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Appendix A  Architectures of deep neural networks in Section [3.3.1]

A.1 Architecture of deep neural classifier in Section[3.3]

We consider a general class of neural networks as what is introduced in [S0], which includes widely
used MLPs and CNNs. We define a deep neural network with L convolutional layers followed by
L — L¢ — 1 fully-connected layers as follows:

fxw) = Z AkLZ(L-1),k
k=1

zZ=0 (Asz(l—l)> JdelL—-1—[Lq],
z; = pool (y;),l € [L¢],

yi=0 (Wz *Z(zq)) L€ [Lel,

Zo = X

where m is the demension of z(;,_1), o(z) is the ReLU function max{z,0}, * is the convolutional
operation, and pool(-) is the average pooling operation. When Lo = 0, this is an MLP. For

output layer | = L, let wy, := (a1, ,am) . For fully-connected layer | € [L — 1] — [L¢], we
let w; := vector (A;). For convolution layer | € [L¢], we consider the structure Convolution
— ReLLU — Pooling, and denotes the weights as wy.

A.2 Architecture of GAN in Section

The abstract form of GAN. The architecture of GAN in Theorem [3.3] is consistent with that
in Theorem 19, [49]. We denote by F = {f.,(x) : R? — R} the discriminator function space.

Besides, we let G = {go(2) : R? — R%} be the generator function space. The generator receives
z ~ unif[0, 1] as the random input. In reality, we estimate the parameters of GAN as

-~

0,,., € argmin max {I@nw Z —IAEm X},
w € argmin mas (B0 Lo (30(2)) ~ En fo(X)

where n and m denote the number of simulated and target distribution samples, respectively. We just
let m = n in this paper.

The architecture of the generator network. The generator gg is parametrized by a MLP:

hO =2z,
h; :Ja(wlhl_1+bl),0 <l<L
x=W,hy ;1 +byg,

where h; denotes the hidden units in the [-th layer, and x is the final output of the MLP. The activation
is leaky ReL.U [[77].

0o (t) = max{t,at}, for some fixed 0 < a <1

The space for the generator weights is denoted by
O(d, L) :== {g — (Wl eR™ b eRY,1<I< L) | rank (W;) = d,V1 <1 < L} :
Note that the W is required to be full rank so that the generator transformation gy is invertible. The

generator has the capacity to express complex distributions

The architecture of the discriminator network. We consider a discriminator network which
includes feed-forward neural networks f,, that satisfies
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h, = 01/a (V1X + C1)

hy, 1 =01/ (Vi-1thr 2 +cr 1)
L-1 d

Gw(x) == Z Zlog(l/a)lhﬂgo +cr.
The parameter space is defined as o
O(d, L) = {w - (Vl eR™ ¢, eRY ¢y eR1<I<L— 1) | rank (V}) =d,V1 <1< L — 1}.
Finally, the discriminator parameterized by w = (w1, ws), where w1, w2 € Q(d, L), is defined as
Joo (%) = Gu, (%) = g, (%)
Appendix B Proofs

B.1 Proof of Theorem 3.1]

Proof. We first list some moment inequalities which are important to this proof.

Lemma B.1 (Lemma 1, [26]). If ||Y||, < \/pa + pb for any p > 1, then for any § € (0, 1), with

probability at least 1 — 6,
Y| <elayflog (;) + blog (;)

Lemma B.2 (Lemma 2, [26])). Consider a function f of independent random variables X1, . .., X,
where X; € X. Suppose that foranyi =1,...,nand any x1, ..., T, x; € X it holds that
‘f(xlv R 71'?1) - f(xla oo ;xiflvx{ivxi+17 R 71'n)| S ﬁ (3)

Then, we have for any p > 2,

(X1, X)) —Bf (X, Xa)llp < 2v/npf3 .

Lemma B.3 (Theorem 4, [26]). Let Z = (Z1, ..., Zy,) be a vector of independent random variables
each taking values in Z, and let g1, . . . , g, be some functions g; : Z"™ — R such that the following
holds for any i € [n]:

* [Elg:(2)|Z]| < M,

* E[g:(Z)|Z\'] =0,

* g; has a bounded difference 8 with respect to all variables except the i-th variable, that
is, forall j # i, Z = (Z1,...,Z,) and 7 = (Zy,...,Z},..., Z,) € R™, we have

|9:(Z) — g:(27)] < B. :

Then, for any p > 2,

Z gi(Z)|| < 12v/2pnBlogn + 4M . /pn.
i=1

p

Now, we are ready to prove Theorem Formally, we need to bound Gen-error = |Rop (A(S)) —

ﬁg(A(S ))|. Recall that D(S) has been defined as the mixed distribution after augmentation, to
derive such a bound, we first decomposed Gen-error as
|Gen-error| < | R (A(S)) = Ry g (A(S))

o~ ~

R (AS) ~ R(A(S)

Distributions’ divergence Generaliztion error w.r.t. mixed distribution, ®(.S,S¢)
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The distributions’ divergence term in the right hand can be bounded by the divergence (e.g.,

Drv, Dk1,) between augmented distribution @(S ) and the true distribution D. It is heavily de-
pendent on the ability of the chosen generative model. It can be bounded as follows.

R (A(8)) = Ry ) (A(S))] = %MD(A(S)) ﬂz@c<s><ﬂ<§>>\

P (2) — Pr(s)(2)) dz

meqg ~

< 1) ) (PD(Z) Py (s)(2))| dz
m

<< — P s)(2z)| dz

< 28 MDyy (D, Da(S)).
mr

For the second term ®(.5, S¢; ), we note that classical stability bounds (e.g. Theorem can not be

used dlrectly, because points in S are drawn non-i.i.d.. In contrast, a core property of S is that S
satisfies i.i.d. assumption, and S¢ satisfies conditional i.i.d. assumption when S is fixed. Inspired by
this property, we furthermore decomposed this term and utilized sharp moment inequalities [39}26]
to obtain an upper bound. Similarly to [26], we bound the L,, norm of m1® (.S, S¢), and then derive
a concentration bound. We can write

(8, 56)]], = |mr (R s (AS) - R5(A(3)))
=||msRo (A(S)) + maRpq(s) (A(S) = Y LA(S),z:) — Y €A(S
z;,€S z;€Sa p
<|ms R (A3) — 3 €AB), 20| +|moRns)AG) — S KA
i=1 =1
e (s:50), ea(si50)],

