
Swarm Reinforcement Learning for Adaptive Mesh
Refinement

Niklas Freymuth1∗ Philipp Dahlinger1 Tobias Würth2 Simon Reisch1

Luise Kärger2 Gerhard Neumann1

1Autonomous Learning Robots, Karlsruhe Institute of Technology, Karlsruhe
2Institute of Vehicle Systems Technology, Karlsruhe Institute of Technology, Karlsruhe

Abstract

Adaptive Mesh Refinement (AMR) enhances the Finite Element Method, an im-
portant technique for simulating complex problems in engineering, by dynamically
refining mesh regions, enabling a favorable trade-off between computational speed
and simulation accuracy. Classical methods for AMR depend on heuristics or
expensive error estimators, hindering their use for complex simulations. Recent
learning-based AMR methods tackle these issues, but so far scale only to simple
toy examples. We formulate AMR as a novel Adaptive Swarm Markov Decision
Process in which a mesh is modeled as a system of simple collaborating agents
that may split into multiple new agents. This framework allows for a spatial reward
formulation that simplifies the credit assignment problem, which we combine with
Message Passing Networks to propagate information between neighboring mesh
elements. We experimentally validate our approach, Adaptive Swarm Mesh Re-
finement (ASMR), on challenging refinement tasks. Our approach learns reliable
and efficient refinement strategies that can robustly generalize to different domains
during inference. Additionally, it achieves a speedup of up to 2 orders of magnitude
compared to uniform refinements in more demanding simulations. We outperform
learned baselines and heuristics, achieving a refinement quality that is on par with
costly error-based oracle AMR strategies.

1 Introduction

The Finite Element Method (FEM) is a widely used numerical technique in engineering and applied
sciences for solving complex partial differential equations [1, 2, 3, 4]. The method discretizes
the continuous problem domain into smaller, finite elements, allowing for an efficient numerical
solution. A key aspect of the FEM for complex systems is Adaptive Mesh Refinement (AMR),
which dynamically refines regions of high solution variability, allowing for a favorable trade-off
between computational speed and simulation accuracy [5, 6, 7]. As problems in engineering grow
more complex, the FEM and especially Adaptive Mesh Refinement (AMR) techniques have become
increasingly important tools in providing computationally tractable yet precise solutions. Applications
of AMR include fluid dynamics [8, 9, 10, 11, 12, 13], structural mechanics [14, 15, 16, 17], and
astrophysics [18, 19, 20]. Yet, classical approaches for AMR usually rely on either problem-dependent
or more general but potentially suboptimal error indicators, or require expensive error estimates
[21, 22, 23, 24, 25, 26, 12]. In either case, they can be cumbersome to use in practice.

To address this issue, we formalize AMR as a Reinforcement Learning (RL) [27] problem. Following
previous work [28, 29, 30], each refinement step encodes the state of the current simulation as local
observations that we feed to RL agents, who then determine which elements of a mesh to refine.
However, previous work has issues with scalability due to an expensive inference process [28],

∗correspondence to niklas.freymuth@kit.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Given a mesh Ωt, an observation graph GΩt encodes the elements as graph nodes and the
neighborhood between elements as edges. The graph is given to a learned policy π, which marks
mesh elements for refinement. A remesher refines the mesh, and spatial rewards r(Ωt

i) are calculated
for all agents i based on the quality of the refinement. This process is iterated for several steps until
the mesh is fully refined.

misaligned objectives and high variance in the state transitions [30], and noisy reward signals [29].
To mitigate these shortcomings and scale to more complex problems, we formulate AMR as a
Swarm RL [31, 32] problem. We extend the Swarm RL framework to per-agent rewards, a shared
observation space, and the option of splitting agents into new agents as required in the AMR process.
Additionally, we introduce a novel spatial reward formulation that provides a dense reward signal
for the refinement of each mesh element, simplifying the credit assignment problem for swarm
systems. Our policy is based on Message Passing Networks (MPNs) [33], a class of Graph Neural
Networks (GNNs) [34, 35, 36, 37] that has proven to be effective for physical simulations [38, 39].
The resulting method, Adaptive Swarm Mesh Refinement (ASMR), consistently produces highly
refined meshes with thousands of elements while applying to arbitrary Partial Differential Equations
(PDEs). A high-level overview is given in Figure 1.

