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Abstract

Score matching is an alternative to maximum likelihood (ML) for estimating a
probability distribution parametrized up to a constant of proportionality. By fitting
the “score” of the distribution, it sidesteps the need to compute this constant of
proportionality (which is often intractable). While score matching and variants
thereof are popular in practice, precise theoretical understanding of the benefits and
tradeoffs with maximum likelihood—both computational and statistical—are not
well understood. In this work, we give the first example of a natural exponential
family of distributions such that the score matching loss is computationally efficient
to optimize, and has a comparable statistical efficiency to ML, while the ML loss
is intractable to optimize using a gradient-based method. The family consists
of exponentials of polynomials of fixed degree, and our result can be viewed as
a continuous analogue of recent developments in the discrete setting. Precisely,
we show: (1) Designing a zeroth-order or first-order oracle for optimizing the
maximum likelihood loss is NP-hard. (2) Maximum likelihood has a statistical
efficiency polynomial in the ambient dimension and the radius of the parameters of
the family. (3) Minimizing the score matching loss is both computationally and
statistically efficient, with complexity polynomial in the ambient dimension.

1 Introduction

Energy-based models are a flexible class of probabilistic models with wide-ranging applications.
They are parameterized by a class of energies Eθ(x) which in turn determines the distribution

pθ(x) =
exp(−Eθ(x))

Zθ

up to a constant of proportionality Zθ that is called the partition function. One of the major challenges
of working with energy-based models is designing efficient algorithms for fitting them to data.
Statistical theory tells us that the maximum likelihood estimator (MLE)—i.e., the parameters θ which
maximize the likelihood—enjoys good statistical properties including consistency and asymptotic
efficiency.

However, there is a major computational impediment to computing the MLE: Both evaluating
the log-likelihood and computing its gradient with respect to θ (i.e., implementing zeroth and
first order oracles, respectively) seem to require computing the partition function, which is often
computationally intractable. More precisely, the gradient of the negative log-likelihood depends on
∇θ logZθ = Epθ

[∇θEθ(x)]. A popular approach is to estimate this quantity by using a Markov
chain to approximately sample from pθ. However in high-dimensional settings, Markov chains often
require many, sometimes even exponentially many, steps to mix.

Score matching (Hyvärinen, 2005) is a popular alternative that sidesteps needing to compute the
partition function of sample from pθ. The idea is to fit the score of the distribution, in the sense that
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we want θ such that ∇x log p(x) matches ∇x log pθ(x) for a typical sample from p. This approach
turns out to have many nice properties. It is consistent in the sense that minimizing the objective
function yields provably good estimates for the unknown parameters. Moreover, while the definition
depends on the unknown ∇x log p(x), by applying integration by parts, it is possible to transform the
objective into an equivalent one that can be estimated from samples.

The main question is to bound its statistical performance, especially relative to that of the maximum
likelihood estimator. Recent work by Koehler et al. (2022) showed that the cost can be quite steep.
They gave explicit examples of distributions that have bad isoperimetric properties (i.e., large Poincaré
constant) and showed how such properties can cause poor statistical performance.

Despite wide usage, there is little rigorous understanding of when score matching helps. This amounts
to finding a general setting where maximizing the likelihood with standard first-order optimization is
provably hard, and yet score matching is both computationally and statistically efficient, with only
a polynomial loss in sample complexity relative to the MLE. In this work, we show the first such
guarantees, and we do so for a natural class of exponential families defined by polynomials. As we
discuss in Section 1.1, our results parallel recent developments in learning graphical models—where
it is known that pseudolikelihood methods allow efficient learning of distributions that are hard to
sample from—and can be viewed as a continuous analogue of such results.

In general, an exponential family on Rn has the form pθ(x) ∝ h(x) exp(⟨θ, T (x)⟩) where h(x) is the
base measure, θ is the parameter vector, and T (x) is the vector of sufficient statistics. Exponential
families are one of the most classic parametric families of distributions, dating back to works by
Darmois (1935), Koopman (1936) and Pitman (1936). They have a number of natural properties,
including: (1) The parameters θ are uniquely determined by the expectation of the sufficient statistics
Epθ

[T ]; (2) The distribution pθ is the maximum entropy distribution, subject to having given values
for Epθ

[T ]; (3) They have conjugate priors (Brown, 1986), which allow characterizations of the
family for the posterior of the parameters given data.

For any (odd positive integer) constant d and norm bound B ≥ 1, we study a natural exponential
family Pn,d,B on Rn where

1. The sufficient statistics T (x) ∈ RM−1 consist of all monomials in x1, . . . , xn of degree at least 1
and at most d

(
where M =

(
n+d
d

))
.

2. The base measure is defined as h(x) = exp(−
∑n

i=1 x
d+1
i ).1

3. The parameters θ lie in an l∞-ball: θ ∈ ΘB = {θ ∈ RM−1 : ∥θ∥∞ ≤ B}.

Towards stating our main results, we formally define the maximum likelihood and score matching
objectives, denoting by Ê the empirical average over the training samples drawn from some p ∈
Pn,d,B :

LMLE(θ) = Êx∼p[log pθ(x)]

LSM(θ) =
1

2
Êx∼p[∥∇ log p(x)−∇ log pθ(X)∥2] +Kp

= Êx∼p

[
Tr∇2 log pθ(x) +

1

2
∥∇ log pθ(x)∥2

]
(1)

where Kp is a constant depending only on p and (1) follows by integration by parts (Hyvärinen,
2005). In the special case of exponential families, (1) is a quadratic, and in fact the optimum can be
written in closed form:

argmin
θ

LSM(θ) = −Êx∼p[(JT )x(JT )
T
x ]

−1Êx∼p∆T (x) (2)

where (JT )x : (M − 1) × n is the Jacobian of T at the point x, ∆f =
∑

i ∂
2
i f is the Laplacian,

applied coordinate wise to the vector-valued function f .

With this setting in place, we show the following intractability result.
Theorem 1.1 (Informal, computational lower bound). Unless RP = NP, there is no poly(n,N)-
time algorithm that evaluates LMLE(θ) and ∇LMLE(θ) given θ ∈ ΘB and arbitrary samples
x1, . . . , xN ∈ Rn, for d = 7, B = poly(n). Thus, optimizing the MLE loss using a zeroth-order or
first-order method is computationally intractable.

1We note that the choice of base measure is for convenience in ensuring tail bounds necessary in our proof.
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The main idea of the proof is to construct a polynomial FC(x) which has roots exactly at the satisfying
assignments of a given 3-SAT formula C. We then argue that exp(−γFC(x)), for sufficiently large
γ > 0, concentrates near the satisfying assignments. Finally, we show sampling from this distribution
or approximating logZθ or ∇θ logZθ (where θ ∈ RM−1 is the parameter vector corresponding to
the polynomial −γFC(x)) would enable efficiently finding a satisfying assignment.

Our next result shows that MLE, though computationally intractable to compute via implementing
zeroth or first order oracles, has (asymptotic) sample complexity poly(n,B) (for constant d).

Theorem 1.2 (Informal, efficiency of MLE). The MLE estimator θ̂MLE = argmaxθ LMLE(θ) has
asymptotic sample complexity polynomial in n. That is, for all sufficiently large N it holds with
probability at least 0.99 (over N samples drawn from pθ∗ ) that:

∥θ̂MLE − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
.

The main proof technique for this is an anticoncentration bound of low-degree polynomials, for
distributions in our exponential family.

Lastly, we prove that score matching also has polynomial (asymptotic) statistical complexity.

Theorem 1.3 (Informal, efficiency of SM). The score matching estimator θ̂SM = argmaxθ LSM(θ)
also has asymptotic sample complexity at most polynomial in n. That is, for all sufficiently large N it
holds with probability at least 0.99 (over N samples drawn from pθ∗ ) that:

∥θ̂SM − θ∗∥2 ≤ O

(
(nB)poly(d)

N

)
. (3)

The main ingredient in this result is a bound on the restricted Poincaré constant—namely, the
Poincaré constant, when restricted to functions that are linear in the sufficient statistics T . We bound
this quantity for the exponential family we consider in terms of the condition number of the Fisher
matrix of the distribution, which we believe is a result of independent interest. With this tool in hand,
we can use the framework of Koehler et al. (2022), which relates the asymptotic sample complexity
of score matching to the asymptotic sample complexity of maximum likelihood, in terms of the
restricted Poincaré constant of the distribution.