We will bound||® (S, S¢) ||p and||®2(S, S¢) Hp respectively. We note that for any function f(.5), if
we have an bound | f||,,(Sy) < C for some Sy C S, then we have

£, = (EE[ f[?|Sv])/? < (E[CP)'/* < C. )

Fix S, then data in S¢ are independent. We use this property and lemma to bound ||z [, (5).
We introduce functions f;(S¢) which play the same role as g;s in Lemma|[B.3] as

fi(56) = Eptnn(5) |Banno(s)(A(S U SE), z) — L(A(S U 5@)#?)} ,

where z¢ is the i-th data in S, and S, obtained by replacing z& by z/. We note that | f;| < M,

E[ fi|5’éf ] = 0 and f; has a bounded difference 20,,, with respect to all variables except the i-th
variable, which can be proved as follows.

|fil =

By o (s) [EZNDG(S)E(A(S USL), z) — 6(A(S U SL), z ’

= |Ez D () Bz () [E(A(S USE),z) — L(A(SUSE), 2 ’
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< By Eanno(s) [(A(S U SG).2) — (A(S U SE), 20)

< Eunpe(s)Banne(s)[M] = M,

ELfilSE] = Eagopes) [EZ;N@G<S> [Eanos){A(S U SE),2) — ((A(S U SE), 28] |Sé;}
=Bz Ds(s) H]EzNDG(S)K(A(S US5):2) = Euomg(s) L (A(S U SE)»ZiG)} ISéf}

B o15] =

1:(86) = Ji(SE)| = [Bagpes) [Bame(s) HAS U SE),2) — LA(S U SE), 27)|

) {EZNDG(S)E(A(S U (S%)"),2) — L(A(S U (Sé)i,zf)] '
= [t [Bamna s A5 U 5. 2) — HALS U5, 69

By sy A(S U (S5)1),2) + (A(S U (sz;r‘,z?)} ]

IN

Ez npe(5)Eznma(s) [K(A(S USL),z) — L(A(SU (Sé)l),z)} ’

+ By ana(s) [e(A(SuSG) Gy E(A(SU(Sé)i)’Z?)]‘

< By (6)Banpo(s) |(A(S U S5),2) — (A(S U (55)'), 2)
+ Eynno(s) [HA(S U SE),28) — (AS U (55)"),20)|
< Bz + By = 2Pmy-
Therefore, for any fixed S, by Lemma for any p > 2, we have

i(Sa)|| < pmaPmy logmea + My/pme. (5)

We note the gap between @5 and >~ f; is small, then for any fixed S, we can bound || D5 || »(S) by
(3) as follows.

[®2]],, (S) = ||meRp e (s)(A(S U Sa)) Zé (SU Sg),2z5)

p

mag

= 30 (Baemecs HAS U 6. 2) — HAS U S, 20)

s
Il
-

p
ma
<X (Bamnots) [Benmais (5 USE).2) - 6ASUSE) 0] ) | + 20,
=1
p
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mg

Zfz(SG) +H2mG/BmT||p

=1 »

S pmcBmg logme + My/pma + 2me By
S PG Pmy logme + My/pme.

Therefore, by using (@), we have
|28, Sa)||,, < pmcBmy logme + My/pmg. (©)

Now, we use a similar idea to bound H<I>1 (S, 8¢q) Hp. We decompose || ®1(S, S¢) ||p as the following.

||@1(S, SG)Hp - H(bl - ESQNDZ;G(S)(I)l + ESGNDELG(S)élup

<[ ~Esunge s B +|Bsomnge o))

Aq Ao

We then bound each term and obtain a bound for ||<I’1 (S, S¢q) H . We note that A; can be bounded by
using Lemma[B.2]and A, can be bounded by using Lemma

To bound Aq, we first fix S and bound H<I>1 — ESGNDQG(S)CIMH (S). We use the conditional
p

independence property of S¢ again. To use Lemma[B.2] we need to prove that ®; has the bounded
difference with respect to S when S is fixed. We can write

915, 56) — @1(5. 55)|

ms
= |msRp (A(S U Sg)) Ze (SUSG),zi) — msRp(A(SUSE)) + D LA(SUSE), z)

i=1

< mS’RD(A(SU 56)) — R (A(S U SL))

A(SU Sc),2i) = L(A(S U Sg), 2:)

< mSﬂmT + mSBmT = 2mSﬂmT-

Thus, by Lemma [B:2] we have

Ay < 4ymepmsBmry S V/mepmsBmy - )

We now construct some functions and use Lemma- B.3|again to bound Ay. We define h;(.S) which
play the same role as g;s in Lemma[B.3] as

hi(S) = EyprnEs nmo sty [Eannl(A(S U Sq),2) — UA(S' U Sa), 20)]

where z; is the i-th data in S, and S obtained by replacing z; by z,. We note that |h;| < M,
E[h;|S\!] = 0 and h; has a bounded difference 2,,,,. + 2MT(ms, mg) with respect to all variables

except the i-th variable, where T (ms, m¢) = sup; Drv (D¢ (S), D¢ (5%)). These can be proved
as follows.

|hi| =

EZQN’DESGNDgG(Si) {EZNDE(.A(Si USg),z) — K(A(Sl USea), ‘

= Ez;fv’DESGNDg‘G(S’i)EZND [E(A(S’ @] Sg),Z) — f( (57 U SG ‘
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= Ez’iw’.D]ESGNngG(Si)]EZND ‘g(ﬂ(si U SG), Z) — K(A(Si U SG)7 Zi)
<M,

E[hi|SVY] = Eq, o {Ez;N@ESGNDgG(Si) [EZNM(A(SZ’ USg),z) — L(A(S" U Sg), zi)] |S\1}

= EyonEgynme sty H]EZNDE(A(Si USG),z) — By onl(A(S'U Sg), zi)] |S\Z}
=0,

hi(S) — hi(87)| = [EgenEgopme (s [EZNDz(ﬂ(Si USe),z) — ((A(S' U Se), zi)}

—EgnnEg pre (s [Eng(ﬂ((Sj)i U Sqg),z) — L(A((57)" U Sq), Zi)} ‘

IN

ExsopEgqnmo st [E,NDK(A(SZ' USe),z) — £(A(S'U Sg), zi)}

o EZQN'DESGNQTG"G(Si) {EZN'DE(‘A((SJ)Z U SG)? Z) - E(A((S])l U SG)? Zz)} ’
(3)
# |BupnB, e sy [Bann A U Sc),2) — (A(S) U S, )]

