 (Learnability of GAN, Theorem 19, [49]). We suppose that the architecture of GAN is
the same as that in Appendix A.2. Besides, we consider the realizable setting, that is, D enjoys the
same distribution as gθ∗(Z) with some θ∗ ∈ Θ(d, L) and Z ∼ unif[0, 1]d. Then, given training set
S with m i.i.d. samples, it holds that

ED2
TV

(
D,DG(S)

)
≲

√
d2L2 log(dL)

logm

m
.

Proof. Now we are ready to prove Theorem 3.3, the main idea is to bound M , βmT
,

DTV

(
D,DG(S)

)
in Theorem 3.1. M and Lipschitz property can be bounded by using Lemma B.10.

βmT
can be induced by Lemma B.11 with Lipschitz constant. In terms of DTV

(
D,DG(S)

)
,

Lemma B.12 can be used to derive an upper bound.

First, we bound the loss function as follows.

ℓ(f, z) = ℓ(f, (x, y))

= log(1 + exp(−yf(w,x)))

≤ log(2) +
∣∣yf(w,x)

∣∣ (log(1 + exp(−t)) is 1-Lipschitz)

= log(2) +
∣∣f(w,x)

∣∣
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≤ log(2) +

 L∏
l=1

∥wl∥2

 ∥x∥2 (by Lemma B.10)

≤ log(2) +

 L∏
l=1

∥wl∥2

√
d

≤ log(2) +

 L∏
l=1

∥Wl∥2

√
d

≲

 L∏
l=1

∥Wl∥2

√
d.

Thus, we have M ≲
(∏L

l=1 ∥Wl∥2
)√

d.

Second, we prove that f is Lipschitz given the bounded parameter space.

∥∥∥∥∂f(w,x)

∂w

∥∥∥∥
2

≤
L∑

l=1

∥∥∥∥∂f(w,x)

∂wl

∥∥∥∥
2

≤ ∥x∥2
L∑

l=1

∏
i ̸=l

∥wl∥2

 (by Lemma B.10)

≤ ∥x∥2
L∑

l=1

∏
i ̸=l

∥Wl∥2


≤

√
d

L∑
l=1

∏
i ̸=l

∥wl∥2


≲

√
d

L∑
l=1

∏
i

∥Wl∥2


=

√
dL

∏
i

∥Wl∥2

 .

Therefore, f is ρ-Lipschitz with
√
dL
(∏

i ∥Wl∥2
)
. Then, βm can be bounded by Lemma B.11.

βm ≤ 16ρ2T c

m1+c
≤ 16dL2

∏
i

∥Wl∥2

2

T c

m1+c
≲

∏
i

∥Wl∥2

2

dL2

m
.

Third, we bound the expectation of divergence between model distribution and target distribution as
follows.

EDTV

(
D,DG(S)

)
≲ E

∫
(x,y)

∣∣∣PD(x, y)− PDG(S)(x, y)
∣∣∣ dz

= E
∑
y

∫
x

∣∣∣PD(x, y)− PDG(S)(x, y)
∣∣∣ dx

= E
∑
y

∫
x

1

2

∣∣∣PD(x | y)− PDG(S)(x | y)
∣∣∣ dx
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= E
∑
y

DTV

(
PD(x | y),PDG(S)(x | y)

)
=
∑
y

EDTV

(
PD(x | y),PDG(S)(x | y)

)

=
∑
y

√(
EDTV

(
PD(x | y),PDG(S)(x | y)

))2

≤
∑
y

√
ED2

TV

(
PD(x | y),PDG(S)(x | y)

)

≲
∑
y

√√
d2L2 log(dL)

logm

m

≲

(
d2L2 log(dL)

logm

m

) 1
4

=
√
dL

(
log(dL)

logm

m

) 1
4

.

Furthermore, because DTV

(
D,DG(S)

)
≤ 1, we have

EDTV

(
D,DG(S)

)
≲ min

1,
√
dL

(
log(dL)

logm

m

) 1
4

 .

Finally, by taking the expectation for the bound in Theorem 3.1, and plugging M , βmT
and

DTV

(
D,DG(S)

)
into it, we can conclude the result of Theorem 3.3 with high probability at least

1− δ,

M ≲
(∏L

l=1 ∥Wl∥2
)√

d

βm ≤ 16ρ2T c

m1+c
≤ 16dL2

∏
i

∥Wl∥2

2

T c

m1+c
≲

∏
i

∥Wl∥2

2

dL2

m
.