1.1 Discussion and related work

Score matching: Score matching was proposed by Hyvärinen (2005), who also gave conditions
under which it is consistent and asymptotically normal. Asymptotic normality is also proven for
various kernelized variants of score matching in Barp et al. (2019). Koehler et al. (2022) prove that
the statistical sample complexity of score matching is not much worse than the sample complexity
of maximum likelihood when the distribution satisfies a (restricted) Poincaré inequality. While we
leverage machinery from Koehler et al. (2022), their work only bounds the sample complexity of
score matching by a quantity polynomial in the ambient dimension for a specific distribution in
a specific bimodal exponential family. By contrast, we can handle an entire class of exponential
families with low-degree sufficient statistics.

Poincaré vs Restricted Poincaré: We note that while Poincaré inequalities are directly related to
isoperimetry and mixing of Markov chains, sample efficiency of score matching only depends on
the Poincaré inequality holding for a restricted class of functions, namely, functions linear in the
sufficient statistics. Hence, hardness of sampling only implies sample complexity lower bounds in
cases where the family is expressive enough—indeed, the key to exponential lower bounds for score
matching in Koehler et al. (2022) is augmenting the sufficient statistics with a function defined by a
bad cut. This gap means that we can hope to have good sample complexity for score matching even
in cases where sampling is hard—which we take advantage of in this work.

Learning exponential families: Despite the fact that exponential families are both classical and
ubiquitous, both in statistics and machine learning, there is relatively little understanding about the
computational-statistical tradeoffs to learn them from data, that is, what sample complexity can be
achieved with a computationally efficient algorithm. Ren et al. (2021) consider a version of the
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“interaction screening” estimator, a close relative of pseudolikelihood, but do not prove anything
about the statistical complexity of this estimator. Shah et al. (2021) consider a related estimator, and
analyze it under various low-rank and sparsity assumptions of reshapings of the sufficient statistics
into a tensor. Unfortunately, these assumptions are somewhat involved, and it’s unclear if they are
needed for designing computationally and statistically efficient algorithms.

Discrete exponential families (Ising models): Ising models have the form pJ(x) ∝
exp

(∑
i∼j Jijxixj +

∑
i Jixi

)
where ∼ denotes adjacency in some (unknown) graph, and Jij , Ji

denote the corresponding pairwise and singleton potentials. Bresler (2015) gave an efficient algorithm
for learning any Ising model over a graph with constant degree (and l∞-bounds on the coefficients);
see also the more recent work (Dagan et al., 2021). In contrast, it is a classic result (Arora and Barak,
2009) that approximating the partition function of members in this family is NP-hard.

Similarly, the exponential family we consider is such that it contains members for which sampling and
approximating their partition function is intractable (the main ingredient in the proof of Theorem 1.1).
Nevertheless, by Theorem 3, we can learn the parameters for members in this family computationally
efficiently, and with sample complexity comparable to the optimal one (achieved by maximum
likelihood). This also parallels other developments in Ising models (Bresler et al., 2014; Montanari,
2015), where it is known that restricting the type of learning algorithm (e.g., requiring it to work with
sufficient statistics only) can make a tractable problem become intractable.

The parallels can be drawn even on an algorithmic level: a follow up work to Bresler (2015) by
Vuffray et al. (2016) showed that similar results can be shown in the Ising model setting by using
the “screening estimator”, a close relative of the classical pseudolikelihood estimator (Besag, 1977)
which tries to learn a distribution by matching the conditional probability of singletons, and thereby
avoids having to evaluate a partition function. Since conditional probabilities of singletons capture
changes in a single coordinate, they can be viewed as a kind of “discrete gradient”—a further analogy
to score matching in the continuous setting.2

2 Preliminaries

We consider the following exponential family. Fix positive integers n, d,B ∈ N where d is odd.
Let h(x) = exp(−

∑n
i=1 x

d+1
i ), and let T (x) ∈ RM−1 be the vector of monomials in x1, . . . , xn

of degree at least 1 and at most d (so that M =
(
n+d
d

)
). Define Θ ⊆ RM−1 by Θ = {θ ∈ RM−1 :

∥θ∥∞ ≤ B}. For any θ ∈ Θ define pθ : Rn → [0,∞) by

pθ(x) :=
h(x) exp(⟨θ, T (x)⟩)

Zθ

where Zθ =
∫
Rn h(x) exp(⟨θ, T (x)⟩) dx is the normalizing constant. Then we consider the family

Pn,d,B := (pθ)θ∈ΘB
. Throughout, we will assume that B ≥ 1.

Polynomial notation: Let R[x1, . . . , xn]≤d denote the space of polynomials in x1, . . . , xn of
degree at most d. We can write any such polynomial f as f(x) =

∑
|d|≤d adxd where d denotes

a degree function d : [n] → N, and |d| =
∑n

i=1 d(i), and we write xd to denote
∏n

i=1 x
d(i)
i . Note

that every d with 1 ≤ |d| ≤ d corresponds to an index of T , i.e. T (x)d = xd.

Let ∥·∥mon denote the ℓ2 norm of a polynomial in the monomial basis; that is, ∥
∑

d adxd∥mon =(∑
d a2d

)1/2
. For any function f : Rn → R, let ∥f∥2L2([−1,1]n) = Ex∼Unif([−1,1]n)f(x)

2.

Statistical efficiency of MLE: For any θ ∈ RM−1, the Fisher information matrix of pθ with respect
to the sufficient statistics T (x) is defined as

I(θ) := Ex∼pθ
[T (x)T (x)⊤]− Ex∼pθ

[T (x)]Ex∼pθ
[T (x)]⊤.

It is well-known that for any exponential family with no affine dependencies among the sufficient
statistics (see e.g., Theorem 4.6 in Van der Vaart (2000)), it holds that for any θ∗ ∈ RM−1, given N

2In fact, ratio matching, proposed in Hyvärinen (2007) as a discrete analogue of score matching, relies on
exactly this intuition.
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independent samples x(1), . . . , x(N) ∼ pθ∗ , the estimator θ̂MLE = θ̂MLE(x
(1), . . . , x(N)) satisfies

√
N
(
θ̂MLE − θ∗

)
→ N (0, I(θ∗)−1).

Statistical efficiency of score matching: Our analysis of the statistical efficiency of score matching
is based on a result due to Koehler et al. (2022). We state a requisite definition followed by the result.
Definition 2.1 (Restricted Poincaré for exponential families). The restricted Poincaré constant of
p ∈ Pn,d,B is the smallest CP > 0 such that for all w ∈ RM−1, it holds that

Varp(⟨w, T (x)⟩) ≤ CPEx∼p ∥∇x⟨w, T (x)⟩∥22 .
Theorem 2.2 (Koehler et al. (2022)). Under certain regularity conditions (see Lemma B.4), for any
pθ∗ with restricted Poincaré constant CP and with λmin(I(θ∗)) > 0, given N independent samples
x(1), . . . , x(N) ∼ pθ∗ , the estimator θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies

√
N(θ̂SM − θ∗) → N (0,Γ)

where Γ satisfies

∥Γ∥op ≤
2C2

P (∥θ∗∥
2
2 Ex∼pθ∗ ∥(JT )(x)∥

4
op + Ex∼pθ∗ ∥∆T (x)∥22)

λmin(I(θ∗))2

where (JT )(x)i = ∇xTi(x) and ∆T (x) = Tr∇2
xT (x).

3 Hardness of Implementing Optimization Oracles for Pn,7,poly(n)

In this section we prove NP-hardness of implementing approximate zeroth-order and first-order opti-
mization oracles for maximum likelihood in the exponential family Pn,7,Cn2 log(n) (for a sufficiently
large constant C) as defined in Section 2; we also show that approximate sampling from this family
is NP-hard. See Theorems 3.4, 3.5, and A.5 respectively. All of the hardness results proceed by
reduction from 3-SAT and use the same construction.

The idea is that for any formula C on n variables, we can construct a non-negative polynomial FC
of degree at most 6 in variables x1, . . . , xn, which has roots exactly at the points of the hypercube
H := {−1, 1}n ⊆ Rn that correspond to satisfying assignments (under the bijection that xi = 1
corresponds to True and xi = −1 corresponds to False). Intuitively, the distribution with density
proportional to exp(−γFC(x)) will, for sufficiently large γ > 0, concentrate on the satisfying
assignments. It is then straightforward to see that sampling from this distribution or efficiently
computing either logZθ or ∇θ logZθ (where θ ∈ RM−1 is the parameter vector corresponding to
the polynomial −γFC(x)) would enable efficiently finding a satisfying assignment.

The remainder of this section makes the above intuition precise; important details include (1)
incorporating the base measure h(x) = exp(−

∑n
i=1 x

8
i ) into the density function, and (2) showing

that a polynomially-large temperature γ suffices.
Definition 3.1 (Clause/formula polynomials). Given a 3-clause formula of the form C = x̃i∨ x̃j ∨ x̃k

where x̃i = xi or x̃i = ¬xi, we construct a polynomial HC ∈ R[x1, . . . , xn]≤6 defined by

HC(x) = fi(xi)
2fj(xj)

2fk(xk)
2

where

fi(t) =

{
(t+ 1) if xi is negated in C

(t− 1) otherwise
.