Experimentally, we show the effectiveness of our approach on a suite of PDEs that require complex
and challenging refinement strategies, including a non-stationary heat diffusion problem and a linear
elasticity task. We implement our tasks as OpenAI gym [40] environments. The experiments use
static meshes with conforming triangular elements and corresponding h-adaptive refinements [41, 42]
due to their importance in engineering applications [43, 44, 45, 46]. Here, accurate meshes require
multiple precise refinement steps and thousands of elements. We implement and compare to current
state-of-the-art RL methods for AMR [28, 29, 30] that have been shown to work well on dynamic
tasks where shallow mesh refinement and coarsening is sufficient1. We observe that these methods
struggle with finer static meshes, whereas ASMR yields stable and consistent refinements across
tasks. To further evaluate our method’s effectiveness, we compare it to the popular Zienkiewicz-Zhu
Error Estimator (ZZ Error) estimate and a traditional AMR heuristic requiring oracle error estimates.
ASMR not only outperforms both learned and traditional methods that lack oracle data but also
achieves performance comparable to oracle-based heuristics. Furthermore, ASMR is 2 to 100 times
faster than computing the uniform mesh on which the oracle information is based, and demonstrates
robust generalization capabilities across different domains and initial conditions. We conduct a series
of ablations to show which parts of the approach make it uniquely effective, finding that spatial
rewards per agent are preferable to a shared global reward signal for all agents.

To summarize our contributions, we (1) propose a novel Markov Decision Process (MDP) formulation
that naturally integrates local rewards for swarms where agents may split into new agents over time;
(2) combine this formulation with MPNs and a novel spatial reward formulation to reliable and
efficiently scale learned AMR to static meshes with thousands of elements on multiple levels of
refinement; (3) showcase our approach’s effectiveness on a suite of PDEs with challenging refinement

1We publish the first codebase on RL for AMR, including all methods and tasks presented in this paper, to
facilitate research in this direction. The code is available at https://github.com/NiklasFreymuth/ASMR.

2

https://github.com/NiklasFreymuth/ASMR

problems. Our method surpasses state-of-the-art RL methods and the popular ZZ Error heuristic, and
achieves refinement quality comparable to oracle-based AMR strategies, all without requiring costly
error estimates during inference.

2 Related Work

Learned Physics Simulation. A considerable body of work deals with directly learning to simulate
physical systems with neural networks. These approaches typically learn from data generated by
some underlying ground-truth simulator and train the network to predict the (change in) quantities
of interest during a simulation. Such learned physics simulators are fully differentiable and often
orders of magnitude faster than their classical counterparts [35, 38], lending them to use cases such
as Inverse Design [47, 48, 49]. Researchers have developed simulators based on simple feed-forward
networks [50, 51] and Convolutional Neural Networks [52, 53, 54, 55, 56, 57, 58, 59, 60]. Closely
related to our method are Graph Network Simulators (GNSs) [33, 38, 61, 62, 63, 64, 39, 65], which
utilize GNNs to encode physical problems as a graph on which to compute quantities of interest per
node. Here, a recent method [66] jointly learns a GNS and an AMR strategy on mesh edges to allow
for simulation on different resolutions.

Physics-Informed Neural Networks [67, 68, 69] are mesh-free methods designed to directly train
neural networks to satisfy the governing equations of a physical system. They share the goal of using
deep neural networks to solve PDEs, yet differ in their approach in that they directly approximate
the equations rather than providing a mesh for a classical solver. Thus, AMR strategies provide a
more robust, flexible, and risk-averse approach to solving complex physics problems that demand
high precision and accuracy [11, 70, 13]. As Physics-Informed Neural Networks also operate on
geometric domains, they have been extended to GNN architectures [71, 72, 73]. In this work, we do
not learn to solve a system of equations directly, but rather propose an efficient mesh refinement for a
classical solver.

Supervised Learning for AMR. Applications of supervised learning for AMR include directly
calculating an error per mesh element with a Multilayer Perceptron (MLP) [11] and predicting
mesh densities from domain images [70]. Additionally, recurrent networks have been used to find
optimal marking strategies for second-order elliptical PDEs [74]. Another body of work speeds up
the computation of Dual Weighted Residual [75, 76] error estimators by substituting expensive parts
of the procedure with neural networks. Here, recent methods [77, 78] consider learning a metric
tensor from solution information that can then be used in existing refinement procedures [24]. Other
approaches [79, 13] employ neural networks to solve the strong form of the adjoint problem and use
hand-crafted features to compute error estimates directly. We instead leverage the fact that RL can
optimize non-differentiable rewards, enabling us to directly learn a refinement strategy in an iterative
manner instead of learning error estimators or other specific facets of AMR.

Reinforcement Learning for AMR. Current research in Reinforcement Learning for AMR involves
various approaches, such as optimizing the positions of mesh elements [80], predicting a global thresh-
old for heuristic-based refinement using existing error estimates [81], and generating quadrilateral
meshes by iteratively extracting elements from the problem domain [82].