E|Gen-error|

≲
mG

mT

 L∏
l=1

∥Wl∥2

√
dmin

1,
√
dL

(
log(dL)

logmS

mS

) 1
4


+

√
mS +

√
mG

mT

 L∏
l=1

∥Wl∥2

√
d

√
log

(
1

δ

)
+

mS
√
mG

m2
T

∏
i

∥Wl∥2

2

dL2

√
log

(
1

δ

)

+
mS logmS +mG logmG

m2
T

∏
i

∥Wl∥2

2

dL2 log

(
1

δ

)

+
mS logmS

mT

 L∏
l=1

∥Wl∥2

√
dT(mS ,mG) log

(
1

δ

)
(20)
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≲



1√
mS

if fix W,L, d, let mG = 0,

max

((
log(mS)

mS

) 1
4

, logmST(mS ,mG)

)
if fix W,L, d, let mG = Θ(mS),(

log(mS)
mS

) 1
4

if fix W,L, d, let mG = m∗
G,order,

dL2
(∏L

l=1 ∥Wl∥2
)2

if fix mS .

Corollary B.2. We denote the generalization error upper bound (Equation (20)) by Error(mG),
where mG is the augmentation size. We compare the cases where mG = 0 (without GDA) and
mG → +∞. If d > m2

S , then the following holds:

Error(+∞) ≤ 1∏L
l=1 ∥Wl∥2 L2

Error(0).

Proof. By Equation (20), when d > m2
S , we have

Error(0) =
1

√
mS

 L∏
l=1

∥Wl∥2

√
d

√
log

(
1

δ

)
+

logmS

mS

∏
i

∥Wl∥2

2

dL2 log

(
1

δ

)
,

and

Error(+∞) =

 L∏
l=1

∥Wl∥2

√
d.

When δ is sufficiently small, we have

Error(0)

=
1

√
mS

Error(+∞)

√
log

(
1

δ

)
+

logmS

mS

∏
i

∥Wl∥2

√
dL2Error(+∞) log

(
1

δ

)

≥ logmS

mS

∏
i

∥Wl∥2

√
dL2Error(+∞)

≥ 1

mS

∏
i

∥Wl∥2

√
dL2Error(+∞)

≥

∏
i

∥Wl∥2

L2Error(+∞)

which completes the proof.

Appendix C Discussion on existing non-i.i.d. stability bounds

In this section, we show that it is unclear how to use existing non-i.i.d. stability bounds to derive a
better guarantee than Theorem 3.1 for GDA.

C.1 Stability bounds for mixing processes

To the best of our knowledge, existing stability bounds for mixing processes only focus on the
stationary sequence [27; 28; 72], which is defined as follows.
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Figure 2: Dependence graph (left) and a forest approximation (right) of the GDA setting.

Definition C.1 (Stationary sequence). A sequence of random variables Z = {Zt}∞t=−∞ is said to be
stationary if for any t and non-negative integers m and k, the random vectors (Zt, . . . , Zt+m) and
(Zt+k, . . . , Zt+m+k) have the same distribution.

Unfortunately, the GDA setting in this paper does not satisfy the stationary condition, because
(z1, . . . , zmS

) = S and (zmS+1, . . . , z2mS
) ⊆ SG do not have the same distribution. Furthermore, it

is usually difficult to estimate the mixing coefficients which reflect quantitative dependencies among
data points.

C.2 Stability bounds for dependence graph

Recently, [29] provide a framework for the generalization theory of graph-dependent data, which
includes the classical stability result in [25] as a special case. We now introduce some elements of
graph-dependent random variables and the non-i.i.d. stability bound in [29]. For a graph G, we use
V (G) to denote its vertex set and E(G) to denote its edge set.
Definition C.2 (Dependency Graph, Definition 3.1 in [29]). An undirected graph G is called a
dependency graph of a random vector X = (X1, . . . , Xn) if (1) V (G) = [n], (2) if I, J ⊆ [n] are
non-adjacent in G, then {Xi}i∈I and {Xj}j∈J are independent.
Definition C.3 (Forest Approximation, Definition 3.4 in [29]). Given a graph G, a forest F , and
a mapping ϕ : V (G) → V (F ), if ϕ(u) = ϕ(v) or edge ⟨ϕ(u), ϕ(v)⟩ ∈ E(F ) for any edge
⟨ϕ(u), ϕ(v)⟩ ∈ E(G), then (ϕ, F ) is called a forest approximation of G. Let Φ(G) be the set of
forest approximations of G.
Definition C.4 (Forest Complexity, Definition 3.5 in [29]). Given a graph G and any forest approxi-
mation (ϕ, F ) ∈ Φ(G) with F consisting of trees {Ti}i∈[k], let