— BBy, pme (siy) [Bamnl(A((S7) U Sa),2) — (A((S)! U Sc),2)] \
&)
We bound (B) and (9) respectively. The first can be bounded by using the property of uniform stability.
EyjnoEs, pmc (s [EZNDE(A(Si USe),z) — £(A(S' U Se), zi)]
— Bypn B0 (st) [Eamnl(A((S7) U Sg),2) — HA((S)' U Sa), 21)] '
= EgnnEsgonme (s [Eonl(A(S" U Sq),z) — L(A(S" U Sg), ;)

- B (A(ST) U S).2) + HA(S) U S, 20

< [Buens o5 Ba [HA(S' U S0).2) ~ HA(S') U S 2|

+ Bz npBg, e (si) V(A(Si USa),zi) — L(A((S7)" U Sa), Zi)} ‘

< EypnB e (5 Band | (A(ST U 5),2) — (A7) U Sq), 2)|

+ BB, nnge s
< ﬁmT + ﬁmT = 2ﬁmT'

((A(S"USG),z;) — L(A(S7) U Sq), 2:)

We denote £(A((S7) U Sq),z) — £(A((S?)* U Sg),z;) by B for convenience, then we have

EsfnBsynre s0) [Bannl(A((S) U S6), 2) — (A((S)' U S6), )]
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~ Ean By sy [EanlA((S7) U 56),2) — LA((S7) U S),2)] \
= [EaonBon B si) [(A((S7) U Sq),2) = €A((S7) U Sg). 2:)]
— Eyn BB pma (soys) [LAS7) U Sa),2) = (A((S7)' U Sa), 2:)] ‘

EzngEZNDESGNDZG(Si) [B] — Ez(iNDEZNDESGN‘DgG((Sﬂ)i) [B] '

= By pEznn [ESGNDWG"G(ST:) [B] — ESGNDZLG((Sj)i)[Bﬂ ’

< EZ;N'D]EZND

Esgnnpo (s [B] = Escwé”G((S””[B]’

— EyopEan / (B(SalS") ~ B(S61(5%))) BdSa
Sc

f
f

< 2M sup Dry (@gc(si), @gG(S)) = 2MT(ms, ma).

<EupEzup

(B(S615") — B(Scl(5'))) B‘ dSe

< ME,; pEznp P(S¢|S?) — P(Sc|(S9)%)| dSa

Therefore, h; has a bounded difference 2, + 2M T (mgs, m¢) with respect to all variables except
the 4-th variable. By Lemma[B.3] we have

mg
> hi(S)|| < 12v2pms (2B, + 2MT(ms, me)) log ms + 4M /pms (10)
=1
p
< pmg (ﬂmT + MT(mg, mg)) logmg + M+/pmg. (11)

We note the gap between A, and HZZE hi(S) Hp is small, then we can bound A, by as follows.
A2 = |[Eg e 5Pt Hp

=|Esgnnme (s) [msiR@(A(g)) —Zﬁ(ﬂ(g),zi)]

= |2 Esemnpes) [msRo(A(S)) ~ (A(S).2)|

p
ms
<> <IEZ;N'DIESGN®gG(Si) [IEZNDE(A(S’ USg),z) — 6(A(S* U Sg), zi)}> (12)
=1 »
Jr‘ 2ms By + 2ms M sup Dry (Dgfc(S), Dee (S’))
v p

mgs
= Zhl(S) -|—H2msﬁmT +2msM‘T(m5,mg)Hp
i=1

P
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< pmgs (ﬁmT + MT(ms, mg)) logmg + M\/pmg
+mgBmy + mgMT(ms, ma)
< pmg (BmT +M‘.T(m5,mg)) logmg + M\/pmg. (13)

Combine (7) and (T3), we have

[|®1(5, SG)Hp S VmepmsBmy + pms (Bmy + MT(ms, ma)) logms + M/pms
= b (My/ms + ymcmsPBms) + pms (Bmr + MT(ms,mg)) logms  (14)

In addition, by (T4) and (6), we have

m (S, 56)[|, < VB (My/ms + Mg +vigmsfum, )

+ p (msBmy log ms + maBm, logma + mglogmgMT(ms, ma)) .

By Lemma we can bound the generalization error w.r.t. mixed distribution |<I>(S, Sg)’ =
‘fR@(S)(A(g)) - ﬁg(fl(g))’ as follows.

o~ ~ ‘

R (A()) — R5(A(5)

- M(/ms + /mag) + ms\/maBm, log (1>
~ )

mr

N Bmy (mglogmgs + mglogmea) + mglogmgsMT(mg, me) log <1>

Finally, we conclude that

R (A(S)) — Rg(A(9))|

M mT
< :ZG MDry (D, Da(S)) + (vms + y/mg) +msy/map log ((15)
T

mr

_|_

5mT (ms log mg + mg log mg) +mg log msMT(ms, mg) log (1)
mr 1)

%MDTV (D, Da(S)) + M(y/ms + /ma) + ms\/ma Bm, /log (;)

N

mr

n Bmy (Mmslogms + mglogmg) +mglogmsMT(ms, ma) log <1>
mr 1) ’

which completes the proof.

B.2 Proof of Theorem 3.2

We need to bound terms M, B,,, Drv (D, D(S)) and T(ms, me) in Theorem For M
(Lemma|[B.3) and 3, (LemmaB.6)), we mainly use the boundedness of the multivariate Gaussian
variable with high probability (Lemma . In addition, we bound Dy (D, D (5)) (LemmaB.7)
by discussing the distance between the estimated parameters and the true parameters of bGMM.
Besides, the concentration property of T(mg, m¢) (Lemma can be induced by the preceding
discussion.
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Lemma B.4 ("Boundedness" of multivariate Gaussian distribution). Let X = (X1,...,Xy) be a
d-dimension isotropic Gaussian random variable, which satisfies ||p||2 = 1 and o? = o2 for any
i€{1,...,d}. Forany§ € (0,1), with probability at least 1 — 6, it holds that

1
X1, < oy -+ log().

Proof. The proof idea is to bound the distance between | X||§ and its expectation with high probability.
Let Z be the standard d-dimension isotropic Gaussian random variable, we have

X 2
XI5 _

1>
d dl= ¢

P ‘

I

~
Ul
.M&

(Xffaz—,u?) > €

=1

I

~
Ul
.M&

s
Il
-

((UZv: + p3)* — o *Mf) >e

I

~
Ul
.M&

N
I
-

(crz(Zi2 -1+ ZJMZi) > e

AN

=
Ul
'M&

s
Il
—

d
(02(Z1'2 - 1)) + ;;(20%'21) €

d d
<P (|53 (222 - 1) 2 S0l S Conizi)| 2
i=1 =1
<P 12(6(02(22—1)) >3 | +P lzd:@” 7|2 5
d - ' ~2 d; B

s
I
—
I

—

(2

Ul

Il

=
ISH
.M&

2 €
(72 -1)|2 55 | +F

d €

E widi| = —

; 4o
1 i=1

o
Il

We bound each of the two terms respectively. For the first term, we note that Z? obeys x?(1)
distribution and is a sub-exponential random variable, so it can be bounded by using Bernstein’s
inequality (e.g., Proposition 2.9, [78]]). By Example 2.8 in [[78], for any A € (0,1/4), we have

E [exp ()\(Zi2 - 1))} = i;% < exp(2)\?).