We instead directly manipulate the mesh elements themselves. This approach presents a unique
challenge in that the size of the observation and action spaces is constantly changing during refinement.
Existing methods [28, 29, 30] derive their observation spaces from the mesh geometry and the solution
computed on the mesh. These methods are generally designed for non-stationary PDEs and thus
include mesh coarsening operations that are required for time-dependent problems. While our method
can easily be extended to coarsening and time-dependent problems, this work instead considers
static meshes and mostly stationary problems due to their prevalence in engineering [43, 44] . Here,
the challenge lies in finding multiple levels of accurate refinements rather than shallow or local
time-dependent refinement and coarsening. The earliest of these methods [28] treats the entire mesh
as an action and observation space for a Single Agent, which uses a GNN-based policy to provide
a categorical action that selects a single element for refinement. Single Agent demands solving the
system of equations after each refinement step, significantly increasing inference time while reducing
the amount of information per environment sample. Another approach [30] iteratively selects a
random element during training and uses an MLP policy to determine its marking based on local and
global features. During inference, the method performs a Sweep for all mesh elements in parallel.

3

Laplace Poisson Stokes Flow Linear Elasticity Heat Diffusion

Figure 2: Exemplary ASMR refinements. The heatmaps represent the normalized quantities of
interest. ASMR provides complex and accurate refinements for different tasks. From left to right:
Laplace’s equation requires a homogeneous refinement near the source at the inner boundary. For
Poisson’s equation, a multi-modal load function causes multiple distinct regions of interest. The
Stokes flow uses more complex shape functions and requires high precision near the inlet on the
left and the rhomboid holes. For the linear elasticity task, we consider both the deformation and the
resulting stress as quantities of interest. The heat diffusion task requires accurate refinements on the
path of the moving heat source to predict an accurate solution of the final step.

This procedure speeds up inference but causes a misalignment in the environment transition between
training and inference [29]. Additionally, during training, the agent is randomly assigned a new
element after each action, leading to high variance in the state transitions.

Most similar to our method are Value Decomposition Graph Networks (VDGN) [29] which frame
AMR as a cooperative multi-agent problem by setting a maximum refinement depth and number of
agents. VDGN employs a Value Decomposition Network [83] to circumvent the posthumous credit
assignment problem [84] of vanishing agents. Though theoretically efficient in training and inference,
the method’s performance depends on the quality of the value decomposition, which becomes more
difficult for larger meshes. In summary, existing RL methods do not utilize the spatial nature of AMR
and thus only scale to either simple or comparatively shallow refinements. We instead formulate AMR
as a Swarm Reinforcement Learning problem with spatial rewards, naturally integrating changing
observation and action spaces while also providing a strong feedback signal to all agents.

3 Adaptive Swarm Mesh Refinement

In the following, we introduce the individual components of ASMR, including our novel Adaptive
Swarm Markov Decision Process (ASMDP) and spatial reward function. We consider each element
Ωt

i ∈ Ωt of a mesh Ωt to be an agent in a swarm system. The agent’s state is its position in the
mesh, as well as boundary conditions and other PDE-dependent quantities. The agent’s observation
consists of a local view of a graph GΩt where each node represents a mesh element and each edge
the neighborhood of two elements. We train a simple MPN-based policy π(a|GΩt) that computes a
joint action vector a ∈ AN for each mesh element by passing messages along the observation graph,
as detailed in Appendix A. The action vector is used for refinement, and the process is repeated
with the refined mesh for a given number of steps. Since our policy uses a GNN, it is equivariant to
permutation and can handle varying numbers of agents by construction. Figure 1 provides a schematic
overview of our method.

Adaptive Swarm Markov Decision Process. We adapt the SwarMDP framework [31, 32] to
incorporate action and observation spaces of changing size as necessary for AMR, agent-wise rewards
and mappings between agents over time. The resulting framework is conceptually simpler than,
e.g., a decentralized partially obeservable MDP with dummy states [29], makes the permutation-
equivariance of the agents explicit and naturally integrates both the agent-dependent reward and
the mapping between agents. Formally, we define an Adaptive Swarm Markov Decision Process
(ASMDP) as a tuple ⟨S,O,A, T, r, ξ,M⟩. Here, S is the state space of the system, O is the space of
observations for this state space, and A is the action space for the system of agents. Let SN ⊂ S,
ON ⊂ O, AN ⊂ A denote the subsets of the state, observation, and action spaces with exactly N
agents. The transition function T : SN ×AN → SK maps to a new system state with a potentially
different number of agents, and r : SN ×AN → RN is a per-agent reward function. The observation
graph of the agents is calculated from their states via the observation function ξ : SN → ON . To

4

accommodate changing numbers of agents throughout an episode, we define an agent mapping
Mt ∈ [0, 1]N×K with

∑
i M

t
ij = 1 for all j = 1, . . . ,K that specifies how agents evolve at time

step t. Each entry Mt
ij describes whether agent i at step t progresses into agent j at step t+ 1. The

influence of each agent at step t on the reward, in terms of all successor agents it is responsible for up
to step t+ k, can then be computed via the matrix multiplication Mt,k := MtMt+1 . . .Mt+k−1.