For example, if C = x1 ∨ x2 ∨ ¬x3, then HC = (x1 − 1)2(x2 − 1)2(x3 + 1)2. Further, given a
3-SAT formula C = C1 ∧ · · · ∧ Cm on m clauses3, we define the polynomial

HC(x) = HC1
(x) + · · ·+HCm

(x).

It can be seen that any x ∈ H corresponds to a satisfying assignment for C if and only if HC(x) = 0.
Note that there are possibly points outside H which satisfy HC(x) = 0. To avoid these solutions, we
introduce another polynomial:

3It suffices to work with m = O(n), see Theorem A.1.
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Definition 3.2 (Hypercube polynomial). We define G : Rn → R by G(x) =
∑n

i=1(1− x2
i )

2.

Note that G(x) ≥ 0 for all x, and the roots of G(x) are precisely the vertices of H. Therefore for any
α, β > 0, the roots (in Rn) of the polynomial FC(x) = αHC(x) + βG(x) are precisely the vertices
of H that correspond to satisfying assignments for C.
Definition 3.3. Let C be a 3-CNF formula with n variables and m clauses. Let α, β > 0. Then we
define a distribution PC,α,β with density function

pC,α,β(x) :=
h(x) exp(−αHC(x)− βG(x))

ZC,α,β

where ZC,α,β =
∫
Rn h(x) exp(−αHC(x)− βG(x)) dx.

This distribution lies in the exponential family Pn,d,B , for d = 7 and B = Ω(β+mα) (Lemma A.2).
Thus, if θ(C, α, β) is the parameter vector that induces PC,α,β , then it suffices to show that (a)
approximating logZθ(C,α,β), (b) approximating ∇θ logZθ(C,α,β), and (c) sampling from PC,α,β are
NP-hard (under randomized reductions). We sketch the proofs below; details are in Appendix A.

Hardness of approximating logZC,α,β: In order to prove (a), we bound the mass of PC,α,β in
each orthant of Rn. In particular, we show that for α = Ω(n) and β = Ω(m logm), any orthant
corresponding to a satisfying assignment has exponentially larger contribution to ZC,α,β than any
orthant corresponding to an unsatisfying assignment. A consequence is that the partition function
ZC,α,β is exponentially larger when the formula C is satisfiable than when it isn’t (Lemma A.6).

But then approximating ZC,α,β allows distinguishing a satisfiable formula from an unsatisfiable
formula, which is NP-hard. This implies the following theorem (proof in Section A.2):
Theorem 3.4. Fix n ∈ N and let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP,
there is no poly(n)-time algorithm which takes as input an arbitrary θ ∈ ΘB and outputs an
approximation of logZθ with additive error less than n log 1.16.

Hardness of approximating ∇θ logZθ(C,α,β): Note that ∇θ logZθ = Ex∼pθ
[T (x)], so in par-

ticular approximating the gradient yields an approximation to the mean Ex∼pθ
[x]. Since PC,α,β is

concentrated in orthants corresponding to satisfying assignments of C, we would intuitively expect
that if C has exactly one satisfying assignment v∗, then sign(Epθ

[x]) corresponds to this assignment.
Formally, we show that if α = Θ(n) and β = Ω(mn logm), then Ex∼pC,α,β

[v∗i xi] ≥ 1/20 for all
i ∈ [n] (Lemma A.7).

Since solving a formula with a unique satisfying assignment is still NP-hard, we get the following
theorem (proof in Section A.3):
Theorem 3.5. Fix n ∈ N and let B ≥ Cn2 log(n) for a sufficiently large constant C. Unless
RP = NP, there is no poly(n)-time algorithm which takes as input an arbitrary θ ∈ ΘB and outputs
an approximation of ∇θ logZθ with additive error (in an l∞ sense) less than 1/20.

With the above two theorems in hand, we are ready to present the formal version of Theorem 1.1; the
proof is immediate from the definition of LMLE(θ) (see Section A.5).
Corollary 3.6. Fix n,N ∈ N and let B ≥ Cn2 log n for a sufficiently large constant C. Unless
RP = NP, there is no poly(n,N)-time algorithm which takes as input an arbitrary θ ∈ ΘB , and an
arbitrary sample x1, . . . , xN ∈ Rn, and outputs an approximation of LMLE(θ) up to additive error
of n log 1.16, or ∇θLMLE(θ) up to an additive error of 1/20.

Hardness of approximate sampling: We show that for α = Ω(n) and β = Ω(m logm), the
likelihood that x ∼ PC,α,β lies in an orthant corresponding to a satisfying assignment for C is at least
1/2 (Lemma A.4). Hardness of approximate sampling follows immediately (Theorem A.5). Hence,
although we show that score matching can efficiently estimate θ∗ from samples produced by nature,
knowing θ∗ isn’t enough to efficiently generate samples from the distribution.

4 Statistical Efficiency of Maximum Likelihood

In this section we prove Theorem 1.2 by showing that for any θ ∈ ΘB , we can lower bound the
smallest eigenvalue of the Fisher information matrix I(θ). Concretely, we show:
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Theorem 4.1. For any θ ∈ ΘB , it holds that

λmin(I(θ)) ≥ (nB)−O(d3).

As a corollary, given N samples from pθ, it holds as N → ∞ that
√
N(θ̂MLE − θ) → N(0,ΓMLE)

where ∥ΓMLE∥op ≤ (nB)O(d3). Moreover, for sufficiently large N , with probability at least 0.99 it

holds that
∥∥∥θ̂MLE − θ

∥∥∥2
2
≤ (nB)O(d3)/N .

Once we have the bound on λmin(I(θ)), the first corollary follows from standard bounds for MLE
(Section 2), and the second corollary follows from Markov’s inequality (see e.g., Remark 4 in
Koehler et al. (2022)). Lower-bounding λmin(I(θ)) itself requires lower-bounding the variance of
any polynomial (with respect to pθ) in terms of its coefficients. The proof consists of three parts.
First, we show that the norm of a polynomial in the monomial basis is upper-bounded in terms of its
L2 norm on [−1, 1]n:

Lemma 4.2. For f ∈ R[x1, . . . , xn]≤d, we have ∥f∥2mon ≤
(
n+d
d

)
(16e)d ∥f∥2L2([−1,1]n) .

The key idea behind this proof is to work with the basis of (tensorized) Legendre polynomials, which
is orthonormal with respect to the L2 norm. Once we write the polynomial with respect to this basis,
the L2 norm equals the Euclidean norm of the coefficients. Given this observation, all that remains is
to bound the coefficients after the change-of-basis. The complete proof is deferred to Appendix C.

Next, we show that if a polynomial f : Rn → R has small variance with respect to p, then there is
some box on which f has small variance with respect to the uniform distribution. This provides a
way of comparing the variance of f with its L2 norm (after an appropriate rescaling).

Lemma 4.3. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+8nBM . Then for any
f ∈ R[x1, . . . , xn]≤d, there is some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥ 1/(2(d+1)MRd(n+B))
such that

Varp(f) ≥
1

2e
VarŨ (f),

where Ũ is the uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ}.

In order to prove this result, we pick a random box of radius ϵ (within a large bounding box of
radius R). In expectation, the variance on this box (with respect to p) is not much less than Varp(f).
Moreover, for sufficiently small ϵ, the density function of p on this box has bounded fluctuations,
allowing comparison of Varp(f) and VarŨ (f). This argument is formalized in Appendix C.

Together, Lemma 4.2 and 4.3 allow us to lower bound the variance Varp(f) in terms of ∥f∥mon.

Lemma 4.4. Fix any θ ∈ ΘB and define p := pθ. Define R := 2d+8nBM . Then for any
f ∈ R[x1, . . . , xn]≤d with f(0) = 0, it holds that

Varp(f) ≥
1

22d(d+ 1)2d(16e)d+1M2d+3R2d2+2d(n+B)2d
∥f∥2mon .

See Appendix C for the proof.We are now ready to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. Fix θ ∈ ΘB . Pick any w ∈ RM and define f(x) = ⟨w, T (x)⟩. By definition
of I(θ), we have Varpθ

(f) = w⊤I(θ)w. Moreover, ∥f∥2mon = ∥w∥22. Thus, Lemma 4.4 gives
us that w⊤I(θ)w ≥ (nB)−O(d3) ∥w∥22, using that R = 2d+8nBM and M =

(
n+d
d

)
. The bound

λmin(I(θ)) ≥ (nB)−O(d3) follows.