In addition, through Bernstein’s inequality, we have

P
= 202 2exp(—3a5;) ife > 202

SHN

i<22—1> > _© <{2€Xp(_3%i4> if 0 <e <20
i=1

For the second term, we bound it directly by using Hoeffding’s inequality (e.g., Proposition 2.5, [78]).
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d
€ de? de?
Z; — 1 <2 —_— ) =2 - .
z:: %o | 22y e T2 g0r)

&\'—‘

Therefore, for any € < 202, we have

X|2 1
P(]nxné—azd_l]zde)—p ’” d||2—”2‘a

de?

3204

>e | <dexp(—

).

e’ ) = ¢, then with probability at least 1 — 4, it holds that

3204
4 1
1X2 < o2d + 1+ do? %IOg(é) o <d+ \/dlog(6)>
which means that
1 1 1 1 1
Xy Soy/d+ \/dlog(a) < 0\/d+ §d+ §log(5) < 0\/d+ log(g).

Similarly, for any € > 202, we have

Let 4 exp(—

Xz, 1 de de?
’—cr -3 >e€ §2exp(—3202)+2exp(—3204)
de de
< 2exp(— 2 exp(—
< 2exp(—go—3) + 2exp(= 1)
de
< dexp(— .
< dexp(—53)

Let 4 exp(— Toe 2) = §, then with probability at least 1 — 4, it holds that

2 4 1
X2 <o2d+1+ de% 1og(5) < o2 <d + 1og(6)) ,

1 1
Xl S oy/d+ log(g) <oy/d+ log(g)

which also implies

The proof is completed.
O

Based on the "boundedness" of multivariate Gaussian distribution, we can bound M, f3,,,
Drv(De(S), Dg) and T(mg, ma), respectively. They are listed as the following.

Lemma B.5 (Concentration bound for M). For any § € (0, 1), with probability at least 1 — 0, it
holds that

[L(A(S),2)| S d+1og(%).

Proof. Given a set S = {(x1,%1),- -+, (Xm,¥Ym)} and z sampled from binary mixture Gaussian
distribution, by Lemma|B.4] we know that for any 6 € (0, 1), with probability at least 1 — 4,

m+1
maxHxl||2<U\/d+log( 3 )

Under this condition, we have

|£(A(S), 2)]
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1
‘202
27|

1
202

1

202

1
202

IN

IN

IN
|

AN
|

1
20

< d+ log(

—(x—y8) (x —yh)

x'x—2yx"6

+9T9‘

(‘XTX’ + Q‘XT9’ —I—‘QTHD

(113 + 2112112 + 1613)

o? (d + log(

d+log

(.
5

1 & 1 &
1|5 + 2xll2ll— > yixill2 + = > wixill3
=1 =1

2
1 « 1 —
2
2— i — i
I3 +2— > xllalxllz + (m >l ||2)

i=1

m(;rl)) T ;iaz (d+10g(m;_1)) + (; iam)z

)) _o (d+ log(m;_1)>

O

Lemma B.6 (Concentration bound for ,,). For any ¢ € (0,1), with probability at least 1 — 0, it
holds that

[(A(9),2) - (A(S"),2)

< % <d+1og(’:;)) .

Proof. Given m+2 samples S, z and z} randomly sampled from binary mixture Gaussian distribution,
for any § € (0, 1), with probability at least 1 — 0, we have

a8 (x— y8)

2% (xTa’ - xTe) L 0To—9Te

2% (xw - xTe) L O+0)T(0-9)

(XT(ef - 9)) ‘ +](0 +0)T (-0

(22l = Oll2 + 116 + ¢"[|21]6 — 6"]|=)

202
1

= 55 (22 + 16 +62) 16" =62
1

1
= 5 (2l + 10+ 02) 1= (wixi — yix)l:
1
o (@lxlla + 101+ 16/]2) (Ixill2 + [1x/]12)

8 9 m+ 2
520 (cl—l—log((s ))

27




< % (d—&—log(?)) < % <d+1og(’g)) .
O

Lemma B.7 (Concentration bound for Drv (D, D(S))). With high probability at least 1 — 6, it
holds that

. d d
Drv(D,Dg(S)) S min | 1, Elog <5)

The idea of the proof of Lemma built upon the estimation for Gaussian distribution. As the
sample size increases, parameters can be estimated more accurately, which leads to a smaller distance
between the estimated and true Gaussian distributions. The concentration bound of the estimated
parameters can be inscribed by the following lemma.

Lemma B.8. Let m = O (612 log (g)), then with high probability at least 1 — 6, for any i €
{1,...,d}, it holds that

o e izl
g

Proof. Let e < 1/4, and m,, be the number of samples from category y. By Hoeffding’s inequality
(Proposition 2.5, [78]]), we have

262

P <‘my - ﬂ;' > me) < QQXP(_QTnWle) = 2exp(—2me?) = 6y,

which means m, > m/2 — em > m/4, and m, < m/2+ em < 3m/4. We can bound o2 and Ly
based on the concentration property of m,,. In terms of fi,;, give a fixed m,;, we can write

P(‘l"yi_ﬂ'yi‘ze|my>P li
o o

=P E Ty — My fly;| = OMy€
Yi=y

02m§~s2 mye?
< exp _2my02 =exp | — 2 .

