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A Preliminary Designs for KD-GPT.

Large-scale language model like GPT has a strong ability to generate code text and encode knowledge
information. As demonstrated in Algorithm 1, we present a preliminary design of KD-GPT, a GPT-
guided distiller research search framework to leverage the capabilities of large-scale language models
to accelerate the knowledge distillation search process and discover better distillers. Based on the
original KD-Zero research search process, GPT can be used to identify potential variant candidates
with its encoding of practical laws corresponding to good distillers. Furthermore, the KD-GPT
method enables the automatic generation of complete distiller codes based on user-provided options.
This innovative approach builds upon the original KD-Zero research search process, integrating GPT
models to enhance the efficiency and accuracy of knowledge distillation. By exploiting the code
generation and knowledge encoding potential of GPT, KD-GPT paves the way for more effective and
streamlined distillation processes, ultimately improving the performance of machine learning models.

Algorithm 1 Evolution Search for KD-GPT
Input: Search space S, population P , max iteration T , sample ratio r, sampled pool R, topk k.
Output: Distiller with highest score.
1: P0 := Initialize population(Pi);
2: Sample pool R := ∅;
3: for i = 1, 2, . . . , T do
4: Clear sample pool R := ∅;
5: Randomly select R ∈ P;
6: Candidates Gik := GetTopk(R, k);
7: Parent Gp

i := RandomSelect(Gik);
8: Mutate Gm

i := MUTATE(Gp
i );

9: // GPT-Guided Selection.
10: Randomly initialize E;
11: if ρ(Gm

i ) > ρ(E) then
12: Append Gm

i to P ;
13: else
14: Append E to P ;
15: end if
16: Remove the distiller with the lowest score.
17: end for

B Limitations.

Following most general KDs [4, 14, 17, 12, 16, 13, 15, 18] and AutoML methods [6, 10, 1, 5, 43, 42],
the limitation of current our automatic search method for knowledge distillation strategies is that they
are typically evaluated on classification tasks and assume that the distilled knowledge will transfer
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well to downstream tasks. However, this may not always be the case, as different downstream tasks
may require different types of knowledge to be distilled. To address this limitation, future work could
expand the search space to include task-specific design choices for downstream tasks, such as object
detection and semantic segmentation. By incorporating task-specific constraints and objectives into
the search process, it may be possible to identify more effective and efficient knowledge distillation
strategies that are tailored to the specific requirements of different applications. Additionally, it will
be essential to evaluate the effectiveness of these methods on a range of downstream tasks to ensure
that they generalize well and can be widely applied in real-world scenarios.

C Broader Impacts.

The proposed method aims to automatically distill design knowledge from human engineers and
design experts and represent it in a formal and computational model. This has the potential to advance
the field of machine learning and artificial intelligence, particularly in machine design automation.
By capturing and codifying human design expertise, we can develop machine learning models to
serve as automated design assistants and co-designers. This can enable technological advances and
productivity gains in engineering design processes. No broad social or ethical implications exist
since this is focused on technical neural architecture search methods. The impact would be limited to
potential performance gains for machine learning or AI applications that use neural networks, with no
significant effects outside of the technical machine learning research community. The ability to find
high-performing neural architectures more efficiently through training-free search techniques could
provide benefits by enabling faster progress and iteration in neural architecture research. However,
it is essential to note that this concept is primarily of interest to researchers in the field of machine
learning and may not have immediate or direct implications for broader society or ethics.

Table 1: Correlation coefficients between validation metrics under proxy settings and actual distillation
performance of ResNet-20 on CIFAR-100, which is calculated from 10 different candidates. S-gap
means Sharpness-gap.

CE Loss S-gap CKA-gap CE Loss+S-gap CE Loss+CKA-gap CE Loss+S-gap+CKA-gap

0.755 0.512 0.682 0.824 0.885 0.935

Table 2: Search time and of KD-Zero with different hyperparameters for evolutionary search configu-
rations. The search time is measured on a single GeForce RTX™ 3090 Ti GPU.

Hyperparam
Iterations Population size

50 100 300 10 20 30

Search time 10h 21h 63h 11h 21h 30h

D More Ablation Studies and Results

D.1 Ablation Studies about Search Settings

In Table 1, we also examine the correlation between our validation metrics and the actual accuracy
for 10 random candidates in Table 1. These results indicate that both our loss-rejection protocol and
search space shrinkage contribute to improving search results and that sharpness-gap and CKA-gap
are also more accurate in predicting the best distillers.

D.2 Sensitivity Analysis of Hyperparameters

Our evolutionary search introduces hyperparameters about the iteration numbers and population size
to balance the search cost and results. As shown in Table 2, (20, 100) is the best option for iteration
and population size, which obtains the preferable trade-off on efficiency and accuracy. Less iterations
and population size would introduce a significant loss of accuracy. While larger numbers settings
increase search time significantly but improve accuracy slightly.
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D.3 Analysis of Search Costs

In Table 2, we present the search time of KD-Zero. Like the sensitivity analysis for hyperparameters,
our current search settings are well-balanced in efficiency and accuracy. In future work, we will
explore more acceleration strategies, such as parallel computation, to reduce search costs.

D.4 Analysis of Training Costs

We compare the training speed of our KD-Zero with vanilla KD [8], RKD [24], CRD [31], and
DML [39], as summarized in Table 3. Our KD-Zero has almost the same highest training speed as
the vanilla KD, outperforming other KD methods.

Table 3: Average training time consumption (batch time) on CIFAR-100, which measured in a single
GeForce RTX™ 3090 Ti GPU.