The usual objective in RL is to find a policy π : ON ×AN → [0, 1] that maximizes the return, i.e.,
the expected discounted cumulative future reward J t := Eπ(a|ξ(s))

[∑∞
k=0 γ

kr(st+k,at+k)
]

for a
discount factor γ and scalar reward r(st+k,at+k) at step t+ k. Adapting this to varying numbers of
agents within a single episode, as necessary for e.g., the refinement of mesh elements, yields

J t
i := Eπ(a|ξ(s))

[∞∑
k=0

γk(Mt,kr(st+k,at+k))i

]
, (1)

for agent i at step t. Intuitively, this return represents the discounted sum of rewards of all agents that
agent i is responsible for. We set Vi(s

t) = r(st,at)i + γ
∑

j M
t
ijVj(T (s

t,at)) with a ∼ π(ξ(s))
for training the value function and derive the targets for Q-functions analogously.

Agents and Observations. Given a domain Ω and a mesh Ωt := {Ωt
i ⊆ Ω|

⋃̇
i Ω

t
i = Ω}, we

view each mesh element Ωt
i as an agent. Each element’s action space comprises a binary decision

to mark it for refinement. These markings are provided to a remesher, which refines all marked
elements, yielding a finer mesh Ωt+1 = {Ωt+1

j }j . Here, Ωt+1
j := Ωt

i for no refinement and
Ωt+1

j ⊊ Ωt
i with

⋃̇
jΩ

t+1
j = Ωt

i if Ωt
i is refined. The remesher may also refine unmarked elements

to assert a conforming solution [41], i.e., to make sure that elements of the mesh align with each
other at the boundaries and interfaces to ensure continuity of solution variables between adjacent
elements. We define the mapping for an agent to its successor agents as the indicator function
Mt

ij := I(Ωt+1
j ⊆ Ωt

i). In other words, an agent maps to all future agents that it spawns, or
equivalently, an element is responsible for all sub-elements that it refines into over time. While we
focus on mesh refinement in this work, this mapping can be extended to coarsening by setting, e.g.,
Mt

ij := I(Ωt+1
j ⊆ Ωt

i) +
(
I(Ωt

i ⊊ Ωt+1
j)/

(∑
k I(Ωt

k ⊊ Ωt+1
j)

))
.

For encoding the observations, we use an observation graph GΩt = G = (V, E ,XV ,XE), which is
a bidirectional directed graph with mesh elements as nodes V and their neighborhood relation as
edges E ⊆ V × V . Node and edge features of dimensions dV and dE are given as XV : V → RdV

and XE : E → RdE . Further details can be found in Appendix B.

Reward. A good refinement strategy trades off the accuracy of the solution of the mesh Ωt with its
total number of elements Ωt

i ∈ Ωt. We define an error per element as the difference in the solution of
this element compared to a solution using a fine-grained reference mesh Ω∗ [28]. We consider Ω∗ to
be optimal, but very slow to compute due to a large number of elements. However, we only require
the reference mesh Ω∗ for the reward calculation, not during inference. For each element Ωt

i we then
integrate over the evaluated differences of all midpoints pΩ∗

m
∈ Ω∗

m of reference elements Ω∗
m that

fall into it, scaling each by the area Area(Ω∗
m) of its respective element. This procedure results in an

error estimate
êrr(Ωt

i) ≈
∑

Ω∗
m⊆Ωt

i

Area(Ω∗
m)

∣∣uΩ∗(pΩ∗
m
)− uΩt(pΩ∗

m
)
∣∣ , (2)

where uΩ∗ denotes the solution on the fine mesh and uΩt the solution on the current mesh. We
note that this error estimate can be efficiently calculated using a k-d tree [85] and that it is gen-
erally applicable for a large range of PDEs. Problem-specific error estimates may be used in-
stead to include domain knowledge. To get an error estimate that is consistent across different
geometries, we normalize the error with the total error of the elements of the initial mesh Ω0, i.e.,
err(Ωt

i) = êrr(Ωt
i)/

∑
Ω0

j∈Ω0 êrr(Ω0
j). We then formulate a local reward per element as

r(Ωt
i) :=

1

Area(Ωt
i)

err(Ωt
i)−

∑
j

Mt
ijerr(Ωt+1

j)

− α

∑
j

Mt
ij − 1

 , (3)

where α is a hyperparameter that penalizes adding new elements.