Furthermore, by the law of total probability, we have

o =

P<W26|my2m/2em)P(myZmﬂem)

g
g

4 2 2
< exp (_(m/2)e> + 51 = exp <—m8€> + 61 = d9.
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For the estimation of 8?, we can obtain its concentration bound in a similar way.

o~

0.2

P —2—1 > €| my

g

- | [ e e
e[ (Bl R )
<oz (Bal i)
Y. ﬁ(zy@yﬁn?) _1> 5o

<yP||or (E“_”fé ) —<my—1>> > (my — 1)e/2
qu:y(xl — Iyi)® (my —1)m

— Zy:]P’ — —(my —1)| > S

Y PR

e [ o R

P %_1 > e ||my —m/2| < em | P(my; —m/2| < em)
o2
TP (|75 — 1 > ¢ |[m, —m/2| = em | B(m, —m/2| = em)

(my, —1)m%e? 1 3
< ZQeXp (—“/32%3 | 1m <m, < Zm + 01
y
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3m/4 — 1)m?e? rz—1
< Z2exp (—M) + 61 (7 decreases when x > 2)

2
<4dexp <_7T3L(63> + 01 = I3

‘We can conclude that

P Ud Ly, MZ€UU?:1
g

= 2ddy + dds

2 2
= 2d6; + 2d exp (—m;> + d6y + 8dexp <_”;6>

2 2
= 6dexp(—2me2) + 2d exp (_m;) + 8d exp (_W;Z>

2
< 16d exp (—2;)

Equivalently, when m = 36 > log (16d) =0 <612 log (g)) , for any ¢ € (0, 1), with probability at

least 1 — §, for any i € {17 ...,d}, we have

. _
= —
%< i =]
g g

which completes the proof of Lemma [B-8]

Based on the Lemma[B.8] we can prove Lemma[B.7]as follows.

Proof. Without loss of generality, we let m = O (612 log (g)) as that in Lemma We can bound
DkL(De(5)]|D) as follows.

Dyt (D(5) D)
[ ety tog PS8

p(x,y

B < ) lo PEX | W)PC(Y)

_/pG( v log p(x [ y)p(y)

— [ et ytog 2L o(y) = p(v)
pc(x|y)

:/pG(y)/sz(X | y)logw
_ x| ) log PE 1)
> frete mon

N | =
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J — —
1 1| a7 a? (fyi — piyi)
22525 - lolg| 5+
Yy =1
- 2
1 N1 o} (i = pyi)? 2
32525 e N R (x —log(x 4+ 1) < 2%,|z] <1/2)
Yy i=1
d
1 1 d d
<3535 (7 4) =aet s s (5). (e
Yy =1

Finally, by the Pinsker’s inequality (such as, [79]), we have

Drv(D,Di(S)) < min (1, \/210g2DKL(Dg(S),'D)) <min [ 1, %log (Z) ,

which completes the proof of Lemma[B.7] O

Lemma B.9 (Concentration bound for T(mg, mq)). Let § in Lemma@be 01, and d in Lemma
be 62, then With probability at least 1 — §; — do, it holds that

T(ms,ma) S min (1, mad log <m5d>> .
mg (52

Proof. By the triangle inequality, we have

Drv (DEe(S), Do (5)) < Drv (D (8), De(8V)) + Dy ($V), DEe(57))
In order to bound Dry (D (S), DE¢(S%)), We discuss the concentration property of
Drv (DZ}G (S), D9 (S\) ), and the same result will hold for Dy (S\i), DEe (SZ)) In a similar
way as the proof of Lemma we discuss KL divergence Dk, (DZG (), Dge (S\i)) at first.

As stated in Lemma [B.8] without loss of generation, we assume that € < 1/4, and m,, be the number
of samples from category y, we have my, > m/2 —em > m/4, m, < m/2 +em > 3m/4, and

1-2 Jo? — 1‘ < ¢ with probability at least 1 — J;.

In addition, by Lemma[B.4] given a set S = {(x1,41), - - -, (Xm, ym) }and z] sampled from the binary
mixture Gaussian distribution, with probability at least 1 — 5 we have

+1
max|xil, £ o/d+log(T5 ).

Therefore, by the union bound, the above statements hold with high probability at least 1 — §; — Jo.
We use 8,% \i to denote the kth-dimension variance learned on the set S\*, and Hyk,\i to denote the

learned kth-dimension mean of the class y. We can simplify Dk, (Dgc (S), DEe(S \’)> as follows,

Dk, (DQG (), QZ;G(SVD
= maDkrL, (QG(S)a DG(SV))

=m, X, O ( )
= G/pG( y)lgpc\( )

ra(x | y)ra(y)

pG\l( | Y)pci (y)

— mo / pa(x,y)log

31



=mg /pG(ny) log pox]y). (rc(y) = pci(y)

pei(x | y)
Yy
—ma [ potw) | petx]p)ios ZEELL.
y pei(x | y)
pe(x|y)
=mg pa(x | y)log LEELY
25 3 [ pateluyios 2R
Z 1 i 1 31% 8}% (ﬁyk - ﬁyk \')2
=mg = — | = —1—-log| = + !
Yy 2 k=1 2 01267\2' 013,\1' gl% \i
d ~ 2 ~ ~
1 1 G (Fyk — Pyr\i)?
SmGZ§Z§ <3zk\._1> +% (x —log(x 4+ 1) < 2%,z <1/2)
Y k=1 )\ i

R 2
—mGZ Z(Jz B ) +ZWTW , (15)

k=1 Tk\i

What we need to bound is ‘5,% - o7 \1:’ and ‘ﬁyk — Hyk\i|- They can be bounded by using the

boundedness of the data. Without the loss of generation, we assume that y; = 0, then we have

xika:M
mo—l

Z i
X Lo

Ijk

’ﬁozc — Hok,\i| =

A

Tjk

A

S

(m+1)d

A

1
—|pox + V20
m

1L g (2220,

A

=0.

‘ﬁlk — Pk

Therefore, we have

d (Tor
Z HOk*HOk\z) <

d
i=1 Uk 2\ =1 ?
d

L (T — k)
Z W\, (17)
=1 Uk \é

In terms of ’3,% -0
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2 ~2
"’k ~ %\

_ [T Zj(mjk - ﬁOk)Q Mo — 1 Zj#(mjk _ ﬁOk,\i)2)2
m mo — 1 m mo — 2

| mo 25— Ao)® mo (i — Aori)®
~lm mo — 1 m mg — 1
mo 2 9 9
- m(mo — 1) g, + (mo — Diigg \; — mO/J’Ok‘
mo 2 ~2 9
N m(mo — 1) Tip + Mokor\; — mOMOk’
Mo 2 ~2 ~2
S m(mo — 1) Tik + Mo (%k,\i - HOk-)
= Mo 2 (A __A)(A _ A)
m(mg —1) |k +mo | Hok,\i — Hok | { Hok,\i T Hok
—__ Mo |2 _Tik N~ Tk _Tik Lik
m(mo—l)wlk—’—mo Zmo*l Zmo Zmofl—i_Zmo
el J J#i J
mo 2 Tik Tk Tk
S—— x5 +mo +y —
m(mg — 1) * mo ;m0,1 ;mo

1

A

2
Lik

: ik Zjk
+ 1Tk Zmo—lJero
J#i J

b e (52 520
S ilOg ((m+1)d> .