Student KD PKT CRD RKD DML KD-Zero

R20 0.219 0.225 0.234 0.234 0.524 0.222
R32 0.319 0.336 0.353 0.846 0.912 0.328
VGG8 0.097 0.120 0.139 0.207 0.190 0.105

E Detailed Analysis of Distiller Search Space

In this section, we provide a detailed formulation and discussion of distillation operations in our
search space. Their detailed implementations are presented in Listings 1-4.

E.1 Knowledge Transformations

Attention transformation. Unlike matching the original features [29], the attention distillation
method applies feature distillation on the attention maps. For example, AT [37] summarizes the
values across the channel dimension and transfers the attention knowledge to the student. FKD [38]
uses the sum of teacher and student attention to focus the student on changeable areas. FGD [35]
proposes focal distillation, which forces the student to learn the teacher’s crucial parts, and global
distillation, which compensates for missing global information.

Following FGD [35], we select the attention transformation operation on different pixels and different
channels, respectively:

GS(F ) =
1

C
·

C∑
c=1

|Fc| , AS(F ) = H ·W · σ
(
GS(F )/τ

)
, (1)

GC(F ) =
1

HW
·

H∑
i=1

W∑
j=1

|Fi,j |, AC(F ) = C · σ
(
GC(F )/τ

)
, (2)

where H , W , C denote the height, width, and channel of the feature. GS and GC are the spatial
and channel attention maps. AS and AC are the spatial and channel attention masks, where τ is the
temperature hyperparameter to adjust the distribution.

Mask transformation. Other distillation methods address the gap between the teacher and student
models by performing the mask transformation operation before distilling the features. Following
MGD [36], we use the l-th mask to cover the l-th feature of the student. This can be expressed as:

M l
i,j =

{
0, if Rl

i,j < λ

1, Otherwise
(3)

where Rl
i,j is a random number between 0 and 1, and i and j are the horizontal and vertical coordinates

of the feature map, respectively.

Multi-scale transformation. Multi-scale feature representations are beneficial for capturing context
information at different levels of abstraction and are essential for many vision tasks. For instance,
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PSPNet [40] uses spatial pyramid pooling to extract convolutional features at multiple scales for
semantic image segmentation. Following KR [2], our multi-scale transformation operation extracts
different levels of knowledge from the feature by using spatial pyramid pooling.

Local transformation. Local features, such as person Re-ID and image retrieval, are commonly
used in computer vision tasks. Local features refer to distinctive and repeatable patterns or structures
within an image that can be used to identify and match corresponding features in different images.
LKD [19] uses a local correlation matrix based on selected local parts to guide the student’s learning.
In our search space, we select the local transformation operation to divide the original feature into n2

patches (e.g., n = 2, 4), and then distill each patch separately.

Sample-wise transformation. The relationships between input samples are complex and make it
difficult for teachers to transfer knowledge to students. For example, RKD [25] involves comparing
the similarity of angle and structure distances between samples. CC [26] is another sample-wise
knowledge distillation method that focuses on capturing the correlations between embedding rep-
resentations. Following SP [33], we use the correlation matrix for the sample-wise features in the
following way:

LKD =

∥∥∥∥∥∥ (ÃT ) · (ÃT ) ⊤∥∥∥(ÃT ) · (ÃT ⊤)
∥∥∥
2

− (ÃS) · (ÃS) ⊤∥∥∥(ÃS) · (ÃS ⊤)
∥∥∥
2

∥∥∥∥∥∥
2

, (4)

where ÃT , ÃS ∈ RN×CHW are the reshaped versions of the original features AT and AS . Addi-
tionally, we minimize the Kullback-Leibler (KL) divergence for the sample relationships with the
following equation:

LKD =
T 2

N

N∑
n=1

C·W ·H∑
i=1

ϕ
(
ÃT

n,i

)
· log

ϕ
(
ÃT

n,i

)
ϕ
(
ÃS

n,i

)
 (5)

where ϕ is the softmax function and T is the temperature coefficient. Additionally, sample distillation
is combined with L2 distance when the distilling feature is normalized in the sample dimension.

Channel-wise transformation. Recent distillation methods also focus on the knowledge contained
in each channel. These methods aim to improve the matching of channel-wise features by optimizing
or generating attention-weighting factors. For example, CWD [30] minimizes the KL divergence
between the probability map, which is calculated by normalizing the feature map of each channel.
ICKD [22] calculates the disparity of the channel correlation matrix. Following ICKD [22], channel-
wise features GS and GT are transformed using channel-wise operations and then computed using
the L2 loss as follows:

LKD =

∥∥∥∥ (GT ) · (GT )⊤

∥(GT ) · (GT )⊤∥2
− (GS) · (GS)⊤

∥(GS) · (GS)⊤∥2

∥∥∥∥
2

, (6)

Additionally, the channel-wise knowledge can also be derived from the following equation:

LKD =
T 2

C

C∑
c=1

W ·H∑
i=1

ϕ
(
GT

c,i

)
· log

[
ϕ
(
GT

c,i

)
ϕ
(
GS

c,i

)] (7)

where ϕ is the softmax function and T is the temperature coefficient. Note that channel distillation
and L2 distance are combined when normalization is achieved in the channel dimension.