5 Statistical Efficiency of Score Matching

In this section we prove Theorem 1.3. The main technical ingredient is a bound on the restricted
Poincaré constants of distributions in Pn,d,B . For any fixed θ ∈ ΘB , we showthat CP can be bounded
in terms of the condition number of the Fisher information matrix I(θ). We describe the building
blocks of the proof below.

7



Fix θ, w ∈ RM−1 and define f(x) := ⟨w, T (x)⟩. First, we need to upper bound Varpθ
(f). This

is where (the first half of) the condition number appears. Using the crucial fact that the restricted
Poincaré constant only considers functions f that are linear in the sufficient statistics, and the
definition of I(θ), we get the following bound on Varpθ

(f) in terms of the coefficient vector w. The
proof is deferred to Section D.

Lemma 5.1. Fix θ, w ∈ RM−1 and define f(x) := ⟨w, T (x)⟩. Then

∥w∥22 λmin(I(θ)) ≤ Varpθ
(f) ≤ ∥w∥22 λmax(I(θ)).

Next, we lower bound Ex∼pθ
∥∇xf(x)∥22. To do so, we could pick an orthonormal basis and bound

E⟨u,∇xf(x)⟩2 over all directions u in the basis; however, it is unclear how to choose this basis.
Instead, we pick u ∼ N (0, In) randomly, and use the following identity:

Ex∼pθ
[∥∇xf(x)∥22] = Ex∼pθ

Eu∼N(0,In)⟨u,∇xf(x)⟩2

For any fixed u, the function g(x) = ⟨u,∇xf(x)⟩ is also a polynomial. If this polynomial had no
constant coefficient, we could immediately lower bound E⟨u,∇xf(x)⟩2 in terms of the remaining
coefficients, as above. Of course, it may have a nonzero constant coefficient, but with some case-work
over the value of the constant, we can still prove the following bound:

Lemma 5.2. Fix θ, w̃ ∈ RM−1 and c ∈ R, and define g(x) := ⟨w̃, T (x)⟩+ c. Then

Ex∼pθ
[g(x)2] ≥

c2 + ∥w̃∥22
4 + 4 ∥E[T (x)]∥22

min(1, λmin(I(θ))).

Proof. We have

Ex∼pθ
[g(x)2] = Varpθ

(g) + Ex∼pθ
[g(x)]2

= Varpθ
(g − c) + (c+ w̃⊤Ex∼pθ

[T (x)])2

≥ ∥w̃∥22 λmin(I(θ)) + (c+ w̃⊤Ex∼pθ
[T (x)])2

where the inequality is by Lemma 5.1. We now distinguish two cases.

Case I. Suppose that |c+ w̃⊤Ex∼pθ
[T (x)]| ≥ c/2. Then

Ex∼pθ
[g(x)2] ≥ ∥w̃∥22 λmin(I(θ)) +

c2

4
≥

c2 + ∥w̃∥22
4

min(1, λmin(I(θ))).

Case II. Otherwise, we have |c+ w̃⊤Ex∼pθ
[T (x)]| < c/2. By the triangle inequality, it follows

that |w̃⊤Ex∼pθ
[T (x)]| ≥ c/2, so ∥w̃∥2 ≥ c/(2 ∥Ex∼pθ

[T (x)]∥2). Therefore

c2 + ∥w̃∥22 ≤ (1 + 4 ∥Ex∼pθ
[T (x)]∥22) ∥w̃∥

2
2 ,

from which we get that

Ex∼pθ
[g(x)2] ≥ ∥w̃∥22 λmin(I(θ)) ≥

c2 + ∥w̃∥22
1 + 4 ∥Ex∼pθ

[T (x)]∥22
λmin(I(θ))

as claimed.

With Lemma 5.1 and Lemma 5.2 in hand (taking g(x) = ⟨u,∇xf(x)⟩ in the latter), all that remains is
to relate the squared monomial norm of ⟨u,∇xf(x)⟩ (in expectation over u) to the squared monomial
norm of f . This crucially uses the choice u ∼ N(0, In). We put together the pieces in the following
lemma. The detailed proof is provided in Section D.

Lemma 5.3. Fix θ, w ∈ RM−1. Define f(x) := ⟨w, T (x)⟩. Then

Varpθ
(f) ≤ (4 + 4 ∥Ex∼pθ

[T (x)]∥22)
λmax(I(θ))

min(1, λmin(I(θ)))
Ex∼pθ

[∥∇xf(x)∥22].
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Finally, putting together Lemma 5.3, Theorem 4.1 (that lower bounds λmin(I(θ))), and Lemma B.2
(that upper bounds λmax(I(θ)) – a straightforward consequence of the distributions in Pn,d,B having
bounded moments), we can prove the following formal version of Theorem 1.3:

Theorem 5.4. Fix n, d,B,N ∈ N. Pick any θ∗ ∈ ΘB and let x(1), . . . , x(N) ∼ pθ∗ be independent
samples. Then as N → ∞, the score matching estimator θ̂SM = θ̂SM(x(1), . . . , x(N)) satisfies

√
N(θ̂SM − θ∗) → N(0,Γ)

where ∥Γ∥op ≤ (nB)O(d3). As a corollary, for all sufficiently large N it holds with probability at

least 0.99 that
∥∥∥θ̂SM − θ∗

∥∥∥2
2
≤ (nB)O(d3)/N .

Proof. We apply Theorem 2.2. By Lemma B.4 and the fact that λmin(I(θ
∗)) > 0 (Theorem 4.1), the

necessary regularity conditions are satisfied so that the score matching estimator is consistent and
asymptotically normal, with asymptotic covariance Γ satisfying

∥Γ∥op ≤
2C2

P (∥θ∥
2
2 Ex∼pθ∗ ∥(JT )(x)∥

4
op + Ex∼pθ∗ ∥∆T (x)∥22)

λmin(I(θ∗))2
(4)

where CP is the restricted Poincaré constant for pθ∗ with respect to linear functions in T (x) (see
Definition 2.1). By Lemma 5.3, we have

CP ≤ (4 + 4 ∥Ex∼pθ
[T (x)]∥22)

λmax(I(θ∗))
min(1, λmin(I(θ∗))

≤ (4 + 4B2dM2d+222d(d+6)+1)
B2dM2d+122d(d+6)+1

(nB)−O(d3)
≤ (nB)O(d3)

using parts (a) and (b) of Lemma B.2; Theorem 4.1; and the fact that M =
(
n+d
d

)
. Substituting into

(4) and bounding the remaining terms using Lemma B.3 and a second application of Theorem 4.1,
we conclude that ∥Γ∥op ≤ (nB)O(d3) as claimed. The high-probability bound now follows from
Markov’s inequality; see Remark 4 in Koehler et al. (2022) for details.

6 Conclusion

We have provided a concrete example of an exponential family—namely, exponentials of bounded
degree polynomials—where score matching is significantly more computationally efficient than
maximum likelihood estimation (through optimization with a zero- or first-order oracle), while still
achieving the same sample efficiency up to polynomial factors. While score matching was designed to
be more computationally efficient for exponential families, the determination of statistical complexity
is more challenging, and we give the first separation between these two methods for a general class
of functions.

As we have restricted our attention to the asymptotic behavior of both of the methods, an interesting
future direction is to see how the finite sample complexities differ. One could also give a more
fine-grained comparison between the polynomial dependencies of score matching and MLE, which
we have not attempted to optimize. Finally, it would be interesting to relate our results with similar
results and algorithms for learning Ising and higher-order spin glass models in the discrete setting,
and give a more unified treatment of psueudo-likelihood or score/ratio matching algorithms in these
different settings.
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A Omitted Proofs from Section 3

Theorem A.1 (Valiant and Vazirani (1985); Cook (1971)). Suppose that there is a randomized
poly(n)-time algorithm for the following problem: given a 3-CNF formula C with n variables and at
most 5n clauses, under the promise that C has at most one satisfying assignment, determine whether
C is satisfiable. Then, NP = RP.

Lemma A.2. In the setting of Definition 3.3, set d := 7 and B := 64mα+2β. Then pC,α,β ∈ Pn,d,B .

Proof. Since αHC(x) + βG(x) is a polynomial in x1, . . . , xn of degree at most 7, there is some
θ = θ(C, α, β) ∈ RM−1 such that ⟨θ, T (x)⟩+αHC(x)+βG(x) is a constant independent of x. Then
h(x) exp(−αHC(x) − βG(x)) is proportional to h(x) exp(⟨θ, T (x)⟩), so pC,α,β = pθ. Moreover,
for any clause Cj , every monomial of HCj

has coefficient at most 64 in absolute value, so every
monomial of HC has coefficient at most 64m. Similarly, every monomial of G has coefficient at most
2 in absolute value. Thus, ∥θ∥∞ ≤ 64mα+ 2β =: B, so pC,α,β ∈ Pn,d,B .