This reward function evaluates whether a refinement decreases the overall error by enough to justify
the extra resources required, with a reward of 0 for unrefined elements. Thus, the reward maximizes

5

α = 0.1 α = 0.05 α = 0.03 α = 0.01 α = 0.005

Figure 3: Final refinements of ASMR on a Heat Diffusion problem for different values of the element
penalty α. All refinements focus on the relevant parts of the problem, and lower element penalties
lead to more fine-grained meshes.

error reduction, rather than simply encouraging a refinement of areas with a high existing error
regardless of the resulting mesh improvement. Further, incorporating a novel area scaling term
encourages the policy to focus on smaller elements with a high potential reduction in error rather than
larger elements with a low average error reduction, up to some threshold depending on the element
penalty α. We find that the combination of a local formulation and the area scaling term allows for
a simpler credit assignment for the RL agents, as it ensures that each agent gets rewarded for its
own actions and that rewards of elements of different sizes are on the same scale. Similarly, the area
scaling term of the reward effectively cancels out the area of the integration points in Equation 2,
causing the policies optimized on this reward to implicitly minimize the maximum remaining error
of the mesh, while also making sure that the mean error stays sufficiently low. We compare this to
directly minimizing the maximum error in Appendix C.2.

Since the effects of mesh refinement can be non-local for elliptical PDEs, we optimize the average of
the local and global returns, i.e.,

J t
i
′
=

1

2
J t
i +

1

2
J t, (4)

where J t
i is the return of agent i at step t as shown in Equation 1, and J t is the global return calculated

using the average reward r = 1
N

∑
j rj . In multi-quantity systems of equations, it is important for

the mesh to be suitable for all the quantities of interest. For this, we calculate individual errors
errd(Ωt

i) for each solution dimension and then use a norm or a convex sum of these as the overall
error, depending on the application.

4 Experiments

Setup. All learned methods are trained on 100 PDEs and their corresponding initial and reference
meshes Ω0, Ω∗ to limit the number of required reference meshes during training. We experiment
with 10 different target mesh resolutions per method to produce a wide range of solutions, as detailed
in Appendix F.3. We repeat each experiment for 10 random seeds and always report the average
performance on 100 randomly sampled but fixed evaluation PDEs. These PDEs are disjoint from
the training PDEs, and both sets of PDEs consist of randomly sampled domains as well as boundary
and initial conditions as detailed below. Details on the setup and the computational budget for our
experiments are provided in Appendix C.1. The reference mesh Ω∗ is created by uniformly refining
the initial mesh 6 times. An environment episode consists of drawing one of the 100 training PDE
without replacement, and iteratively refining the coarse initial mesh Ω0 a total of T = 6 times
unless mentioned otherwise. Since the maximum number of elements scales exponentially with the
refinement depth, we additionally evaluate a simpler task setup with T = 4 refinements to roughly
replicate the task complexity of existing work [28, 63, 29]. We experiment with Deep Q-Network
(DQN) [86, 87] as an off-policy and Proximal Policy Optimization (PPO) [88] with discrete actions
as an on-policy RL algorithm for all RL-based methods.

We evaluate mesh quality by calculating the squared error at each point in the high-resolution reference
Ω∗, i.e., as

∑
Ω∗

m∈Ω∗ Area(Ω∗
m)

(
uΩ∗(pΩ∗

m
)− uΩt(pΩ∗

m
)
)2

, and normalize the resulting value by
that of the initial mesh for comparability across PDEs. This metric captures both the maximum
localized errors by punishing outliers, and the overall error across the domain. We evaluate both
the mean error and an approximation of the maximum error over the mesh as additional metrics in
Appendix D.6. Appendix F.1 lists all further algorithm and neural network hyperparameters.

6

Graph Features. The features Xv of each node v ∈ V consist of the environment timestep, the
element area, the distance to the closest boundary, and the mean and standard deviation of the
solution on the element’s vertices. Edge features Xe are defined as Euclidean distances between
element midpoints. We omit absolute positions to ensure that the observations are equivariant under
the Euclidean group [38, 37] to utilize the underlying symmetry of the task. We use additional
task-dependent node features for some considered systems of equations, as described in Appendix B.

Systems of Equations We experiment on various 2D elliptical PDEs, namely the Laplace equation,
the Poisson equation, a Stokes flow task, a linear elasticity example, and a non-stationary heat
diffusion equation. The domains are L-shapes, rectangles with a square hole or multiple rhomboid
holes, and convex polygons. Figure 2 shows exemplary ASMR refinements on all tasks and briefly
explains the challenge associated with each task. The PDEs and the FEM are implemented using
scikit-fem [89], and we use conforming triangular meshes and linear elements unless mentioned
otherwise. The code provides OpenAI gym [40] environments for all tasks. We define the systems of
equations and their specific features in Appendix B.