E.2 Distance Functions

Different distance functions are used to measure the difference between the output of the teacher and
student networks in the process of distillation. Let Pi denote the predicted probability of class i by
the teacher network, and Qi denote the predicted probability of class i by the student network.
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L2 distance: The L2 distance measures the square root of the sum of the squared differences between
the probabilities of each class in the two distributions. The L2 distance between P and Q is defined
as:

DL2(P,Q) =

√√√√ n∑
i=1

(Pi −Qi)2

Cosine distance: The cosine distance measures the cosine of the angle between the two probability vectors.
This distance measure is useful when the magnitudes of the probability vectors are not important, only their
directions. The cosine distance between P and Q is defined as:

DCosine(P,Q) = 1−
∑n

i=1 PiQi√∑n
i=1 P

2
i

√∑n
i=1 Q

2
i

When normalization is applied to both distributions, i.e.,
∑n

i=1 Pi =
∑n

i=1 Qi = 1, the cosine distance is
equivalent to the L2 distance as follows:

DL2,norm =

√√√√ 1

n2

n∑
i=1

(Pi −Qi)2 (8)

=

√√√√ 1

n2

n∑
i=1

P 2
i − 2

n2

n∑
i=1

PiQi +
1

n2

n∑
i=1

Q2
i (9)

=

√√√√ 2

n2

n∑
i=1

(P 2
i +Q2

i − PiQi) (10)

=
√

2×
(
1−DCosine(P,Q)

)
(11)

Pearson distance: The Pearson distance measures the correlation between the two probability vectors. The
Pearson distance between P and Q is defined as:

DPearson(P,Q) = 1−
∑n

i=1(Pi − P̄ )(Qi − Q̄)√∑n
i=1(Pi − P̄ )2

√∑n
i=1(Qi − Q̄)2

where P̄ and Q̄ are the means of the two distributions. Similarly, the Pearson distance is also correlated with the
normalized L2 distance.

KL distance: The KL distance measures the information lost when approximating the probability distribution P
with the probability distribution Q, as follows:

DKL(P,Q) =

n∑
i=1

Pi log
Pi

Qi
=

n∑
i=1

Pi logPi −
n∑

i=1

Pi logQi

Correlation distance: Let P ∈n×d and Q ∈n×d denote a batch of representations from the student and teacher
networks, respectively. These matrices are computed before the final fully-connected layer to preserve the
structural information of the data, thus enabling a strong distillation signal for the student. We first normalize
these representations to have zero mean and unit variance across the batch dimension and then propose to
construct a cross-correlation matrix, Cst = PTQ/n ∈d×d. A perfect correlation between the two sets of
representations is achieved if all of the diagonal entries vi = (Cst)ii are equal to one. To formulate this as a
minimization problem, we propose the following loss:

Dcorr(P,Q) = log2

d∑
i=1

|vi − 1|2α (12)

E.3 Loss Weights

Temperature factor: The temperature coefficient T is used to scale the divergence between the probability
distributions of the teacher and student networks. When T is small, the probability distribution of the teacher
network becomes sharper, and the probability distribution of the student network is forced to be closer to the
teacher’s distribution. On the other hand, when the temperature coefficient T is large, the probability distribution
of the teacher network becomes more diffuse, and the student network is allowed to produce more varied and
less precise probability estimates. In our search space, we set 1, 4, 8, and 16 as options for the temperature
coefficient.
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Loss weights factor: Loss weights play an important role in determining the behavior of the distillation process.
Adjusting the weights makes it possible to balance different optimization objectives and tailor the student model’s
behavior to the task’s specific requirements. In our search space, we set 100, 50, 25, 10, 5, 1, 0.1, and 0.01 as
options for the loss weights.

Loss weights calibration: In light of recent knowledge distillation works that assign sample-wise weights,
we propose ’entropy,’ ’focal,’ ’sim,’ ’conf,’ and ’no’ as options for loss weights calibration in the knowledge
distillation loss. In particular, ’entropy’ refers to the use of the entropy of the teacher’s knowledge as a weighting
factor, ’conf’ is the confidence level of the teacher’s model knowledge, and ’sim’ refers to the teacher-student
similarity. Following WSLD [41], ’focal’ calibration is assigned to each sample’s loss according to the predictions
of the teacher and the student, which is formally defined as

Lfocal =

(
1− exp

(
−
log ŷs

i,1

log ŷt
i,1

))
Lkd =

(
1− exp

(
−Ls

ce

Lt
ce

))
Lkd, (13)

where i is the ground truth class of the sample.

F Detailed Experimental Settings

This section provides detailed settings for the experiments conducted on the CIFAR-100 and ImageNet datasets.
All experiments follow standard training settings without any additional data augmentation or other training
techniques.

F.1 Experiments on CIFAR-100

Dataset. CIFAR-100 [11] is a popular classification dataset used to evaluate the performance of distillation
methods. It consists of 50,000 training images and 10,000 test images, with 100 classes.

Implementation. In the comparison experiments with other offline KD methods, we use the same training
settings as CRD [32] to implement various KD methods. The training epochs for all methods are set to 240. We
use a mini-batch size of 64 and a standard SGD optimizer with a weight decay of 5 × 10−4. The multi-step
learning rate is initialized to 0.05 and decayed by 0.1 at 150, 180, and 210 epochs. To compare with existing
knowledge distillation methods, we refer to the original settings and CRD to implement various knowledge
methods. The configuration details, including the factor (λ), are the same as those used in the CIFAR-100
experiments.

F.2 Experiments on ImageNet

Dataset. We also conduct experiments on the ImageNet dataset (ILSVRC12) [3], which is considered the
most challenging classification task. It consists of approximately 1.2 million training images and 50 thousand
validation images, belonging to 1,000 categories.