Given a point v ∈ H, let O(v) := {x ∈ Rn : xivi ≥ 0;∀i ∈ [n]} denote the octant containing v, and
let Br(v) := {x ∈ Rn : ∥x− v∥∞ ≤ r} denote the ball of radius r with respect to ℓ∞ norm.

Lemma A.3. Let p := pC,α,β and Z := ZC,α,β for some 3-CNF C with m clauses and n variables,
and some parameters α, β > 0. Let r ∈ (0, 1). If β ≥ 40r−2 log(4n/r), then for any v ∈ H that is
a satisfying assignment for C,

Pr
x∼p

(x ∈ Br(v)) ≥
e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.

For any w ∈ H that is not a satisfying assignment for C,

Pr
x∼p

(x ∈ O(w)) ≤ e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

.

Proof. We begin by lower bounding the probability over Br(v). Pick any clause Cℓ included in C.
We claim that HCℓ

(v′) ≤ 81r2 for all v′ ∈ Br(v). Indeed, say that Cℓ = x̃i ∨ x̃j ∨ x̃k. Since v
satisfies Cℓ, at least one of {fi(vi), fj(vj), fk(vk)} must be zero. Without loss of generality, say that
fi(vi) = 0; also observe that |fj(vj)|, |fk(vk)| ≤ 2. It follows that for any v′ ∈ Br(v), |fi(v′i)| ≤ r
and |fj(v′j)|, |fj(v′k)| ≤ 2 + r ≤ 3 (since r ≤ 1). Therefore, we have

HCℓ
(v′) ≤ r2 · (3)2 · (3)2 = 81r2.

Summing over all m possible clauses, we have HC(v
′) ≤ 81mr2 for all v′ ∈ Br(v). Hence,

Pr
x∼p

(x ∈ Br(v)) =
1

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≥ e−81mαr2

Z

∫
Br(v)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−81mαr2

Z

(∫ 1+r

1−r

exp(−x8 − β(1− x2)2) dx

)n

≥ e−81mαr2

Z

(
1 +

1

n

)−n(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

(5)

≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

where the second inequality (5) is by Lemma A.8. Next, we upper bound the probability over
O(w). Let Cℓ be any clause in C that is not satisfied by w. Say that Cℓ = x̃i ∨ x̃j ∨ x̃k.
Then |fi(wi)| = |fj(wj)| = |fk(wk)| = 2. Furthermore, for any w′ ∈ Od(w), we have
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|fi(w′
i)|, |fj(w′

j)|, |fk(w′
k)| ≥ 1, and hence HCℓ

(w′) ≥ 1. Since HC′(x) ≥ 0 for all x,C ′, we
conclude that HC(w

′) ≥ HCℓ
(w′) ≥ 1 for all w′ ∈ O(w). In particular, this gives us

Pr
x∼p

(x ∈ O(w)) =
1

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − αHC(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(w)

exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

as claimed.

A.1 Hardness of approximate sampling

Lemma A.4. Let C be a satisfiable instance of 3-SAT with m clauses and n variables. Let α, β > 0
satisfy α ≥ 2(n+ 1) and β ≥ 6480m log(13n

√
m). Set p := pC,α,β and Z := ZC,α,β . If V ⊆ H is

the set of satisfiable assignments for C, then∑
v∈V

Pr
x∼p

(x ∈ O(v)) ≥ 1

2
.

Proof. Let v ∈ H be any assignment that satisfies C, and let w ∈ H be any assignment that does not
satisfy C. By Lemma A.3 with r = 1/

√
162m, we have

Pr
x∼pC

(x ∈ O(v)) ≥ Pr
x∼pC

(x ∈ Br(v))

≥ e−1−α/2

Z

(∫ ∞

0

exp(−x8 − β(1− x2)2) dx

)n

≥ e−1+α/2 Pr(x ∈ O(w)).

Since we chose α sufficiently large that e−1+α/2 ≥ 2n, we get that

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)).

Hence, ∑
v∈V

Pr
x∼pC

(x ∈ O(v)) ≥
∑

w∈H\V

Pr
x∼pC

(x ∈ O(w)) = 1−
∑
v∈V

Pr
x∼pC

(x ∈ O(v)).

The lemma statement follows.

Theorem A.5. Let B ≥ Cn2 for a sufficiently large constant C. Unless RP = NP, there is no
algorithm which takes as input an arbitrary θ ∈ ΘB and outputs a sample from a distribution Q with
TV(Pθ, Q) ≤ 1/3 in poly(n) time.

Proof. Suppose that such an algorithm exists. For each n ∈ N define α = 2(n + 1) and β =

32400n log(13n
√
5n). Given a 3-CNF formula C with n variables and at most 5n clauses, we can

compute θ = θ(C, α, β). By Lemma A.2 we have θ ∈ ΘB so long as B ≥ Cn2 for a sufficiently
large constant C. Thus, by assumption we can generate a a sample from a distribution Q with
TV(PC,α,β , Q) ≤ 1/3. But by Lemma A.4, we have Prx∼PC,α,β

[sign(x) satisfies C] ≥ 1/2. Thus,
Prx∼Q[sign(x) satisfies C] ≥ 1/6. It follows that we can find a satisfying assignment with O(1)
invocations of the sampling algorithm in expectation. By Theorem A.1 we get NP = RP.
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A.2 Hardness of approximating zeroth-order oracle

Lemma A.6. Fix n,m ∈ N and let α ≥ 2(n+1) and β ≥ 6480m log(13n
√
m). There is a constant

A = A(n,m,α, β) so that the following hold for every 3-CNF formula C with n variables and m
clauses:

• If C is unsatisfiable, then ZC,α,β ≤ A

• If C is satisfiable, then ZC,α,β ≥ (e/2)nA.

Proof. If C is unsatisfiable, then by the second part of Lemma A.3, we have

Z = Z
∑
w∈H

Pr
x∼p

(x ∈ O(w)) ≤ 2ne−α

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Aunsat.

On the other hand, if C is satisfiable, then by the first part of Lemma A.3 with r = 1/
√
162m,

Z ≥ Z Pr
x∼p

(x ∈ Br(v)) ≥ e−1−α/2

(∫ ∞

0

exp(−xd+1 − β(1− x2)2) dx

)n

=: Asat.

Since α ≥ 2(n+ 1), we get
Aunsat ≤ (2/e)nAsat

as claimed.

Proof of Theorem 3.4. First, observe that the following problem is NP-hard (under randomized
reductions): given two 3-CNF formulas C, C′ each with n variables and at most 10n clauses, where
it is promised that exactly one of the formulas is satisfiable, determine which of the formulas is
satisfiable. Indeed, this follows from Theorem A.1: given a 3-CNF formula C with n variables, at
most 5n clauses, and at most one satisfying assignment, consider adjoining either the clause xi or the
clause ¬xi to C. If C has a satisfying assignment v∗, then exactly one of the resulting formulas is
satisfiable, and determining which one is satisfiable identifies v∗i . Repeating this procedure for all
i ∈ [n] yields an assignment v, which satisfies C if and only if C is satisfiable.

For each n ∈ N define α = 2(n+ 1) and β = 64800n log(13n
√
10n). Let B > 0 be chosen later.

Suppose that there is a poly(n)-time algorithm which, given θ ∈ ΘB , computes an approximation of
logZθ with additive error less than n log 1.16. Then given two formulas C and C′ with n variables
and at most 10n clauses each, we can compute θ = θ(C, α, β) and θ′ = θ(C′, α, β). By Lemma A.2,
we have θ, θ′ ∈ ΘB so long as B ≥ Cn2 for a sufficiently large constant C. Hence by assumption
we can compute approximations Z̃θ and Z̃θ′ of Zθ and Zθ′ respectively, with multiplicative error less
than 1.16n. However, by Lemma A.6 and the assumption that exactly one of C and C′ is satisfiable,
we know that Z̃θ > Z̃θ′ if and only if C is satisfiable. Thus, NP = RP.

A.3 Hardness of approximating first-order oracle

Lemma A.7. Let C be a 3-CNF formula with m clauses and n variables, and exactly one satisfying
assignment v∗ ∈ H. Let α = 4n and β ≥ 25920mn log(102n

√
mn), and define p := pC,α,β and

Z := ZC,α,β . Then Ex∼p[v
∗
i xi] ≥ 1/20 for all i ∈ [n].

