© ® N o o A~ N

Supplementary Materials
PERFOGRAPH: A Numerical Aware Program Graph
Representation for Performance Optimization and
Program Analysis

Anonymous Author(s)
Affiliation
Address

email

1 Insights of Digit Embedding

We investigated the effectiveness of Digit Embedding. Figure[I]shows the 2-d embeddings of integer
numbers in the range [10, 60] and [100090-100140]. We take two ranges of numbers to better
illustrate the results. We can see that the numbers in the (100090-100140) range are clustered together.
The numbers with less difference, like (100133, 100134), (100127, 100128), and (100136, 100137),
are close to each other. Also, the numbers with greater differences, like (100126, 100135) and
(100196, 100133), are far from each other in the embedding space. A similar analysis is also true for
the (10, 60) range. We can see that the numbers 21, 22, 28, and 29 are close to each other as they have
small differences but numbers 11 and 59 are far from each other as they have greater differences.

100133
® @ 100134

® 100135
100139

) ® 33
o 100114 06

100131

100130 100140 ® 31

© 100123 ® 39
e ® 100136

100137
100124 ® 30
o ® 10
1””"’.’ o 1001 ¥
100100 3 Y 1008845 1%%%59 ® 37
100090 & ﬂ& 0129 © *H e
® 108109
100122 —9 e 100116
100096 ~¢=.
T4 100128 g 4
100127
100126 44
°20 o1

06 0.4 0.2 0 02 04

Figure 1: Embedding of integer numbers in the range [10-60] and [100090-100140]

Supplementary Materials for PERFOGRAPH: A Numerical Aware Program Graph Representation for Perfor-
mance Optimization and Program Analysis



10
11
12
13
14

15
16
17
18
19

We investigated with more ranges. Figure [2]shows the 2-d embedding of integer numbers in the range
[1, 50] and [50000-500090]. Here we can also see that numbers with smaller differences like (50034,
50035, 50038, 50039), (13, 17), and (19, 21) are also closer to each other in the embedding space.
Whereas numbers like (50011, 50028), (50017, 50029), and (2, 17) are far from each other in the
embedding space as their differences are also greater.

o soont OGO\ o0isgy @500 |/ sooag e
c 09 & S001% 53y 50007~ 50005 Sm;mz. sodhys0045 & 50048 50058
10 o o
. . ® s0037° % ® 50036 5003 200 o
® 11 4 ® 45 50038
® 30
° 2% 19 °n
°17 o7 08 ® 4 ®4
T
o
® 13 *
035,02 °s
.3 .
®2 2 07 e2°°
.
@332 e7

°3

Figure 2: Embedding of integer numbers in the range [1-50] and [50000-500090]

Figure|§| shows the 2-d embedding of decimal numbers in the range [1.0, 10.0] and [20.0-31.0]. We
can see that our embedding works similarly as the numbers with smaller differences like (2.236,
4.529), (1.647, 5.339), (23.0129, 23.3484, 24.5235, 25.8604) are close to each other in the embedding
space. And the numbers with larger differences like (1.6478, 30.7010), (5.339, 30.5113) are far from
each other in the embedding space.

1

22.27039909

® 4.52930%33
® 2259457717 236234794
&~ 2430990178 © 2863394644 ® 836058799
o © 7.172320163
9.72319781 o8
® 6350697529 ® 6.686630701 26.96887425
® 290795941
® 2296897113 06

¢ 1.647846652
® 5339718009

® 5043729681
® 2111505339

2173053816
L ® 5657819802 .
23.0129007}- 2334842784
® 25.86049666
o 070106066
8.49665008 - 25.04396585 22358636
3006718904
3051132845
52471507169 75 86853384
V . o T T A 4 02 04
® 2101669877
o ® &:372289009

2 ]!GTJ]]%& 12962884

® 3052680069
8231824338 5435888565 550750063
° ¢ o

06

Figure 3: Embedding of decimal numbers in the range [1.0, 10.0] and [20.0-31.0]



20
21

22

23
24
25
26
27
28
29

30
31
32
33
34

35
36
37
38

39

40
4
42

43

44
45
46
47
48

So, the above examples clearly demonstrate the effectiveness of Digit Embedding for generating the
embedding of both integer and decimal numbers.