Implementation. In the ImageNet experiments, the student models (ResNet-18 [7] and MobileNet [9]) are
trained for 100 epochs. The batch size is set to 256, and the multi-step learning rate is initialized to 0.1, with
decay at 30, 60, and 90 epochs. Other KD methods are implemented following the hyperparameter settings in
the original paper. Moreover, the detailed settings for KD-Zero are the same as those used in the CIFAR-100
experiments.

F.3 Experiments on Vision Transformer

Implementation: Recently, Knowledge Distillation (KD) has emerged as an efficient method to train ViTs [34]
with Convolutional Neural Networks (CNNs) as teachers. In this study, we aim to evaluate the effectiveness of
KD-Zero by searching for ViT-based distillation strategies on the CIFAR-100 dataset. To ensure fair comparison,
we use the same data augmentation and regularization methods as described in DeiT, including Auto-Augment,
Rand-Augment, and mixup. We conduct a distiller search using the same settings as in the CNN experiment.
Once we find the optimal distiller, we train the ViT model using ResNet-56 as the CNN teacher. The training
process is performed on images with a resolution of 224× 224 for 300 epochs. We use an initial learning rate
of 5e-4, a weight decay of 0.05, and the AdamW optimizer. The batch size is set to 128, and the learning rate
schedule follows the cosine policy.

F.4 Experiments on Object Detection.

Dataset. We evaluate KD-Zero on the MS-COCO dataset [21], which contains over 120K images covering 80
categories. All performance is evaluated on the MS-COCO validation set.
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Implementation. We apply KD-Zero to two-stage detectors (e.g., Faster R-CNN [28]) and one-stage detectors
(e.g., RetinaNet [20]), which are widely used object detection frameworks. We initialize the backbone with
weights pre-trained on ImageNet [3]. Following common practice [20], all models are trained with a 2× learning
schedule (24 epochs). Horizontal image flipping is utilized in data augmentation. For KD-Zero, we build an
extra shadow head with the same architecture as the original classification head, which performs distillation in
the fine-tuning detector stage.

G Experiments on Semantic Segmentation

Datasets. Cityscapes is a challenging benchmark that has been collected from 50 cities in order to gain a
better understanding of urban scenes. It consists of 5,000 carefully annotated images belonging to 19 different
classes. The images are divided into three sets: 2,975 for training, 500 for validation, and 1,525 for testing.
Additionally, there are 20,000 images with less detailed annotations, which were used in the knowledge
distillation experiments [27].

Implementation details: In this section, we use the mean Intersection-over-Union (mIoU) as the evaluation
metric for all experiments. The results are reported in the single-scale evaluation setting. We start by using
DeeplabV3 with a ResNet101 backbone as the teacher model, as done in prior works [23]. For the other
distillation methods, we explore DeepLabV3 models with a ResNet18 backbone. For KD-Zero, we choose
DeepLabV3 with students searched by KD-Zero on ImageNet. During the distillation process, we use SGD as
the optimizer with a poly-learning-rate policy. Each training image is randomly cropped into 512x512 pixels.
The batch size is 8, and the models are trained for 40K iterations unless specified otherwise.

Listing 1: The PyTorch implementation of unified KD-Zero loss.
import torch
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce
’’’
trans_func1, trans_func2, trans_func3:
’exp’,’mish’,’leaky’,’relu’,’tanh’,’sigmoid’,’pow2’,’pow4’,’log’,’sqrt’,
’drop’,’no’, ’satt’,’natt’,’catt’,’mask’,’bmm’,’mm’,’batch’,’channel’,
’scale_r1’,’scale_r2’,’multi_scale_r4’,’local_s1’,’local_s2’,’local_s4’,
’norm_HW’,’norm_C’,’norm_N’,’softmax_N’,’softmax_C’,’softmax_HW’,’scale’,\\
’logsoftmax_N’,’logsoftmax_C’,’logsoftmax_HW’,’min_max_normalize’,’batchnorm’\\
’’’
class UnifiedLoss(nn.Module):

def __init__(self,
knowledge_input=params[’knowledge_input’], #’feat’, "emd",’logit’
trans_func1=params[’trans_func1’],
trans_func2=params[’trans_func2’],
trans_func3=params[’trans_func3’],
distance_func=params[’distance_func’], #

’l1’,’l2’,’kl’,’hard’,’smooth_l1’,’cos’,’pear’,’cor’
weight=params[’weight’], # ’entropy’,’focal’,’sim’,’conf’,’no’
temperature=params[’kd_T’], # 1, 4, 8, 16
magnitude=params[’gamma’], # 100, 50, 25, 10, 5, 1, 0.1, 0.01
**kwargs,

):
super().__init__()
self.Knowledge_input = knowledge_input
self.trans_func1 = trans_func1
self.trans_func2 = trans_func2
self.trans_func3 = trans_func3
self.distance_func = distance_func
self.weight = weight
self.temperature = temperature
self.magnitude = magnitude

def forward(self, feat_s, feat_t, emb_s, emb_t, logit_s, logit_t,
gt_label):
if self.Knowledge_input == ’feat’:

teacher, student = feat_t, feat_s
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elif self.Knowledge_input == ’emb’:
teacher, student = emb_t, emb_s

else:
teacher, student = logit_t, logit_s

trans_func1 = _TRANS_FUNC1[self.trans_func1]
trans_func2 = _TRANS_FUNC2[self.trans_func2]
trans_func3 = _TRANS_FUNC3[self.trans_func3]
distance_func = _DIS_FUNC[self.distance_func]
weight = _WIT_FUNC[self.weight]
f_t =

trans_func3(trans_func2(trans_func1(student)))/self.temperature
f_s =

trans_func3(trans_func2(trans_func1(teacher)))/self.temperature
return self.magnitude * self.temperature * self.temperature *

weight(distance_func(f_s, f_t), student, teacher, gt_label)