λ(ϕ,F ) =
∑

⟨u,v⟩∈E(F )

(∣∣∣ϕ−1(u)
∣∣∣+ ∣∣∣ϕ−1(v)

∣∣∣)2

+

k∑
i=1

min
u∈V (Ti)

∣∣∣ϕ−1(u)
∣∣∣2 .

We call Λ(G) = min(ϕ,F )∈Φ(G) λ(ϕ,F ) the forest complexity of the graph G.

Theorem C.1. Assume that A is a βm-stable. Given a set S̃ of size m sampled from the same
marginal distribution D with dependency graph G. Suppose the maximum degree of G is ∆, and the
loss function ℓ is bounded by M . For any δ ∈ (0, 1), with probability at least 1− δ, it holds that

RD(A(S̃)) ≤ R̂S̃(A(S̃)) + 2βm,∆(∆ + 1) + (4βm +
M

m
)

√
Λ(G)

2
log(

1

δ
),

where βm,∆ = maxi≤∆ βm−i and Λ(G) is the forest complexity of the dependence graph G.

Remark. Theorem C.1 requires S̃ sampled from the same marginal distribution D, which fails to
hold in the context of GDA because the learned distribution DG(S) is generally not the same as the
true distribution D. It is still unclear to overcome this problem.
Remark. When mG = 0 and S̃ = S, Theorem C.1 degenerates to the classical result in [25], which
requires βm = o(1/

√
m) to converge. In contrast, Theorem 3.1 only requires βm = o(1/ log(m)) to

converge, which is better than that of Theorem C.1.
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Remark. We note that Theorem C.1 is proposed for the general case with data dependence. Therefore,
it does not consider the property of special cases and may fail to give good guarantees. On the one
hand, the independence of S and the conditional independence of SG used in the proof of Theorem 3.1
are significant, which is ignored by Theorem C.1. On the other hand, in the case of strong dependence
like GDA, the forest complexity may be too large to give a meaningful bound. The dependence
graph and a forest approximation of the GDA setting are presented in Figure 2. Therefore, the forest
complexity of the GDA setting can be bounded as follows.

Λ(G) ≤ mS(1 +mG)
2 + 12 ≲ mSm

2
G. (21)

Plugging (21) into Theorem C.1, and assume mG = Θ(mS), we observe that

M

mT

√
Λ(G)

2
log(

1

δ
) ≲

M

mT

√
mSm2

G

2
log(

1

δ
) ≲ M

√
mS

2
log(

1

δ
),

which fails to converge. However, Theorem 3.1 overcomes this problem.

Finally, we conclude that it is hard to directly use existing non-i.i.d. stability results to obtain a better
guarantee than Theorem 3.1.

Appendix D Experimental details and additional results

D.1 CIFAR-10 dataset

CIFAR-10 is a widely used image dataset and we adopt it to empirically validate Theorem 3.3.
Combining the simulations in the bGMM setting, our theory is verified sufficiently.

D.2 Models

bGMM. We adopt the implementation of naïve Bayes in [80] to estimate the parameters of bGMM.

ResNet. We add the ResNet50 checkpoint released by Pytorch [81], which is also used in [24].

cDCGAN. We use the cDCGAN in this repository, and modify its input channel and label dimension
to 3 and 10 respectively to keep consistent with the format of images in CIFAR-10 dataset. This
repository gains the most stars among repositories that implement cDCGAN. Furthermore, we follow
its hyperparameter setting and train 200 epochs to obtain a cDCGAN for the CIFAR-10 dataset.

StyleGAN2-ADA. We use the class-conditional model pre-trained on CIFAR-10 dataset, which is
released by NVIDIA Research [56].