Thus, we can obtain

k=1 \7k\i k=1 F)\i

d 1)d

< — 10g2 (m—i—)) ) (18)
m 52

By plugin (I6), (T7) and (I8) into (T3], we have
| L3 L s B = )
Dk (926(5)7975(;(5\2)) < mGZZ Z a\zk -1 +Z . 52 e
y 1\ kN k=1 ko\i

which implies

Drv (DgG (S), ZDZ;G(S\Z')) < min (27 \/DKL (D (), De (S\i)))
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< min (2P, (0 (5).257(5V)

< min (2, Vmad log <(m i 1)d>> ,

~ (52

and

Dy (@gG(S), Dge(si)) < Doy (@gc (S), Do (S\Z‘)) + Doy (s\i), DgG(si))

-— (17 mod | ((m+ 1)d)>
m 52

vVmad md
Smax | 1, log .
m

A

5
Because it holds for all ¢, the proof of Lemma[B.9]is completed. O

Now we are ready to prove Theorem [3.2]

Proof. Let § in Lemma be §; and that in Lemmabe 2. With probability at least 1 — 6/2,
the bounds in Lemma [B.7|hold with §; = ¢/2.Then with probability at least 1 — §/2. Besides, the
bounds in Lemma and Lemma hold with d = §/2. Thus, by the union bound, we know that
with high probability 1 — 4, the above bounds hold. Furthermore, from the proof of Lemma [B.9}
we know that it holds naturally in this case, where the boundedness of data points and the accurate
estimation of the true distribution hold.

Finally, we plugin Lemma[B.5] [B.7] [B.6] [B.9into Theorem [3.1] and can conclude the statement of
Theorem 3.2 with high probability at least 1 — 4,

|Gen-error|

< e d + log 75 ) min 1, ilog d
~ mp 1) mg 1)

+ W (d—i—log (?)) log ((15) + %TTG <d+log <T:L$T>> log (;)

n mg logmg + malogma (d+log

+M d + log 53 ) min 1, mGdlog msd log 1 (19)
mr 1) mg 1) 1

71%(%5) if fix d and m¢g = 0,

log®(ms) if fix d and me = O(mys),

Vs

log(ms) : =mk
= if fix d and ma = mg; orqers

d if fix mg.

A

O

Corollary B.1. We denote the generalization error upper bound (Equation ) by Error(mg),
where mg is the augmentation size. We compare the cases where mg = 0 (without GDA) and
mg — +o0. If d > mg, then the following holds:

1
Error(+00) < — Error(0).
00 = Toglmg) 770
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Proof. By Equation (19), when d > mg, we have

1 log ms) 1 1 mg
E - 1 1 - I —_—
rror(0) (6)+0gms Og<(5> (CH— og( 5 ))v

and
Error(+o0) =d + log <W;S) .

When § is sufficiently small, we have

1 log(msg) 1 1
1 ——21 - 1 1 - E
og( ) + o g5 + log mg log 5 rror(+00)

> logmgError(+o00),

Error(0) =

which completes the proof. O

B.3 Proof of Theorem 3.3

The theorem is built upon the recent theoretical works on GAN [49] and SGD [35;50]. We first list
some lemmas from these works.

Lemma B.10 (Upper bounds for output and gradient, Proposition 5.2, [50]]). For deep CNNs or
MLPs in Appendix[Al] we have

L
|f(W7X)| < HHWZH2 ”X”?a
=1

H@f(w x

< | ITIwillz ) l1x]le.

i#l

Lemma B.11 (Uniform stability of SGD in the non-convex case, Theorem 3, [35]) Assume f is

B-smooth and p-Lipschitz. Running T > m iterations of SGD with step size o, = B 2, the stability of
SGD satisfies
16p°T°
B < =B

Lemma B.12 (Learnability of GAN, Theorem 19, [49]). We suppose that the architecture of GAN is
the same as that in Appendix[A.2] Besides, we consider the realizable settmg, that is, D enjoys the
same distribution as gg, (Z) with some 0, € O(d, L) and Z ~ wmif[0, 1]%. Then, given training set
S with m i.i.d. samples, it holds that

logm

ED%y (D, D (9)) \/d2L2 log(dL)

Proof. Now we are ready to prove Theorem [3.3] the main idea is to bound M, B,
Dy (D, Di(S)) in Theorem. M and Lipschitz property can be bounded by using Lemma|B. 10}

Bmy can be induced by Lemma with Lipschitz constant. In terms of Dry (D Dea(9)),
Lemma[B.T2]can be used to derive an upper bound.

First, we bound the loss function as follows.
Uf.z) =LU(f, (%))
= log(1 + exp(—yf(w,x)))
<log(2) +|yf(w,x)| (log(1 + exp(—t)) is 1-Lipschitz)
= log(2 —|—|f w x)|
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L
<log(2) + H||Wl||2 1%l 2 (by Lemma[B.10)

L
<log(2) + [ [T lIwll, | Vd
=1

< log(2) + H Wil | Vd

L
11w,
=1

Thus, we have M < (Hz 1 ||W1H

Second, we prove that f is Llpschltz given the bounded parameter space.

5‘fwx

8f (w,x)
8W[

%

2 2

< HXH2Z H||Wz||2 (by Lemma [B-10)

1=1 \i#l

L
<|lxll2 > { TTIWill,

1=1 \i#l

<vay (]lwil,

1=1 \ il

L
s vay (TTIwil,

=1

L

= Vdr [ TTIwill,

Therefore, f is p-Lipschitz with vVdL (], |Wi||,). Then, 3,, can be bounded by Lemmam

2 2

16p2T° ) Te dL?
- < 16dL W, — < W, —.
B8 oy B H\I 1l H\\ o | =

IN

1+c m1+c ~

Third, we bound the expectation of divergence between model distribution and target distribution as
follows.