Listing 2: The PyTorch implementation of transformation operations.
import torch
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce

def trans_norm_HW(f):
"""transform with l2 norm in HW dim"""
if len(f.shape) == 2:

return f
elif len(f.shape) == 3:

return F.normalize(f, p=2, dim=2)
elif len(f.shape) == 4:

return F.normalize(f, p=2, dim=(2, 3))
else:

raise f’invalide shape {f.shape}’

def trans_norm_C(f):
"""transform with l2 norm in C dim"""
return F.normalize(f, p=2, dim=1)

def trans_norm_N(f):
""" transform with l2 norm in N dim"""
return F.normalize(f, p=2, dim=0)

def trans_multi_scale_r1(f):
"""transform with multi-scale distillation with reduce ratio of 1"""
if len(f.shape) != 4:

return f
return reduce(f, ’b c (h1 h2) (w1 w2) -> b c h1 w1’, ’max’, h2=1,

w2=1)

def trans_multi_scale_r2(f):
"""transform with multi-scale distillation with reduce ratio of 2"""
if len(f.shape) != 4:

return f
return reduce(f, ’b c (h1 h2) (w1 w2) -> b c h1 w1’, ’max’, h2=2,

w2=2)

def trans_multi_scale_r4(f):
"""transform with multi-scale distillation with reduce ratio of 4"""
if len(f.shape) != 4:

return f
return reduce(f, ’b c (h1 h2) (w1 w2) -> b c h1 w1’, ’max’, h2=4,

w2=4)
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def trans_local_s1(f):
"""transform with local features distillation with spatial size of

1"""
if len(f.shape) != 4:

return f
f = rearrange(f, ’b c (h hp) (w wp) -> b (c h w) hp wp’, hp=1, wp=1)
return f.squeeze(-1).squeeze(-1)

def trans_local_s2(f):
"""transform with local features distillation with spatial size of

1"""
if len(f.shape) != 4:

return f
return rearrange(f, ’b c (h hp) (w wp) -> b (c h w) hp wp’, hp=2,

wp=2)

def trans_local_s4(f):
"""transform with local features distillation with spatial size of

1"""
if len(f.shape) != 4:

return f
return rearrange(f, ’b c (h hp) (w wp) -> b (c h w) hp wp’, hp=4,

wp=4)

def trans_batch(f):
"""transform with batch-wise shape"""
if len(f.shape) == 2:

return f
elif len(f.shape) == 3:

return rearrange(f, ’b c h -> b (c h)’)
elif len(f.shape) == 4:

return rearrange(f, ’b c h w -> b (c h w)’)

def trans_channel(f):
"""transform with channel-wise shape"""
if len(f.shape) in {2, 3}:

return f
elif len(f.shape) == 4:

return rearrange(f, ’b c h w -> b c (h w)’)

def trans_mask(f, threshold=0.65):
"""transform with mask"""
if len(f.shape) in {2, 3}:

# logits
return f

N, C, H, W = f.shape
device = f.device
mat = torch.rand((N, 1, H, W)).to(device)
mat = torch.where(mat > 1 - threshold, 0, 1).to(device)
return torch.mul(f, mat)

def trans_satt(f, T=0.5):
"""transform with spatial attention"""
if len(f.shape) in {2, 3}:

# logits
return f

N, C, H, W = f.shape
value = torch.abs(f)
fea_map = value.mean(axis=1, keepdim=True)
# Bs*W*H
S_attention = (H * W * F.softmax(

(fea_map / T).view(N, -1), dim=1)).view(N, H, W)
return S_attention.unsqueeze(dim=-1)
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def trans_natt(f, T=0.5):
"""transform from the N dim"""
if len(f.shape) == 2:

N, C = f.shape
elif len(f.shape) == 4:

N, C, H, W = f.shape
elif len(f.shape) == 3:

N, C, M = f.shape
# apply softmax to N dim
return N * F.softmax(f / T, dim=0)

def trans_catt(f, T=0.5):
"""transform with channel attention"""
if len(f.shape) == 2:

# logits
N, C = f.shape
# apply softmax to C dim
return C * F.softmax(f / T, dim=1)

elif len(f.shape) == 3:
N, C, M = f.shape
return C * F.softmax(f / T, dim=1)

elif len(f.shape) == 4:
N, C, H, W = f.shape
value = torch.abs(f)
# Bs*C
channel_map = value.mean(

axis=2, keepdim=False).mean(
axis=2, keepdim=False)