Baselines. We adapt several recent RL methods [28, 29, 30] that were originally designed for
non-stationary AMR as baselines for our application focusing on stationary refinements. We use our
error estimates as the basis of all reward calculations for comparability but otherwise calculate the
rewards as described in the respective papers. Single Agent [28] predicts a categorical action over the
mesh to mark the next element for refinement. Sweep [30] trains a single-agent policy by randomly
sampling an element on the mesh and deciding its refinement based on local features and a global
resource budget. During inference, each timestep consists of a sweep over the full mesh that may
mark each element. Finally, VDGN [29] estimates a global Q-function as the sum of agent-wise local
Q-functions. As the PPO version of VDGN has no Q-Function, we decompose the value function as
the sum of value functions of the individual elements, yielding a VDGN-like baseline in the case of
the PPO version. We use an MPN policy for Single Agent and VDGN, while Sweep utilizes a simple
MLP. Hyperparameters and further details are provided in Appendix F.2

We also compare to a traditional error-based Oracle Error Heuristic [90, 91, 30]. Given a re-
finement threshold θ, the Oracle Error Heuristic iteratively refines all elements Ωt

i for which
err(Ωt

i) > θ · maxj err(Ωt
j). As we are also interested in the reduction of the maximum error,

we analogously define the Maximum Oracle Error Heuristic, which uses the maximum error per
element maxΩ∗

m⊆Ωt
i

∣∣uΩ∗(pΩ∗
m
)− uΩt(pΩ∗

m
)
∣∣ as a surrogate error estimate. Note that these base-

lines require the fine-grained reference mesh Ω∗, which is expensive to compute and thus usually
unavailable during inference. As a substitute, we consider the commonly used ZZ Error, which uses
the superconvergent patch recovery process to estimate an error per mesh element [21]. Similar to
the Oracle Error Heuristic, these estimates are combined with a refinement threshold θ to iteratively
refine the mesh. The ZZ Error generally produces smooth error estimates as the recovery process
requires averaging over neighboring mesh elements, which can in some cases lead to more coherent
refinements when compared to the Oracle Error Heuristic. The heuristics act on local element
information and greedily refine elements with a high error rather than elements for which a refinement
would lead to a high reduction in error. As such, they may select sub-optimal refinements for globally
propagating errors, which is a well-known issue for elliptic PDEs [92, 30]. In contrast, RL methods
learn to directly maximize the decrease in error, allowing them to find long-term strategies that also
take the local receptive fields of the individual agents into account.

Additional Experiments. We conduct a series of ablation experiments to determine which parts of
ASMR make it uniquely effective. We look at both the area scaling and the spatial decomposition of
the reward in Equation 3 and ablate different node features and the number of training PDEs that
are used. Additionally, we consider an alternate reward formulation that uses the maximum error
per element instead of its average as detailed in Appendix C.2. Due to their importance for practical
applications, we further experiment with both generalization to unseen and larger domains and the
improvements in runtime for ASMR compared to a uniform refinement.

5 Results

Quantitative Results. We visualize the mesh quality quantitatively with a Pareto plot of the number
of elements and the remaining error. We plot one point per trained policy, which represents the
interquartile mean [93] of this policy when evaluated on 100 evaluation environments. We further

7

ASMR (Ours) Single Agent VDGN-like (PPO) Sweep
Heuristic (Oracle Error) Heuristic (Max. Oracle Err.) Heuristic (ZZ Error) Uniform Refinement

0.0 0.2 0.4 0.6 0.8 1.0 1.2

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

E
rr

or

Laplace’s Equation - 4 Refinements

0.0 2.0 4.0 6.0 8.0

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Laplace’s Equation - 6 Refinements

Figure 4: Pareto plot of normalized squared errors and number of final mesh elements for Laplace’s
Equation. (Left) For only 4 refinement steps, all learned methods perform well and significantly
improve upon a uniform refinement. (Right) Scaling to 6 refinement steps, the learned baselines
become less stable and in some cases fail to provide refinements that are better than uniform. In
contrast, ASMR consistently provides high-quality refinements and is on par with or better than the
heuristics in both cases.

provide a log-log quadratic regression over the aggregated results of each method as a general
trend-line. To enhance visibility and focus on typical behavior, we exclude sporadic outliers from the
baseline methods that produce degenerate meshes with an excessively high number of elements. For
all learned methods, we experiment with both PPO and DQN as the RL backbone on the Poisson
equation in Appendix D.1. All learned methods, including ASMR yield better results with PPO,
indicating that an on-policy algorithm is favorable when dealing with action and observation spaces
of varying size. Similarly, we compare the Graph Attention Network (GAT)-like [94] architecture
proposed by VDGN [29] to MPNs in Appendix D.2, finding that ASMR works well for both
architectures, while VDGN performs better with MPNs. We consequently use PPO and MPNs in all
other experiments. Appendix D.3 compares the ZZ Error estimator for different initial refinement
levels. As the results show that a sufficiently fine initial mesh is important, we start each refinement
procedure for the ZZ Error Heuristic with two uniform refinements. We note that this initial tuning
prevents coarse refinements and is not needed for our method.