Proof. Without loss of generality take i = 1 and v∗i = 1. Set r = 1/(
√
648mn), α = 4n, and

β ≥ 40r−2 log(4n/r). We want to show that Ex∼p[x1] ≥ 1/20. We can write

E[x1] = E[x11[x ∈ Br(v
∗)]] + E[x11[x ∈ O(v∗) \Br(v

∗)]] +
∑

v∈H\{v∗}

E[x11[x ∈ O(v)]]

≥ (1− r) Pr[x ∈ Br(v
∗)]− 2n max

v∈H\{v∗}
E[|x1|1[x ∈ O(v)]] (6)

since x1 ≥ 1− r for x ∈ Br(v
∗) and x1 ≥ 0 for x ∈ O(v∗). Now observe that on the one hand,

Pr(x ∈ Br(v
∗)) ≥ e−1−81mαr2

Z

(∫ ∞

0

exp(−x∗ − βg(x)) dx

)n

(7)
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by Lemma A.3. On the other hand, for any v ∈ H \ {v∗},

E[|x1|1[x ∈ O(v)]] =
1

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

≤ e−α

Z

∫
O(v)

|x1| exp

(
−

n∑
i=1

x8
i − βG(x)

)
dx

=
e−α

Z

(∫ ∞

0

x exp(−x8 − βg(x)) dx

)(∫ ∞

0

exp(−x8 − βg(x)) dx

)n−1

≤ 2e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

(8)

where the second inequality is by Lemma A.9 with k = 1. Combining (7) and (8) with (6), we have

E[x1] ≥
(1− r)e−1−81mαr2 − 2n+1e−α

Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

(∫ ∞

0

exp(−x8 − βg(x)) dx

)n

≥ 1

10Z

∫
O(v∗)

exp

(
−

n∑
i=1

x8
i − αH(x)− βG(x)

)
dx

=
1

10
Pr[x ∈ O(v∗)]

≥ 1

20

where the second inequality is by choice of α and r; the third inequality is by nonnegativity of H(x);
and the fourth inequality is by Lemma A.4 and uniqueness of the satisfying assignment v∗.

Proof of Theorem 3.5. Suppose that such an algorithm exists. Set α = 4n and β =
129600n2 log(102n2

√
5). Given a 3-CNF formula C with n variables, at most 5n clauses, and

exactly one satisfying assignment v∗ ∈ H, we can compute θ = θ(C, α, β). Let E ∈ Rn be the
algorithm’s estimate of ∇θ logZθ = Ex∼pC,α,β

T (x). Then
∥∥E − Ex∼pC,α,β

T (x)
∥∥
∞ < 1/20. But

by Lemma A.7, for each i ∈ [n], the i-th entry of Ex∼pC,α,β
T (x), which corresponds to the monomial

xi, has sign v∗i and magnitude at least 1/20. Thus, sign(Ei) = v∗i . So we can compute v∗ in
polynomial time. By Theorem A.1, it follows that NP = RP.

A.4 Integral bounds

Lemma A.8. Fix β > 150 and γ ∈ [0, 1]. Define f : R → R by f(x) = γx8 + β(1 − x2)2. Pick
any r ∈ (6/β, 0.04). Then∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr2/8)
+

2 exp(−βr/40)

r

)∫ 1+r

1−r

exp(−f(x)) dx.

In particular, for any m ∈ N, if β ≥ 40r−2 log(4m/r), then∫ ∞

0

exp(−f(x)) dx ≤
(
1 +

1

m

)∫ 1+r

1−r

exp(−f(x)) dx.

Proof. Set a = 1/
√
2. For any x ∈ [a,∞) we have f ′′(x) = 56γx6 − 4β + 12βx2 ≥ β > 0

for β > 150. Thus, f has at most one critical point in [a,∞); call this point t0. Since f ′(x) =
8γx7−4βx(1−x2), we have f ′(1) = 8γ ≥ 0 and f ′(1−3/β) ≤ 8−4β(1−3/β)(3/β)(2−3/β) < 0.
Thus, t0 ∈ (1− 3/β, 1]. Set r′ = r − 3/β ≥ r/2. Then∫ 1+r

1−r

exp(−f(x)) dx ≥
∫ t0+r′

t0−r′
exp(−f(x)) dx.

14



For every t ∈ R define I(t) =
∫ t+r′

t
exp(−f(x)) dx. Since f is β-strongly convex on [a,∞), we

have for any t ≥ t0 that

f(t+ r′)− f(t) ≥ r′f ′(t) +
r′2

2
β ≥ r′2

2
β

where the final inequality is because f ′(t) ≥ 0 for t ∈ [t0,∞). Thus, for any t ≥ t0,

I(t+ r′) =

∫ t+2r′

t+r′
exp(−f(x)) dx =

∫ t+r

t

exp(−f(x+ r′)) dx ≤ exp(−βr′2/2)I(t).

By induction, for any k ∈ N it holds that I(t0 + kr′) ≤ exp(−βkr′2/2)I(t0), so∫ ∞

t0

exp(−f(x)) dx =

∞∑
k=0

I(t0 + kr′) ≤ I(t0)

∞∑
k=0

exp(−βkr′2/2) =
I(t0)

1− exp(−βr′2/2)
. (9)

Similarly, for any t ∈ [a+ r′, t0], we have

f(t− r′)− f(t) ≥ −r′f ′(t) +
r′2

2
β ≥ r′2

2
β

using β-strong convexity on [a,∞) and the bound f ′(t) ≤ 0 on [a, t0]. Thus, for any t ∈ [a, t0 − r′],

I(t− r′) =

∫ t

t−r′
exp(−f(x)) dx =

∫ t+r′

t

exp(−f(x− r′)) dx ≤ exp(−βr′2/2)I(t),

so by induction, I(t0−kr′) ≤ exp(−β(k−1)r′2/2)I(t0−r′) for any 1 ≤ k ≤ K := ⌊(t0−a)/r′⌋.
It follows that∫ t0

t0−Kr′
exp(−f(x)) dx =

K∑
k=1

I(t0−kr′) ≤ I(t0−r′)

K∑
k=1

exp(−β(k−1)r′2/2) ≤ I(t0 − r′)

1− exp(−βr′2/2)
.

(10)
Finally, note that t0 − (K − 1)r′ ≤ a + 2r′ ≤ 0.8. For any x ∈ [0, 0.8], we have f ′(x) ≤ 8x7 −
0.72βx = x(8x6 − 1.44β) ≤ 0, since β > 150. That is, f is non-increasing on [0, t0 − (K − 1)r′].
It follows that ∫ t0−Kr′

0

exp(−f(x)) dx ≤ t0 −Kr′

r′

∫ t0−(K−1)r′

t0−Kr′
exp(−f(x)) dx

≤ 1

r′
I(t0 −Kr′)

≤ exp(−β(K − 1)r′2/2)

r′
I(t0 − r′).

Since (K − 1)r′ ≥ t0 − 0.8 ≥ 1− 3
β − 0.8 ≥ 0.1, we conclude that∫ t0−Kr′

0

exp(−f(x)) dx ≤ exp(−βr′/20)

r′
I(t0 − r′). (11)

Combining (9), (10), and (11), we get∫ ∞

0

exp(−f(x)) dx ≤
(

1

1− exp(−βr′2/2)
+

exp(−βr′/20)

r′

)∫ t0+r′

t0−r′
exp(−f(x)) dx.

Substituting in r′ ≥ r/2 gives the claimed result.

Lemma A.9. Fix β ≥ 160 log(8). Then for any 1 ≤ k ≤ 8,∫ ∞

0

xk exp(−x8 − β(1− x2)2) dx ≤ 2k
∫ ∞

0

exp(−x8 − β(1− x2)2) dx.

15



Proof. Define a distribution q(x) ∝ exp(−x8 − β(1− x2)2) for x ∈ [0,∞). We want to show that
Eq[x

k] ≤ 2k. Indeed,

Eq[exp(x
8)] =

∫∞
0

exp(−β(1− x2)2) dx∫∞
0

exp(−x8 − β(1− x2)2) dx

≤
2
∫ 3/2

1/2
exp(−β(1− x2)2) dx∫∞

0
exp(−x8 − β(1− x2)2) dx

= 2Eq[exp(x
8)1[1/2 ≤ x ≤ 3/2]]

≤ 2 exp((3/2)8)

where the first inequality is by an application of Lemma A.8 with r = 1/2 and m = 1. Now by
Jensen’s inequality we get

Eq[x
8] ≤ logEq[exp(x

8)] = log(2) + (3/2)8 ≤ 28

and consequently, an application of Hölder inequality gives us Eq[x
k] ≤ 2k, for any 1 ≤ k ≤ 8.