C_attention = C * F.softmax(channel_map / T, dim=1)
return C_attention.unsqueeze(dim=-1).unsqueeze(dim=-1)

else:
raise f’invalid shape {f.shape}’

def trans_drop(f, p=0.1):
"""transform with dropout"""
return F.dropout2d(f, p)

def trans_nop(f):
"""no operation transform """
return f

def trans_bmm(f):
"""transform with gram matrix -> b, c, c"""
if len(f.shape) == 2:

return f
elif len(f.shape) == 4:

return torch.bmm(
rearrange(f, ’b c h w -> b c (h w)’),
rearrange(f, ’b c h w -> b (h w) c’))

elif len(f.shape) == 3:
return torch.bmm(

rearrange(f, ’b c m -> b c m’), rearrange(f, ’b c m -> b m c’))
else:

raise f’invalide shape {f.shape}’

def trans_mm(f):
"""transform with gram matrix -> b, b"""
if len(f.shape) == 2:

return f
elif len(f.shape) == 3:

return torch.mm(
rearrange(f, ’b c m -> b (c m)’), rearrange(f, ’b c m -> (c m)

b’))
elif len(f.shape) == 4:
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return torch.mm(
rearrange(f, ’b c h w -> b (c h w)’),
rearrange(f, ’b c h w -> (c h w) b’))

else:
raise f’invalide shape {f.shape}’

def trans_norm_HW(f):
"""transform with l2 norm in HW dim"""
if len(f.shape) == 2:

return f
elif len(f.shape) == 3:

return F.normalize(f, p=2, dim=2)
elif len(f.shape) == 4:

return F.normalize(f, p=2, dim=(2, 3))
else:

raise f’invalide shape {f.shape}’

def trans_norm_C(f):
"""transform with l2 norm in C dim"""
return F.normalize(f, p=2, dim=1)

def trans_norm_N(f):
""" transform with l2 norm in N dim"""
return F.normalize(f, p=2, dim=0)

def trans_softmax_N(f):
"""transform with softmax in 0 dim"""
return F.softmax(f, dim=0)

def trans_softmax_C(f):
"""transform with softmax in 1 dim"""
return F.softmax(f, dim=1)

def trans_softmax_HW(f):
"""transform with softmax in 2,3 dim"""
if len(f.shape) == 2:

return f
if len(f.shape) == 4:

N, C, H, W = f.shape
f = f.reshape(N, C, -1)

assert len(f.shape) == 3
return F.softmax(f, dim=2)

def trans_logsoftmax_N(f):
"""transform with logsoftmax"""
return F.log_softmax(f, dim=1)

def trans_logsoftmax_C(f):
"""transform with logsoftmax"""
return F.log_softmax(f, dim=1)

def trans_logsoftmax_HW(f):
"""transform with logsoftmax"""
if len(f.shape) == 2:

return f
if len(f.shape) == 4:

N, C, H, W = f.shape
f = f.reshape(N, C, -1)

assert len(f.shape) == 3
return F.log_softmax(f, dim=2)

def trans_sqrt(f):
"""transform with sqrt"""
return torch.sqrt(f)
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def trans_log(f):
"""transform with log"""
return torch.sign(f) * torch.log(torch.abs(f) + 1e-9)

def trans_pow2(f):
"""transform with ^2"""
return torch.pow(f, 2)

def trans_pow4(f):
"""transform with ^4"""
return torch.pow(f, 4)

def trans_min_max_normalize(f):
"""transform with min-max normalize"""
A_min, A_max = f.min(), f.max()
return (f - A_min) / (A_max - A_min + 1e-9)

def trans_abs(f):
"""transform with abs"""
return torch.abs(f)

def trans_sigmoid(f):
"""transform with sigmoid"""
return torch.sigmoid(f)

def trans_swish(f):
"""transform with swish"""
return f * torch.sigmoid(f)

def trans_tanh(f):
"""transform with tanh"""
return torch.tanh(f)

def trans_relu(f):
"""transform with relu"""
return F.relu(f)

def trans_leaky_relu(f):
"""transform with leaky relu"""
return F.leaky_relu(f)

def trans_mish(f):
"""transform with mish"""
return f * torch.tanh(F.softplus(f))

def trans_exp(f):
"""transform with exp"""
return torch.exp(f)

def trans_scale(f):
"""transform 0-1"""
return (f + 1.0) / 2.0

def trans_batchnorm(f):
"""transform with batchnorm"""
if len(f.shape) in {2, 3}:

bn = nn.BatchNorm1d(f.shape[1]).to(f.device)
elif len(f.shape) == 4:

bn = nn.BatchNorm2d(f.shape[1]).to(f.device)
return bn(f)

Listing 3: The PyTorch implementation of distance function operations.
import torch
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import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce

def l1_loss(f_s: Tensor, f_t: Tensor) -> Tensor:
"""l1_loss = (f_s - f_t).abs()"""
return F.l1_loss(f_s, f_t, reduction=’none’)

def l2_loss(f_s: Tensor, f_t: Tensor) -> Tensor:
"""mse_loss = l2_loss = (f_s - f_t) ** 2"""
return F.mse_loss(f_s, f_t, reduction=’none’)

def kl_loss(f_s: Tensor, f_t: Tensor) -> Tensor:
"""kl_loss = kl_divergence = f_s * log(f_s / f_t)"""
return F.kl_div(f_s, f_t, reduction=’none’)

def hard_loss(f_s: Tensor, f_t: Tensor) -> Tensor:
"""kl_loss = kl_divergence = f_s * log(f_s / f_t)"""
return F.cross_entropy(f_s, f_t.argmax(dim=1), reduction=’none’)

def smooth_l1_loss(f_s: Tensor, f_t: Tensor) -> Tensor:
"""smooth_l1_loss = (f_s - f_t).abs()"""
return F.smooth_l1_loss(f_s, f_t, reduction=’none’)

def cosine_similarity(f_s, f_t, eps=1e-8):
"""cosine_similarity = f_s * f_t / (|f_s| * |f_t|)"""
return F.cosine_similarity(f_s, f_t, eps=eps)

def pearson_correlation(f_s, f_t, eps=1e-8):
"""pearson_correlation = (f_s - mean(f_s)) * (f_t - mean(f_t)) /