EDTV (D,Dg(S)) S E/ dz

(x,y)

‘PD(Xv y) — P (s)(%,9)

) = Ppgs)(x, Z/)‘ dx

=EY [ 5[Pox19) ~Pocs x| )] dx
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= EZDTV (PD(X ‘ y)’]P)'DG(S)(X | y))

= ZEDTV (PD(X | y)ﬂP’DG(S)(X ‘ y)>

- Z \/(EDTV (P'D(X | 9): Pogs)(x | y)>>2

< 3\ [EDiy (B 1) Pogis 1)

logm
<> \/ \/ d2 L2 log(dL) —>-
Yy

= VdL <log(dL) lofl m)i .

=

1
< <d2L2 log(dL)Ogm>
m

Furthermore, because Dv (’D, Da(S )) < 1, we have

1

1 1
EDrv (D7 Dg(S)) 5 min | 1, \/dj <log(dL)Ogn:n)

Finally, by taking the expectation for the bound in Theorem [3.1) and plugging M, f3,,, and
Drv (D, Dg(S)) into it, we can conclude the result of Theorem [3.3|with high probability at least
1 —

1l

M 5 (T Wil ) Vd

2 2
16p2T* e
P < — e = 16d? [ TT I, RN [T 1wl

ar?

E|Gen-error|

L 1

1 1

g% [TIWil, | Vdmin 1,\/dL(log(dL) Ogms)
T\ mgs

2

L
Vms +/ma 1 msy/ma 2 1
A W dq /1 - —_— W dL*y /1 -
# T Tl | Vi fog (5 )+ =5 { TTIa, 8 ( 5

2

mglogmg + mglogmg 1
+ m2 H Wl dL?log (5
T .

K

L
mglogm 1
4 Ms 08MS I | IWill, | VdT(ms, me)log (> (20)

m 1)
T =1
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1 if fix W, L, d, let m¢; = 0,

s
1

max ((bggzs)) " log ms‘T(ms,mg)) if fix W, L, d, let mg = O(my),
<
~ 1

log(m 4 . %
(foatmed ) it fix W, L, d, let ma = M o qon
2
ar? (TI IWill.) i fix .

O

Corollary B.2. We denote the generalization error upper bound (Equation @) ) by Error(mg),
where mq is the augmentation size. We compare the cases where mg = 0 (without GDA) and
mg — +oo. If d > m?, then the following holds:

1
Error(+00) < ———————Error(0).

Hl 1 ||Wl||2 L?

Proof. By Equation (20), when d > m?%, we have

2
1 logmg 1
Brror(0 HHWIHQ vayos () + <57 (Tl | aztos (5

and

Error(+o00) H Wil V.

When ¢ is sufficiently small, we have

Error(0)

1 1 logms 9 1
= E 1 - L°FE 1 -
— rror(+00)4 [log (5> + s 1:[ |Will, | VAL?Error(+00)log 3

1og mgs 9
W, dL*FE
2 s HH iy | VAL?Error(+oo)

> H Wil VAL?Error(+0)
> H |Willy | L?Error(+00)
which completes the proof. O

Appendix C Discussion on existing non-i.i.d. stability bounds

In this section, we show that it is unclear how to use existing non-i.i.d. stability bounds to derive a
better guarantee than Theorem [3.1]for GDA.

C.1 Stability bounds for mixing processes

To the best of our knowledge, existing stability bounds for mixing processes only focus on the
stationary sequence [27; 28} [72]], which is defined as follows.
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Figure 2: Dependence graph (left) and a forest approximation (right) of the GDA setting.

Definition C.1 (Stationary sequence). A sequence of random variables Z = {Z,};° ___ is said to be

stationary if for any t and non-negative integers m and k, the random vectors (Zt, . .., Zym) and
(Zisky -y Zitm—+r) have the same distribution.

Unfortunately, the GDA setting in this paper does not satisfy the stationary condition, because
(1, ,2Zmg) = Sand (Zpmgt1,- .-, 2Z2mg) C Se do not have the same distribution. Furthermore, it
is usually difficult to estimate the mixing coefficients which reflect quantitative dependencies among
data points.

C.2 Stability bounds for dependence graph

Recently, [29] provide a framework for the generalization theory of graph-dependent data, which
includes the classical stability result in [25] as a special case. We now introduce some elements of
graph-dependent random variables and the non-i.i.d. stability bound in [29]. For a graph G, we use
V(G) to denote its vertex set and F(G) to denote its edge set.

Definition C.2 (Dependency Graph, Definition 3.1 in [29]). An undirected graph G is called a
dependency graph of a random vector X = (X1,...,X,) if (1) V(G) = [n}, (2) if I, J C [n] are
non-adjacent in G, then {X;};cr and {X;} ey are independent.

Definition C.3 (Forest Approximation, Definition 3.4 in [29]). Given a graph G, a forest F, and
a mapping ¢ : V(G) — V(F), if p(u) = ¢(v) or edge (¢p(u),p(v)) € E(F) for any edge
(p(u), p(v)) € E(G), then (¢, F) is called a forest approximation of G. Let ®(G) be the set of
forest approximations of G.

Definition C.4 (Forest Complexity, Definition 3.5 in [29]). Given a graph G and any forest approxi-
mation (¢, I') € ®(G) with F consisting of trees {T; },c ;. let

A, F) = Z (‘¢_1(u)‘ + ‘¢_1(v)‘)2 + 3 min ¢_1(u)‘2

(u,v)EE(F) T uev(Ty)

We call A(G) = min g pyea(a) Ao, r) the forest complexity of the graph G.

Theorem C.1. Assume that A is a B,,-stable. Given a set S of size m sampled from the same
marginal distribution D with dependency graph G. Suppose the maximum degree of G is A, and the
loss function € is bounded by M. For any 6 € (0, 1), with probability at least 1 — , it holds that

R (A(5)) < Re(A() + 265 a(8+ 1) + (@8 + L)/ 2D 1ogd),

where By, A = max;<a Bm—; and A(G) is the forest complexity of the dependence graph G.

Remark. Theorem requires S sampled from the same marginal distribution D, which fails to
hold in the context of GDA because the learned distribution D (.9) is generally not the same as the
true distribution D. It is still unclear to overcome this problem.