2 Model’s architecture

Table [I] shows the architecture and the hyper-

parameters of our PERFOGRAPH model. For Table 1: PERFOGRAPH model architecture
each one of the downstream tasks, we have two
or more classes. While training the PERFO- Parameter | Detail
GRAPH model, the class with the higher proba- ;
o . > ugher p Convolution Type RGCN
bility score is chosen as the predicted class and
. d inst the actual cl # Conv Layers 2
is compared against the actual class. Ageregation Function Sum
Figure [] shows the error rate (loss value) of Activation Function Relu
PERFOGRAPH model per epoch for the device N]Iiaxt;l"cijlze.n L]e)qght 142%
mapping task. As shown, the model can learn m lfa dé?f m Tre
from our PERFOGRAPH graph as it is able to . &
d h h Hidden Dim 64
ecrease the error rate per epoch. Output Layer Size num_class
The source code of PERFOGRAPH for Optimizer Adam
this task is available at the following link: Learning rate 0.01 (defaule)

https://anonymous.4open.science/r/
perfograph_devmap-532F/

Error
Error

0 200 400 600 800 1000 0 200 400 600 800 1000

Epochs Epochs

Figure 4: Error rate per epoch for AMD (left) and NVIDIA (right) datasets

3 Ablation Study

We further analyzed how each one of the enhancements in PERFOGRAPH affects the results. To this
end, we performed an ablation study on the Device Mapping task, and training our GNN models on
variations of PERFOGRAPH.

3.1 Results without Composite data type nodes

First, we remove the representation of composite data types in our PERFOGRAPH representation.
Please note that in this setup, the Digit Embedding is still applied. Table[2]and[3]shows the results. We
can see that when the representation does not support composite data types, the error rate increases to
13% in AMD and 15% in NVIDIA dataset. This clearly indicates that having composite-type nodes
in the representation helped the model to learn the code features more accurately.


https://anonymous.4open.science/r/perfograph_devmap-532F/
https://anonymous.4open.science/r/perfograph_devmap-532F/
https://anonymous.4open.science/r/perfograph_devmap-532F/

49

50
51
52
53
54

55
56
57
58
59

60

61

62
63
64
65
66
67
68
69

70

71
72
73
74
75
76
77

3.2 Results without Digit Embedding

We remove Digit Embedding from our pipeline for the second experiment and keep the composite
nodes. Table[2]and [3|shows the results. We can see that unlike having composite-type nodes, removing
digit embedding does not hurt the error rate that much for the task of device mapping. However, we
can still see a small increase (1.1%) in the error rate for AMD dataset. For the NVIDIA dataset, the
error rate increases from 10.0 to 10.6%.

Table 2: Summarizing PERFOGRAPH results for AMD device.

Approach Error (%)
DeepTune |Cummins et al.|[2017]] 28.1
inst2vec |Ben-Nun et al.|[2018|] 19.7
PROGRAMUL |Cummins et al.|[2020] 13.4
PERFOGRAPH (without composite data type nodes) 13.0
PERFOGRAPH (without digit embedding) 7.1

PERFOGRAPH (composite data type nodes + digit embedding) 6.0

Table 3: Summarizing PERFOGRAPH results for NVIDIA device.

Approach Error (%)
DeepTune |Cummins et al.|[2017]] 39.0
inst2vec |Ben-Nun et al.| [2018]] 21.5
PROGRAML |Cummins et al.|[2020] 20.0
PERFOGRAPH (without composite data type nodes) 15.0
PERFOGRAPH (without digit embedding) 10.6

PERFOGRAPH (composite data type nodes + digit embedding) 10.0

Finally, we can conclude that both components in our representation helped the model learn the code
features better to some extent. However, composite data type nodes in the embedding helped our
model more than Digit Embedding for the task of device mapping. The reason can be that there are
not many numbers in the dataset. However, in tasks where there are many numbers, Digit Embedding
can play an important role.