(|f_s - mean(f_s)| * |f_t - mean(f_t)|)"""

def cosine(f_s, f_t, eps=1e-8):
return (f_s * f_t).sum(1) / (f_s.norm(dim=1) * f_t.norm(dim=1) +

eps)

return 1 - cosine(f_s - f_s.mean(1).unsqueeze(1),
f_t - f_t.mean(1).unsqueeze(1), eps)

def correlation(z_s, z_t):
f_s = z_s
f_t = z_t
n, d = f_s.shape
f_s_norm = (f_s - f_s.mean(0)) / f_s.std(0)
f_t_norm = (f_t - f_t.mean(0)) / f_t.std(0)
c_st = torch.einsum(’bx,bx->x’, f_s_norm, f_t_norm) / n
c_diff = c_st - torch.ones_like(c_st)
alpha = 1.01
c_diff = torch.abs(c_diff)
c_diff = c_diff.pow(2.0)
c_diff = c_diff.pow(alpha)
return torch.log2(c_diff.sum())

Listing 4: The PyTorch implementation of loss weight operations.
import torch
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce
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def teacher_entropy(f: Tensor, t: Tensor = None, s: Tensor = None,
gt_label: Tensor = None):
if t is None and s is None:

return f * tensor(100).to(f.device)
if len(t.shape) == 1:

N = t.shape
elif len(t.shape) == 2:

N, C = t.shape
elif len(t.shape) == 3:

N, C, M = t.shape
elif len(t.shape) == 4:

N, C, H, W = t.shape
else:

raise f’invalid shape {t.shape}’
tea_std = torch.std(t, dim=-1,keepdim=True)
entropy_weight = tea_std
print(entropy_weight)
return (entropy_weight * entropy_weight * f).mean()

def teacher_student_similarity(f: Tensor, t: Tensor = None, s: Tensor =
None, gt_label: Tensor = None):
if t is None and s is None:

return f * tensor(100).to(f.device)
if len(t.shape) == 1:

N = t.shape
elif len(t.shape) == 2:

N, C = t.shape
elif len(t.shape) == 3:

N, C, M = t.shape
elif len(t.shape) == 4:

N, C, H, W = t.shape
else:

raise f’invalid shape {t.shape}’
# compute cosine similarity for t and s
similarity = F.cosine_similarity(s, t)
return (similarity * f).mean()

def focal(f: Tensor, logit_s: Tensor = None, logit_t: Tensor = None,
gt_label: Tensor = None):
s_input_for_softmax = logit_s
t_input_for_softmax = logit_t
t_soft_label = F.softmax(t_input_for_softmax, dim=1)
logsoftmax = nn.LogSoftmax()
softmax_loss = - torch.sum(t_soft_label *

logsoftmax(s_input_for_softmax), 1, keepdim=True)
fc_s_auto = logit_s.detach()
fc_t_auto = logit_t.detach()
log_softmax_s = logsoftmax(fc_s_auto)
log_softmax_t = logsoftmax(fc_t_auto)
one_hot_label = F.one_hot(gt_label, num_classes=100).float()
softmax_loss_s = - torch.sum(one_hot_label * log_softmax_s, 1,

keepdim=True)
softmax_loss_t = - torch.sum(one_hot_label * log_softmax_t, 1,

keepdim=True)
focal_weight = softmax_loss_s / (softmax_loss_t + 1e-7)
ratio_lower = torch.zeros(1).cuda()
focal_weight = torch.max(focal_weight, ratio_lower)
focal_weight = 1 - torch.exp(- focal_weight)
return (focal_weight * f).mean()

def confidence(f: Tensor, logit_s: Tensor = None, logit_t: Tensor =
None, gt_label: Tensor = None):
s_input_for_softmax = logit_s
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t_input_for_softmax = logit_t
t_soft_label = F.softmax(t_input_for_softmax, dim=1)
logsoftmax = nn.LogSoftmax()
softmax_loss = - torch.sum(t_soft_label *

logsoftmax(s_input_for_softmax), 1, keepdim=True)
fc_s_auto = logit_s.detach()
fc_t_auto = logit_t.detach()
log_softmax_s = logsoftmax(fc_s_auto)
log_softmax_t = logsoftmax(fc_t_auto)
one_hot_label = F.one_hot(gt_label, num_classes=100).float()
softmax_loss_s = - torch.sum(one_hot_label * log_softmax_s, 1,

keepdim=True)
softmax_loss_t = - torch.sum(one_hot_label * log_softmax_t, 1,

keepdim=True)
confidence_weight = 1.0 - softmax_loss_s
return (confidence_weight * f).mean()

def no_weight(f: Tensor, logit_s: Tensor = None, logit_t: Tensor = None,
gt_label: Tensor = None):
return f.mean()

References
[1] Kunlong Chen, Liu Yang, Yitian Chen, Kunjin Chen, Yidan Xu, and Lujun Li. Gp-nas-ensemble: a model

for the nas performance prediction. 1

[2] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowledge review. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5008–5017,
2021. 4

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. pages 248–255, 2009. 6, 7

[4] Peijie Dong, Lujun Li, and Zimian Wei. Diswot: Student architecture search for distillation without
training. In CVPR, 2023. 1

[5] Peijie Dong, Xin Niu, Lujun Li, Zhiliang Tian, Xiaodong Wang, Zimian Wei, Hengyue Pan, and Dongsheng
Li. Rd-nas: Enhancing one-shot supernet ranking ability via ranking distillation from zero-cost proxies.
arXiv preprint arXiv:2301.09850, 2023. 1