Using these results, Figure 4 compares the different approaches on Laplace’s equation. The left side
of Figure 4 shows that all methods work in a simple setup on par with experiments from previous
work. Here, 4 refinement steps are used for all methods except for Single Agent, which instead
refines 4 times fewer elements. On the right side, scaling to 6 refinement steps and significantly more
elements, only ASMR effectively handles larger instances while learned methods falter. Notably,
ASMR also outperforms the Oracle, Maximum Oracle, and ZZ Error Heuristics. These results
demonstrate the effectiveness of our Swarm RL framework for learning non-greedy refinement
strategies for static meshes. Specifically, ASMR refines elements with a high potential for error
reduction over the heuristics’ strategy of targeting elements with high error. Figure 5 provides results
on the remaining tasks. Appendix D.6 presents additional results using a mean error and a smooth
version of a maximum error metric. ASMR clearly outperforms the learned baselines on all tasks
and is generally competitive with or better than the Heuristics. Both heuristics improve over the RL
methods on the Stokes flow task, likely because the task requires high precision for both the inlet and
on inner boundaries near regions of high flow velocity.

Qualitative Results. Figure 2 shows refinements of ASMR on randomly sampled systems of
equations for all considered tasks. The refinement strategy adapts to the given task, providing an
efficient trade-off between simulation accuracy and the number of elements used. Figure 3 visualizes
the refinements of ASMR on a randomly sampled heat diffusion problem. ASMR refines based on
the element penalty α, yet always focuses on the heat source and its path. Appendix G.1 provides
additional ASMR visualizations for all tasks, and Appendix G.2 visualizes all methods on Poisson’s
equation to showcase common refinement behaviors. Appendix G.3 presents the iterative marking
procedure of our approach on an exemplary Poisson problem.

8

ASMR (Ours) Single Agent VDGN-like (PPO) Sweep
Heuristic (Oracle Error) Heuristic (Max. Oracle Err.) Heuristic (ZZ Error) Uniform Refinement

0.0 2.0 4.0 6.0 8.0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Sq
ua

re
d

E
rr

or
Poisson’s Equation

0.0 2.0 4.0 6.0 8.0 10.0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Stokes Flow

0.0 2.0 4.0 6.0 8.0 10.0 12.0

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

E
rr

or

Linear Elasticity

0.0 1.0 2.0 3.0 4.0 5.0 6.0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Heat Diffusion

Figure 5: Pareto plot of normalized squared errors and number of final mesh elements across different
tasks. All methods generally work well for relatively small instances, but Single Agent, VDGN-like
and Sweep break down for larger meshes. Our method uniquely scales to meshes to thousands of
elements and consistently outperforms these learned baselines on all tasks and while performing on
par with or better than the Oracle, Maximum Oracle and ZZ Error Heuristics in most cases.

Ablations. The reward proposed in Equation 3 combines an area scaling per element with a spatial
allocation of the decrease in error to the individual mesh elements. Figure 6 investigates these
decisions. We find that combining both features is uniquely responsible for the effectiveness of our
method, suggesting that the spatial reward’s limited expressiveness for small elements is compensated
by area scaling. However, the area scaling can only be leveraged if it is allocated to individual mesh
elements, as it may introduce excessive reward noise on the full mesh. The maximum reward variant
of Appendix C.2 explicitly minimizes the maximum error of the mesh, resulting to refinements of
similar quality than those created by ASMR using the reward in Equation 3. We thus use the latter as
it simplifies the error estimate in the reward function and better aligns with existing work.

We evaluate the effect of different parameters for the target mesh resolution in Appendix D.4, finding
that ASMR provides meshes with considerably more consistent numbers of elements for a given
target resolution than the other learned methods. Additional ablations in Appendix D.5 show that 100
training PDEs are sufficient and that adding absolute positions in the node features is detrimental,
while providing solution information and load function evaluations improves performance.

Generalization Capabilities and Runtime Experiments. Table 1 compares the wall-clock time of
ASMR trained on a variant of the Poisson task with that of the reference Ω∗, showing that our method
provides a speedup of more than factor 100 compared to computing a uniform mesh for large domains.
The evaluation uses load functions with 16 Gaussian modes and spiral-shaped of varying sizes for the
same average initial element size. Appendix E.1 provides details for the training environments and the
spiral-shaped evaluation domain, as well as results on larger domains and the associated improvement
in runtime. These results includes an ASMR visualization of a refinement of a 20× 20 spiral domain
with more than 50 000 elements. Appendix E.2 additionally shows the exceptional generalization
capabilities of ASMR across various domains and load functions for Poisson’s equation on 1 × 1
domains. Appendix E.3 presents further runtime comparisons for all tasks and shows that ASMR
provides a task-dependent speedup of factor 2 to 30 over a uniform refinement.