4 Details of Datasets:

4.1 Device Mapping

For this task, we used the Device Mapping Dataset. It contains around 256 OpenCL kernels. Around
671 IR files are extracted from these kernels. There are two types of devices: AMD and NVIDIA. For
each of the devices, we have two classes: CPU and GPU indicating whether the kernel performs well
in CPU or GPU. For AMD, we have 276 kernels for GPU and 395 kernels for CPU. For NVIDIA, we
have 385 kernels for GPU and 286 kernels for CPU. We use 80% of the IR files for training, 10% for
validation, and 10% for testing. For the AMD experiment, we used 36 IR files from CPU and 31 IR
files from GPU for testing. For the NVIDIA experiment, we used 30 IR files from CPU and 37 IR
files from GPU for testing.

4.2 Parallelism Discovery

For Parallelism Discovery, the OMP_Serial Dataset is used. The dataset contains 5731 compilable
source c files. We compile these source files using Clang to create IR files. Also, 58 transformation
flags from LLVM are applied to increase the dataset. The list of flags is provided in table ] There
are around 30k files in the training set. There are two classes: Parallel and Non-Parallel. The loops
with the OpenMP pragma "#pragma omp parallel for" are considered as Parallel loops and the loops
without this pragma are considered as Non-Parallel loops. To ensure the correctness of data labels,
three existing parallelism suggestion tools: Pluto, autoPar, and DiscoPoP, are used to create three



78
79

80

81
82
83
84
85
86
87
88
89
90
91

Table 4: List of the transformation flags

-adce

-always-inline

-argpromotion

-bb-vectorize

-block-placement
-break-crit-edges

-dce

-deadargelim

-deadtypeelim

-die

-loop-unroll
-loop-unroll-and-jam
-loop-unswitch
-lower-global-dtors

-loweratomic

-lowerinvoke

-lowerswitch

-adce -always-inline
-argpromotion -always-inline
-bb-vectorize -argpromotion
-loop-deletion -loop-extract
-loop-extract -loop-extract-single
-loop-extract-single -loop-reduce
-loop-reduce -loop-rotate
-loop-rotate -loop-simplify
-loop-simplify -loop-unroll
-loop-unroll -loop-unroll-and-jam
-loop-unroll-and-jam -loop-unswitch
-loop-unswitch -lower-global-dtors
-lower-global-dtors -loweratomic

-dse

-aggressive-instcombine

-lcssa

-licm

-loop-deletion

-loop-extract
-loop-extract-single
-loop-reduce

-loop-rotate

-loop-simplify
-block-placement -break-crit-edges
-break-crit-edges -argpromotion
-break-crit-edges -dce

-dce -deadargelim

-deadargelim -deadtypeelim
-deadtypeelim -die

-die -dse
-aggressive-instcombine -lcssa
-lcssa -licm

-licm -loop-deletion

-loweratomic -lowerinvoke
-lowerinvoke -lowerswitch
-lowerswitch -dse

-die -dse

-break-crit-edges -dce
-break-crit-edges -lower-global-dtors
-dce -lowerinvoke

-deadargelim -loweratomic

testing subsets. So, all of the testing data are checked by at least one of the tools. The performance of

PerfoGraph is reported for each of the testing subsets.