A.5 Proof of Corollary 3.6

Proof of Corollary 3.6. Recall that log pθ(x) = log h(x) + ⟨θ, T (x)⟩ − logZθ. Therefore
LMLE(θ) = Ê log h(x) + ⟨θ, ÊT (x)⟩ − logZθ and ∇θLMLE(θ) = ÊT (x) − ∇θ logZθ. Note
that we can compute Ê log h(x) and ÊT (x) exactly. It follows that if we can approximate LMLE(θ)
up to an additive error of n log 1.16 , then we can compute logZθ up to an additive error of n log 1.16.
Similarly, if we can compute ∇θLMLE(θ) up to an additive error of 1/20, then we can compute
∇θ logZθ up to an additive error of 1/20. This contradicts Theorems 3.4 and 3.5 respectively,
completing the proof.

B Moment bounds

Lemma B.1 (Moment bound). For any θ ∈ ΘB , i ∈ [n], and ℓ ∈ N it holds that

Ex∼pθ
xℓ
i ≤ 32ℓ max(2ℓℓ, BℓM ℓ2ℓ(d+1)+1).

Proof. Without loss of generality assume i = 1. Let L0 := 32max(ℓ, BM2d+1). Then

Ex∼pθ
xℓ
1 ≤ Lℓ

0 + Ex∼pθ
xℓ
11[∥x∥∞ > L0]

= Lℓ
0 +

∞∑
k=0

Ex∼pθ

[
xℓ
11[2

kL0 < ∥x∥∞ ≤ 2k+1L0]
]

Now for any L ≥ L0,

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
=

1

Zθ

∫
B2L(0)\BL(0)

xℓ
1 exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≤ (2L)n

Zθ
(2L)ℓ exp

(
−Ld+1 +BM(2L)d

)
≤ (2L)n+ℓ exp(−Ld+1/2)

Zθ
.

We can lower bound Zθ as

Zθ ≥
∫
B1/(BM)(0)

exp

(
−

n∑
i=1

xd+1
i + ⟨θ, T (x)⟩

)
dx

≥ (BM)−n exp(−n(BM)−d−1 −BM(BM)−1)

≥ e−2(BM)−n.
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Thus,

E
[
xℓ
11[L < ∥x∥∞ ≤ 2L]

]
≤ exp

(
(n+ ℓ) log(2L)− 1

2
Ld+1 + 2 + n log(BM)

)
≤ exp

(
−1

4
Ld+1

)
where the last inequality uses the facts that L ≥ L0, B ≥ 1, and M ≥ n to get

(n+ ℓ) log(2L) + 2 + n log(BM) ≤ 2max(n, ℓ) · L+
L2

16
+

L2

16
≤ 3L2

16
≤ Ld+1

4
.

We conclude that

Ex∼pθ
xℓ
1 ≤ Lℓ

0 +

∞∑
k=0

exp

(
−1

4
2k(d+1)Ld+1

0

)
≤ Lℓ

0 + 1 ≤ 2Lℓ
0

which completes the proof.

Lemma B.2 (Largest eigenvalue bound). For any θ ∈ ΘB , it holds that

Ex∼pθ
T (x)T (x)⊤ ⪯ B2dM2d+122d(d+6)+1.

We also have the following consequences:

(a) ∥Ex∼pθ
T (x)∥22 ≤ B2dM2d+222d(d+6)+1,

(b) λmax(I(θ)) ≤ B2dM2d+122d(d+6)+1,

(c) Prx∼pθ
[∥x∥∞ > 2d+8nBM ] ≤ 1/2.

Proof. Fix any u, v ∈ [M ]. Then T (x)uT (x)v =
∏n

i=1 x
γi

i for some nonnegative integers γ1, . . . , γn
where d′ :=

∑n
i=1 γi ≤ 2d. Therefore

Ex∼pθ
T (x)uT (x)v = Ex∼pθ

n∏
i=1

xγi

i ≤
n∏

i=1

(
Ex∼pθ

xd′

i

)γi/d
′

≤ 322dB2dM2d22d(d+1)+1

by Holder’s inequality and Lemma B.1 (with ℓ = 2d). The claimed spectral bound follows. To prove
(a), observe that

∥Ex∼pθ
T (x)∥22 ≤ Ex∼pθ

∥T (x)∥22 = TrEx∼pθ
T (x)T (x)⊤ ≤ Mλmax(Ex∼pθ

T (x)T (x)⊤)

To prove (b), observe that I(θ) ⪯ Ex∼pθ
T (x)T (x)⊤. To prove (c), observe that for any i ∈ [n],

Pr
x∼pθ

[|xi| > 2d+8nBM ] ≤ Ex∼pθ
x2d
i

(2d+8nBM)2d
≤ 1

2n
.

A union bound over i ∈ [n] completes the proof.

Lemma B.3 (Smoothness bounds). For every θ ∈ ΘB , it holds that

Ex∼pθ
∥∆T (x)∥22 :=

M∑
j=1

Ex∼pθ
(∆Tj(x))

2 ≤ n2d4B4dM4d+324d(d+6)+2

and
Ex∼pθ

∥(JT )(x)∥2op ≤ n2d4B4dM4d+224d(d+6)+2.

Proof. Fix any j ∈ [M ]; then there is a degree function d with 1 ≤ |d| ≤ d so that Tj(x) = xd =∏n
i=1 x

d(i)
i . Therefore

∆Tj(x) =
∑

k∈[n]:d(k)≥2

d(k)(d(k)− 1)xd−2{k} =: ⟨w, T (x)⟩

17



for some w ∈ RM with ∥w∥22 =
∑

k∈[n]:d(k)≥2 d(k)
2(d(k) − 1)2 ≤ d4. By Corollary B.2, we

conclude that
Ex∼pθ

(∆Tj(x))
2 = Ex∼pθ

⟨w, T (x)⟩2 ≤ n2d4B4dM4d+224d(d+6)+1.

Summing over j ∈ [M ] gives the first claimed bound. For the second bound, observe that

Ex∼pθ
∥(JT )(x)∥4op ≤ Ex∼pθ

∥(JT )(x)∥4F = Ex∼pθ

 M∑
j=1

n∑
i=1

(
∂

∂xi
Tj(x)

)2
2

.

For any j ∈ [M ] and i ∈ [n], there is some degree function d with |d| ≤ d and ∂
∂xi

Tj(x) =

|d| · xd−{i}. Thus, by Holder’s inequality and Lemma B.1 (with ℓ = 4d), we get

Ex∼pθ

 M∑
j=1

n∑
i=1

(
∂

∂xi
Tj(x)

)2
2

=
∑

j,j′∈[M ]

∑
i,i′∈[n]

Ex∼pθ

(
∂

∂xi
Tj(x)

)2(
∂

∂xi′
Tj′(x)

)2

≤ M2n2d4B4dM4d24d(d+6)+2

which proves the second bound.

The following regularity conditions are sufficient for consistency and asymptotic normality of
score matching, assuming that the restricted Poincaré constant is finite and λmin(I(θ∗)) > 0 (see
Proposition 2 in Forbes and Lauritzen (2015) together with Lemma 1 in Koehler et al. (2022)). We
show that these conditions hold for our chosen exponential family.

Lemma B.4 (Regularity conditions). For any θ ∈ RM , the quantities Ex∼pθ
∥∇h(x)∥42,

Ex∼pθ
∥∆T (x)∥22, and Ex∼pθ

∥(JT )(x)∥4op are all finite. Moreover, pθ(x) → 0 and ∥∇xpθ(x)∥2 →
0 as ∥x∥2 → ∞.

Proof. Both of the quantities ∥∇h(x)∥42 and ∥∆T (x)∥22 can be written as a polynomial in x. Finite-
ness of the expectation under pθ follows from Holder’s inequality and Lemma B.1 (with parameter B
set to ∥θ∥∞). Finiteness of Ex∼pθ

∥(JT )(x)∥4op is shown in Lemma B.3 (again, with B := ∥θ∥∞).
The decay condition pθ(x) → 0 holds because log pθ(x) + logZθ = −

∑n
i=1 x

d+1
i + ⟨θ, T (x)⟩. For

x ∈ Rn with L ≤ ∥x∥∞ ≤ 2L, the RHS is at most −Ld+1 +M ∥θ∥∞ (2L)d, which goes to −∞ as
L → ∞. A similar bound shows that ∥∇xpθ(x)∥2 → 0.

C Omitted Proofs from Section 4

Proof of Lemma 4.2. We use the fact that the Legendre polynomials

Lk(x) =
1

2k

k∑
j=0

(
k

j

)2

(x− 1)k−j(x+ 1)j ,

for integers 0 ≤ k ≤ d, form an orthogonal basis for the vector space R[x]≤d with respect to

L2[−1, 1] (see e.g. Koepf (1998)). We consider the normalized versions L̂k =
√

2k+1
2 Lk, so that∥∥∥L̂k

∥∥∥
L2[−1,1]

= 1. By tensorization, the set of products of Legendre polynomials

L̂d(x) =

n∏
i=1

L̂d(i)(xi),

as d ranges over degree functions with |d| ≤ d, form an orthonormal basis for R[x1, . . . , xn]≤d with
respect to L2([−1, 1]n).