[6] Peijie Dong, Xin Niu, Lujun Li, Linzhen Xie, Wenbin Zou, Tian Ye, Zimian Wei, and Hengyue Pan.
Prior-guided one-shot neural architecture search. arXiv preprint arXiv:2206.13329, 2022. 1

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
pages 770–778, 2016. 6

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. 3

[9] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint, arXiv:1704.04861, 2017. 6

[10] Yiming Hu, Xingang Wang, Lujun Li, and Qingyi Gu. Improving one-shot nas with shrinking-and-
expanding supernet. Pattern Recognition, 2021. 1

[11] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech Report,
2009. 6

[12] Lujun Li. Self-regulated feature learning via teacher-free feature distillation. In European Conference on
Computer Vision (ECCV), 2022. 1

[13] Lujun Li, Peijie Dong, Zimian Wei, and Ya Yang. Automated knowledge distillation via monte carlo tree
search. In ICCV, 2023. 1

15



[14] Lujun Li and Zhe Jin. Shadow knowledge distillation: Bridging offline and online knowledge transfer. In
NeuIPS, 2022. 1

[15] Lujun Li and Anggeng Li. A2-aug: Adaptive automated data augmentation. In CVPRW, 2023. 1

[16] Lujun Li, Liang Shiuan-Ni, Ya Yang, and Zhe Jin. Boosting online feature transfer via separable feature
fusion. In IJCNN, 2022. 1

[17] Lujun Li, Liang Shiuan-Ni, Ya Yang, and Zhe Jin. Teacher-free distillation via regularizing intermediate
representation. In IJCNN, 2022. 1

[18] Lujun Li, Yikai Wang, Anbang Yao, Yi Qian, Xiao Zhou, and Ke He. Explicit connection distillation.
2020. 1

[19] Xiaojie Li, Jianlong Wu, Hongyu Fang, Yue Liao, Fei Wang, and Chen Qian. Local correlation consistency
for knowledge distillation. In ECCV, 2020. 4

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In ICCV, 2017. 7

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014. 6

[22] Li Liu, Qingle Huang, Sihao Lin, Hongwei Xie, Bing Wang, Xiaojun Chang, and Xiaodan Liang. Exploring
inter-channel correlation for diversity-preserved knowledge distillation. In ICCV, 2021. 4

[23] Yifan Liu, Changyong Shun, Jingdong Wang, and Chunhua Shen. Structured knowledge distillation for
dense prediction. arXiv preprint, arXiv:1903.04197, 2019. 7

[24] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3967–3976, 2019. 3

[25] Wonpyo Park, Yan Lu, Minsu Cho, and Dongju Kim. Relational knowledge distillation. In CVPR, 2019. 4

[26] Baoyun Peng, Xiao Jin, Jiaheng Liu, Shunfeng Zhou, Yichao Wu, Yu Liu, Dong-sheng Li, and Zhaoning
Zhang. Correlation congruence for knowledge distillation. In ICCV, 2019. 4

[27] Jie Qin, Jie Wu, Xuefeng Xiao, Lujun Li, and Xingang Wang. Activation modulation and recalibration
scheme for weakly supervised semantic segmentation. In AAAI, 2022. 7

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. arXiv preprint, arXiv:1506.01497, 2015. 7

[29] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015. 3

[30] Changyong Shu, Yifan Liu, Jianfei Gao, Zheng Yan, and Chunhua Shen. Channel-wise knowledge
distillation for dense prediction. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 5311–5320, 2021. 4

[31] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In International
Conference on Learning Representations, 2019. 3

[32] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In ICLR, 2020. 6

[33] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In ICCV, 2019. 4

[34] Zimian Wei, Hengyue Pan, Lujun Li Li, Menglong Lu, Xin Niu, Peijie Dong, and Dongsheng Li. Con-
vformer: Closing the gap between cnn and vision transformers. arXiv preprint arXiv:2209.07738, 2022.
6

[35] Zhendong Yang, Zhe Li, Xiaohu Jiang, Yuan Gong, Zehuan Yuan, Danpei Zhao, and Chun Yuan. Focal
and global knowledge distillation for detectors. arXiv preprint arXiv:2111.11837, 2021. 3

[36] Zhendong Yang, Zhe Li, Mingqi Shao, Dachuan Shi, Zehuan Yuan, and Chun Yuan. Masked generative
distillation. arXiv preprint arXiv:2205.01529, 2022. 3

[37] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the performance
of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928, 2016. 3

16



[38] Linfeng Zhang and Kaisheng Ma. Improve object detection with feature-based knowledge distillation:
Towards accurate and efficient detectors. In International Conference on Learning Representations, 2020.
3

[39] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In CVPR, 2018.
3

[40] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In CVPR, 2017. 4

[41] Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian Zhang.
Rethinking soft labels for knowledge distillation: A bias–variance tradeoff perspective. In International
Conference on Learning Representations, 2020. 6

[42] Chendi Zhu, Lujun Li, Yuli Wu, and Zhengxing Sun. Saswot: Real-time semantic segmentation architecture
search without training. In AAAI, 2024. 1

[43] Zimian Zimian Wei, Lujun Li Li, Peijie Dong, Zheng Hui, Anggeng Li, Menglong Lu, Hengyue Pan,
and Dongsheng Li. Auto-prox: Training-free vision transformer architecture search via automatic proxy
discovery. In AAAI, 2024. 1

17