4.3 Parallel Pattern Detection

The OMP_Serial Dataset also contains source codes of three different patterns: Do-all (Private) (200
files), Reduction (200 files), and Stencil (300 files). The do-all and Reduction patterns are detected
using DiscoPoP. For both Do-all and Reduction patterns 20 templates are extracted and then 10
different variations are applied to those templates. We consider simple variations like renaming
variables/functions and changing operators to preserve the pattern of the original source code. There
are currently no tools available for detecting Stencil patterns. So, they are labeled manually. There
are three types of Stencils: 1-d, 2-d, and 3-d. For each type, we extracted 10 templates and applied
10 variations on each of those templates to generate the 300 Stencil loops. For generating the source
codes from templates Jinja and SymPy are used. Some examples of templates and generated codes
are shown in Listing[T] [2| [3] and ] For more details regarding the dataset, it is encouraged to look

into the paper by Chen et al. |Chen et al.|[2023]].




92

93

94

95

96

97
98
99
100
101

for ({{cnt}}
{{limit}}; {
{{constant }}

{

= 0; {{cnt}} <
{ent}} = {{cnt}} +
)

//do—all operation

{{operand}} = {{operand}}
{{operator}} {{operand}};

Listing 1: A sample do-all template

for ({{cnt} {{cnt}} <

= O’
cnt}} = {{cnt}} +

}

{{limit}}; {{

{{constant }})

{
/«reduction operation =/
{{reduction_var}} = {{reduction_var}}
{{reduction_operator}} ({{term}});

}

Listing 2: A sample reduction template

dst[0,0] @= src[0, O] + src[l, O] +
src[-1, 0] + src[O, 1] +
src [0, -1]

Listing 3: A sample Stencil template for Sympy input

for (int ctr_0 = 1; ctr_0 < 99;
ctr_0 += 1) {
double x* RESTRICT _data_dst_00
_data_dst + 100xctr_O;
double * RESTRICT _data_src_00
_data_src + 100xctr_O;
double * RESTRICT _data_src_O1
_data_src + 100xctr_0 + 100;
double * RESTRICT _data_src_Oml =
_data_src + 100xctr_0 - 100;
for (int64_t ctr_1 = 1; ctr_1 < 99;
ctr_1 += 1) {
_data_dst_00[ctr_1] =
data_src_O0O0[ctr_1 + 1]
_data_src_00[ctr_1 - 1]
_data_src_00[ctr_1]
_data_src_O1[ctr_1]
_data_src_Oml[ctr_1];

+ o+ + o+

Listing 4: Generated stencil loop using Sympy

4.4 Numa and Prefetchers Configuration Prediction

The dataset we used for the Numa and Prefetchers Configuration Prediction is from a prior study by
TehraniJamsaz er al. (TehraniJamsaz et al.|[2022]. It contains 57000 IR files generated by various
LLVM compiler optimization flags. Each IR file within the dataset is accompanied by its runtime
on two architectures, Sandy Bridge and Skylake, across thirteen different NUMA and prefetcher
configurations.



102

103
104

105
106

107
108
109

110
111

112
113
114
115

References

T. Ben-Nun, A. S. Jakobovits, and T. Hoefler. Neural code comprehension: A learnable representation
of code semantics. Advances in Neural Information Processing Systems, 31, 2018.

L. Chen, Q. I. Mahmud, H. Phan, N. K. Ahmed, and A. Jannesari. Learning to parallelize with
openmp by augmented heterogeneous ast representation. arXiv preprint arXiv:2305.05779, 2023.

C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. End-to-end deep learning of optimization
heuristics. In 2017 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 219-232. IEEE, 2017.

C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather. Programl: Graph-based deep
learning for program optimization and analysis. arXiv preprint arXiv:2003.10536, 2020.

A. TehraniJamsaz, M. Popov, A. Dutta, E. Saillard, and A. Jannesari. Learning intermediate rep-
resentations using graph neural networks for numa and prefetchers optimization. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 1206-1216. IEEE,
2022.



	Insights of Digit Embedding
	Model's architecture
	Ablation Study
	Results without Composite data type nodes
	Results without Digit Embedding

	Details of Datasets:
	Device Mapping
	Parallelism Discovery
	Parallel Pattern Detection
	Numa and Prefetchers Configuration Prediction