Using the formula for Lk, we obtain that the sum of absolute values of coefficients of Lk (in the
monomial basis) is at most 1

2k

∑k
j=0

(
k
j

)2
2k ≤ 22k. By the bound ∥·∥2 ≤ ∥·∥1 and the definition of

L̂k, ∥∥∥L̂k

∥∥∥2
mon

≤ 2k + 1

2
∥Lk∥2mon ≤ 2k + 1

2
24k
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and hence for any degree function d with |d| ≤ d,∥∥∥L̂d

∥∥∥2
mon

=

n∏
i=1

∥∥∥L̂d(i)

∥∥∥2
mon

≤
n∏

i=1

2d(i) + 1

2
24d(i)

≤
n∏

i=1

ed(i)24d(i) ≤ (16e)d.

Consider any polynomial f ∈ R[x1, . . . , xn]≤d, and write f =
∑

|d|≤d adL̂d. By orthonormality, it

holds that
∑

|d|≤d a
2
d = ∥f∥2L2([−1,1]n). Thus, by the triangle inequality and Cauchy-Schwarz,

∥p∥2mon =

∥∥∥∥∥∥
∑
|d|≤d

adL̂d

∥∥∥∥∥∥
2

mon

≤
∑
|d|≤d

a2d ·
∑
|d|≤d

∥∥∥L̂d

∥∥∥2
mon

≤ ∥p∥2L2([−1,1]n)

(
n+ d

d

)
(16e)d

as claimed.

Proof of Lemma 4.3. Let f ∈ R[x1, . . . , xn]≤d be a polynomial of degree at most d in x1, . . . , xn.
Define g(x) = f(x)− Ex∼pf(x). Set ϵ = 1/(2(d+ 1)MRd(n+B)) and let (Wi)i∈I be ℓ∞-balls
of radius ϵ partitioning {x ∈ Rn : ∥x∥∞ ≤ R}. Define random variable X ∼ p|{∥X∥∞ ≤ R} and
let ι ∈ I be the random index so that X ∈ Wι. Then

Varp(f) = Ex∼p[g(x)
2]

≥ 1

2
E[g(X)2]

=
1

2
EιEX [g(X)2|X ∈ Wι]

where the inequality uses guarantee (c) of Lemma B.2 that Prx∼p[∥x∥∞ > R] ≤ 1/2.

Thus, there exists some ι∗ ∈ I such that EX [g(X)2|X ∈ Wι∗ ] ≤ 2Varp(f). Let q : Rn → R+ be
the density function of X|X ∈ Wι∗ . Since q(x) ∝ p(x)1[x ∈ Wι∗ ], for any u, v ∈ Wι∗ we have that

q(u)

q(v)
=

p(u)

p(v)
=

h(u) exp(⟨θ, T (u)⟩)
h(v) exp(⟨θ, T (v)⟩)

= exp

(
n∑

i=1

vd+1
i − ud+1

i + ⟨θ, T (u)− T (v)⟩

)
.

Applying Lemma C.1, we get that

q(u)

q(v)
≤ exp

(
n(d+ 1)Rd ∥u− v∥∞ +MB ∥T (u)− T (v)∥∞

)
≤ exp

(
(n+B) ·M(d+ 1)Rd ∥u− v∥∞

)
≤ exp(2ϵ(n+B) ·M(d+ 1)Rd)

≤ exp(1)

by choice of ϵ. It follows that if Ũ is the uniform distribution on Wι∗ , then q(x) ≥ e−1Ũ(x) for all
x ∈ Rn. Thus,

Varp(f) ≥
1

2
EX [g(X)2|X ∈ Wι∗ ] ≥

1

2e
Ex∼Ũ [g(x)

2] ≥ 1

2e
VarŨ (g) =

1

2e
VarŨ (f)

as desired.

Lemma C.1. Fix R > 0. For any degree function d : [n] → N with |d| ≤ d, and for any u, v ∈ Rn

with ∥u∥∞ , ∥v∥∞ ≤ R, it holds that

|ud − vd| ≤ dRd−1 ∥u− v∥∞ .
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Proof. Define m(x) = xd =
∏n

i=1 x
d(i)
i . Then

|m(u)−m(v)| ≤ ∥u− v∥∞ sup
x∈BR(0)

∥∇xm(x)∥1

= ∥u− v∥∞ sup
x∈BR(0)

∑
i∈[n]:d(i)>0

d(i)

n∏
j=1

x
d(i)−1[i=j]
i

≤ ∥u− v∥∞ · dRd−1

as claimed.

Proof of Lemma 4.4. By Lemma 4.3, there is some z ∈ Rn with ∥z∥∞ ≤ R and some ϵ ≥
1/(2(d + 1)MRd(n + B)) so that if Ũ is the uniform distribution on {x ∈ Rn : ∥x− z∥∞ ≤ ϵ},
then

Varp(f) ≥
1

2e
VarŨ (f).

Define g : Rn → R by g(x) = f(ϵx+ z)− EŨf . Then by Lemma 4.2,

∥g∥2mon ≤ (16e)dMEx∼Unif([−1,1]n)g(x)
2.

= (16e)dM VarŨ (f)

≤ (16e)d+1M Varp(f).

Write f(x) =
∑

1≤|d|≤d αdxd and g(x) =
∑

1≤|d|≤d βdxd. We know that f(x) = g(ϵ−1(x−z))+

EŨf . Thus, for any nonzero degree function d, we have

αd =
∑
d′≥d
|d′|≤d

ϵ−|d′|(−z)d
′−dβd′ .

Thus |αd| ≤ ϵ−dRd ∥β∥1 ≤ ϵ−dRd
√
M ∥g∥mon, and so summing over monomials gives

∥f∥2mon ≤ M2ϵ−2dR2d ∥g∥2mon ≤ (16e)d+1M3ϵ−2dR2d Varp(f).

Substituting in the choice of ϵ from Lemma 4.3 completes the proof.

D Omitted Proofs from Section 5

Proof of Lemma 5.1. We have

Varpθ
(f) = Ex∼pθ

[f(x)2]− Ex∼pθ
[f(x)]2

= w⊤Ex∼pθ
[T (x)T (x)⊤]w − w⊤Ex∼pθ

[T (x)]Ex∼pθ
[T (x)]⊤w

= w⊤I(θ)w,
and since

∥w∥22 λmin(I(θ)) ≤ w⊤I(θ)w ≤ ∥w∥22 λmax(I(θ),
the lemma statement follows.

Proof of Lemma 5.3. Since f(x) =
∑

1≤|d|≤d wdxd, we have for any u ∈ Rn that

⟨u,∇xf(x)⟩ =
n∑

i=1

ui

∑
0≤|d|<d

(1 + d(i))wd+{i}xd = c(u) +
∑

1≤|d|<d

w̃(u)dxd

where c(u) :=
∑n

i=1 uiw{i} and w̃(u)d :=
∑n

i=1 ui(1 + d(i))wd+{i}. But now

Ex∼pθ
[∥∇xf(x)∥22] = Ex∼pθ

Eu∼N(0,In)⟨u,∇xf(x)⟩2

= Eu∼N(0,In)Ex∼pθ
(c(u) + ⟨w̃(u), T (x)⟩)2

≥ Eu∼N(0,In)
c(u)2 + ∥w̃(u)∥22

4 + 4 ∥Ex∼pθ
[T (x)]∥22

min(1, λmin(I(θ))).
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where the last inequality is by Lemma 5.2. Finally,

Eu∼N(0,In)

[
c(u)2 + ∥w̃(u)∥22

]
=

∑
0≤|d|<d

Eu∼N(0,In)

( n∑
i=1

ui(1 + d(i))wd+{i}

)2


=
∑

0≤|d|<d

n∑
i=1

(1 + d(i))2w2
d+{i} ≥ ∥w∥22

where the second equality is because E[uiuj ] = 1[i = j] for all i, j ∈ [n], and the last inequality is
because every term w2

d in ∥w∥22 appears in at least one of the terms of the previous summation (and
has coefficient at least one). Putting everything together gives

Ex∼pθ
[∥∇xf(x)∥22] ≥

∥w∥22
4 + 4 ∥Ex∼pθ

[T (x)]∥22
min(1, λmin(I(θ)))

≥ 1

4 + 4 ∥E[T (x)]∥22

min(1, λmin(I(θ)))
λmax(I(θ))

Varpθ
(f)

where the last inequality is by Lemma 5.1.
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