Remark. When mg =0and S = S5, Theoremdegenerates to the classical result in [25]], which
requires B,, = o(1/,/m) to converge. In contrast, Theorem 3.1]only requires /3,,, = o(1/log(m)) to
converge, which is better than that of Theorem [C.1]
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Remark. We note that Theorem |[C.]is proposed for the general case with data dependence. Therefore,
it does not consider the property of special cases and may fail to give good guarantees. On the one
hand, the independence of S and the conditional independence of S¢; used in the proof of Theorem|[3.1]
are significant, which is ignored by Theorem|[C.I} On the other hand, in the case of strong dependence
like GDA, the forest complexity may be too large to give a meaningful bound. The dependence
graph and a forest approximation of the GDA setting are presented in Figure[2] Therefore, the forest
complexity of the GDA setting can be bounded as follows.

AG) <ms(1+mg)® +1° S mgmg. (21)

Plugging into Theorem |[C.1] and assume m¢ = ©(mg), we observe that

M [AG) 1 M [mgmZ 1 mg 1
S 2y < 2 TG 002y < Ay [ S Jog(=

which fails to converge. However, Theorem 3.1] overcomes this problem.

Finally, we conclude that it is hard to directly use existing non-i.i.d. stability results to obtain a better
guarantee than Theorem [3.1]

Appendix D Experimental details and additional results

D.1 CIFAR-10 dataset

CIFAR-10 is a widely used image dataset and we adopt it to empirically validate Theorem [3.3]
Combining the simulations in the bGMM setting, our theory is verified sufficiently.

D.2 Models

bGMM. We adopt the implementation of naive Bayes in [80] to estimate the parameters of bGMM.
ResNet. We add the ResNet50 checkpoint released by Pytorch [81]], which is also used in [24].

c¢DCGAN. We use the cDCGAN in this repository, and modify its input channel and label dimension
to 3 and 10 respectively to keep consistent with the format of images in CIFAR-10 dataset. This
repository gains the most stars among repositories that implement cDCGAN. Furthermore, we follow
its hyperparameter setting and train 200 epochs to obtain a cDCGAN for the CIFAR-10 dataset.

StyleGAN2-ADA. We use the class-conditional model pre-trained on CIFAR-10 dataset, which is
released by NVIDIA Research [56].

EDM. We use the SM synthetic CIFAR-10 dataset released in [24], which is generated by the pre-
trained conditional EDM. Given an augmentation size m¢, we randomly sample mg from the SM
synthetic data points.

D.3 Model selection

GANs are chosen to empirically validate Theorem [3.3]and the EDM is chosen to explore the ability
of the diffusion model. First, we choose a "bad" GAN (DCGAN) to empirically verify that GANs
can improve the test performance when mg is small and awful overfitting happens (without standard
augmentation). Second, we choose a "good" GAN (StyleGAN2-ADA) to verify that GANs can
not improve the test performance obviously when the mg is approximately large (with standard
augmentation). Third, because diffusion models have achieved good success in recent years, we
conduct experiments on the EDM and suggest that diffusion models have a better Dy (D, D(S))
than GANS.

D.4 Training details

Standard data augmentation. 4 pixels are padded on each side, and a 32 x 32 crop is randomly
sampled from the padded image or its horizontal flip. This augmentation pipeline is widely used [54].
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https://github.com/znxlwm/pytorch-MNIST-CelebA-cGAN-cDCGAN

Optimization. We follow the setting in [24]. We use the SGD optimizer, where the momentum and
weight decay are set to 0.9 and 5 x 10~*, respectively. We use the cyclic learning rate schedule with
cosine annealing, where the initial learning rate is set to 0.2. We train the deep neural classifier with
100 epochs. The batch size is 512.

D.5 Computation consumption.

All experiments are run on one RTX 3090 GPU. The most consuming case (ResNet50, mg = 1M)
takes 17 GB cuda memory and 20 hours.

D.6 License

The used codes and their licenses are listed in Table 2]

Table 2: The used codes and licenses.

URL Citation License

https://github.com/N Vlabs/stylegan2-ada-pytorch 56 License

https://github.com/pytorch/pytorch [81]] License
https://github.com/wzekai99/DM-Improves-AT [24] MIT License
https://github.com/ML-GS Al/Revisiting-Dis-vs-Gen-Classifiers (801 MIT License

https://github.com/znxlwm/pytorch-MNIST-CelebA-cGAN-cDCGAN - -

D.7 Additional results

We further adopt the CIFAR-10 dataset to empirically verify our theory by estimating the gener-
alization error directly. By definition, given a trained neural classifier, the generalization error of
Theorem [3.3] can be estimated by the absolute gap between the mean cross-entropy loss on the
training set (with generated data) and the mean cross-entropy loss on the test set. We add the results
of cDCGAN, StyleGAN2-ADA, and EDM with this estimator in Table E}

On the one hand, GANs decrease the generalization error when mg is small (without standard
augmentation). On the other hand, GANs fail to boost the performance obviously and even hurt
the error when mg is approximately large (with standard augmentation). Our experimental results
support the theoretical results (Theorem [3.3) again.
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Table 3: Estimated generalization error on the CIFAR-10 dataset, where S.A. denotes standard augmentation.

) GDA (mg)
Generator Classifier S.A.
w/o 100k 300k 500k 700k 1M
X 0476 0456 0413 0424 0428 0.455
ResNet18
Vv 0.227 0.227 0.227 0.221 0.238 0.240
X 0.538 0.564 0476 0474 0.514 0.514
cDCGAN ResNet34
vV 0.219 0.234 0.223 0.231 0.239 0.247
X 0.634 0496 0471 0.531 0.533 0.566
ResNet50
vV 0.235 0.231 0.244 0.234 0.254 0.266
X 0476 0336 0.296 0.298 0.292 0.303
ResNetl8
vV 0.227 0.205 0.215 0.205 0.210 0.210
X 0.538 0.381 0.340 0.335 0.339 0.346
StyleGAN2-ADA  ResNet34
vV 0.219 0.222 0.219 0.236 0229 0.223
X 0.634 0.357 0.313 0.330 0.331 0.322
ResNet50
v 0.235 0.236 0211 0.223 0.198 0.223
X 0476 0.249 0.185 0.172 0.154 0.142
ResNet18
vV 0.227 0.159 0.121 0.100 0.090 0.070
X 0.538 0.281 0.215 0.183 0.163 0.150
EDM ResNet34
vV 0.219 0.164 0.120 0.100 0.096 0.084
X 0.634 0.265 0.194 0.186 0.172 0.149
ResNet50
Vv 0.235 0.160 0.121 0.101 0.089 0.078
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