EDM. We use the 5M synthetic CIFAR-10 dataset released in [24], which is generated by the pre-
trained conditional EDM. Given an augmentation size mG, we randomly sample mG from the 5M
synthetic data points.

D.3 Model selection

GANs are chosen to empirically validate Theorem 3.3 and the EDM is chosen to explore the ability
of the diffusion model. First, we choose a "bad" GAN (DCGAN) to empirically verify that GANs
can improve the test performance when mS is small and awful overfitting happens (without standard
augmentation). Second, we choose a "good" GAN (StyleGAN2-ADA) to verify that GANs can
not improve the test performance obviously when the mS is approximately large (with standard
augmentation). Third, because diffusion models have achieved good success in recent years, we
conduct experiments on the EDM and suggest that diffusion models have a better DTV(D,DG(S))
than GANs.

D.4 Training details

Standard data augmentation. 4 pixels are padded on each side, and a 32× 32 crop is randomly
sampled from the padded image or its horizontal flip. This augmentation pipeline is widely used [54].
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Optimization. We follow the setting in [24]. We use the SGD optimizer, where the momentum and
weight decay are set to 0.9 and 5× 10−4, respectively. We use the cyclic learning rate schedule with
cosine annealing, where the initial learning rate is set to 0.2. We train the deep neural classifier with
100 epochs. The batch size is 512.

D.5 Computation consumption.

All experiments are run on one RTX 3090 GPU. The most consuming case (ResNet50, mG = 1M)
takes 17 GB cuda memory and 20 hours.

D.6 License

The used codes and their licenses are listed in Table 2.

Table 2: The used codes and licenses.

URL Citation License

https://github.com/NVlabs/stylegan2-ada-pytorch [56] License
https://github.com/pytorch/pytorch [81] License

https://github.com/wzekai99/DM-Improves-AT [24] MIT License
https://github.com/ML-GSAI/Revisiting-Dis-vs-Gen-Classifiers [80] MIT License

https://github.com/znxlwm/pytorch-MNIST-CelebA-cGAN-cDCGAN - -

D.7 Additional results

We further adopt the CIFAR-10 dataset to empirically verify our theory by estimating the gener-
alization error directly. By definition, given a trained neural classifier, the generalization error of
Theorem 3.3 can be estimated by the absolute gap between the mean cross-entropy loss on the
training set (with generated data) and the mean cross-entropy loss on the test set. We add the results
of cDCGAN, StyleGAN2-ADA, and EDM with this estimator in Table 3.

On the one hand, GANs decrease the generalization error when mS is small (without standard
augmentation). On the other hand, GANs fail to boost the performance obviously and even hurt
the error when mS is approximately large (with standard augmentation). Our experimental results
support the theoretical results (Theorem 3.3) again.
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Table 3: Estimated generalization error on the CIFAR-10 dataset, where S.A. denotes standard augmentation.

Generator Classifier S.A.
GDA (mG)

w/o 100k 300k 500k 700k 1M

cDCGAN

ResNet18
× 0.476 0.456 0.413 0.424 0.428 0.455
√

0.227 0.227 0.227 0.221 0.238 0.240

ResNet34
× 0.538 0.564 0.476 0.474 0.514 0.514
√

0.219 0.234 0.223 0.231 0.239 0.247

ResNet50
× 0.634 0.496 0.471 0.531 0.533 0.566
√

0.235 0.231 0.244 0.234 0.254 0.266

StyleGAN2-ADA

ResNet18
× 0.476 0.336 0.296 0.298 0.292 0.303
√

0.227 0.205 0.215 0.205 0.210 0.210

ResNet34
× 0.538 0.381 0.340 0.335 0.339 0.346
√

0.219 0.222 0.219 0.236 0.229 0.223

ResNet50
× 0.634 0.357 0.313 0.330 0.331 0.322
√

0.235 0.236 0.211 0.223 0.198 0.223

EDM

ResNet18
× 0.476 0.249 0.185 0.172 0.154 0.142
√

0.227 0.159 0.121 0.100 0.090 0.070

ResNet34
× 0.538 0.281 0.215 0.183 0.163 0.150
√

0.219 0.164 0.120 0.100 0.096 0.084

ResNet50
× 0.634 0.265 0.194 0.186 0.172 0.149
√

0.235 0.160 0.121 0.101 0.089 0.078
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