9

ASMR (Area Scaling, Spatial Reward) Area Scaling, Global Reward Maximum Reward
No Area Scaling, Spatial Reward No Area Scaling, Global Reward Uniform Refinement

0.0 2.0 4.0 6.0 8.0 10.0 12.0

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

E
rr

or
Linear Elasticity

Figure 6: Pareto plot of normalized squared errors
and number of final mesh elements for the Linear
Elasticity task for different reward ablations. ASMR
benefits from the area scaling term of Equation 3 and
a spatial reward formulation. The maximum reward of
Appendix C.2 performs similar to that of Equation 3.

Domain Elements Time[s] Speedup[×]
2× 2 4208 0.19 14.6
3× 3 4185 0.23 29.6
4× 4 4391 0.28 47.1
5× 5 5120 0.35 67.3
6× 6 5462 0.41 90.1
7× 7 6515 0.51 114.8
8× 8 7506 0.60 131.4

Table 1: Elements and speedup versus uni-
form refinement for achieving a normalized
squared error of 0.001 for different domain
sizes on Poisson’s Equation. The elements
required for the error threshold grow slower
than the domain size, indicating fewer ar-
eas of significant error in larger domains.
Thus, ASMR offers increasing speedups as
the size of the domain increases.

The generalization capabilities in combination with the fast runtime of our method offer substantial
advantages in practical engineering applications. A policy can be trained on small, cost-effective
environments and then deployed on much larger and dynamically changing setups during inference.
These generalization traits arise from the MPN architecture and the utilized observation graphs, which
both lead to refinement strategies based on local element neighborhoods rather than global meshes.

6 Conclusion

We present a novel Adaptive Mesh Refinement method that uses Swarm Reinforcement Learning
to iteratively refine meshes for efficient solutions of Partial Differential Equations. Our approach,
Adaptive Swarm Mesh Refinement (ASMR), treats each mesh element as an agent and trains all agents
under a shared policy using Graph Neural Networks and a novel per-agent reward formulation. ASMR
gracefully scales to meshes with thousands of elements without requiring an error estimate during
inference. In our experiments focused on static meshes, ASMR demonstrates strong performance in
handling complex refinements. The method significantly outperforms both existing Reinforcement
Learning-based approaches and traditional refinement strategies, achieving a mesh quality comparable
to expensive oracle-based error heuristics. Once trained, the ASMR policy generalizes well to
different forcing functions and significantly larger problem domains. In terms of runtime, our method
outperforms uniform refinements by up to 30 times on domains similar in scale to the training set,
and by over 100 times in larger evaluation setups.

Broader Impact Our proposed Adaptive Mesh Refinement technique can positively impact various
fields relying on computational modeling and simulation. By reducing simulation times while
maintaining high precision, this technology enables researchers to explore a wider range of scenarios.
However, like any powerful tool, there are potential negative impacts, such as the development of
advanced weapon models or exploitation of resources.

Limitations and Future Work Our approach solves the partial differential equation after each
refinement step, which requires a considerable amount of computation time. In future work, we will
explore using Swarm RL for refinement strategies from the raw geometry and boundary conditions
to further speed up our approach. We currently use relatively simple message passing networks
for our policy, and want to optimize the network architecture to include, e.g., long-range message
passing. Lastly, this work only considers 2D problems, static meshes with triangular elements, and
comparatively simple domains. Here, we want to extend and modify our approach to quadrilateral
meshes, time-dependent refinement and coarsening operations, and 3-dimensional domains.

10

Acknowledgments and Disclosure of Funding

NF was supported by the BMBF project Davis (Datengetriebene Vernetzung für die ingenieurtechnis-
che Simulation). This work is also part of the DFG AI Resarch Unit 5339 regarding the combination
of physics-based simulation with AI-based methodologies for the fast maturation of manufacturing
processes. The financial support by German Research Foundation (DFG, Deutsche Forschungsge-
meinschaft) is gratefully acknowledged. The authors acknowledge support by the state of Baden-
Württemberg through bwHPC, as well as the HoreKa supercomputer funded by the Ministry of
Science, Research and the Arts Baden-Württemberg and by the German Federal Ministry of Educa-
tion and Research.

References
[1] Susanne C Brenner and L Ridgway Scott. The mathematical theory of finite element methods,

volume 3. Springer, 2008.

[2] Junuthula Narasimha Reddy and David K Gartling. The finite element method in heat transfer
and fluid dynamics. CRC press, 2010.

[3] Junuthula Narasimha Reddy. Introduction to the finite element method. McGraw-Hill Educa-
tion, 2019.

[4] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier,
Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, et al. Mfem:
A modular finite element methods library. Computers & Mathematics with Applications,
81:42–74, 2021.

[5] Tomasz Plewa, Timur Linde, V Gregory Weirs, et al. Adaptive mesh refinement-theory and
applications. Springer, 2005.

[6] Weizhang Huang and Robert D Russell. Adaptive moving mesh methods, volume 174. Springer
Science & Business Media, 2010.

[7] Krzysztof J Fidkowski and David L Darmofal. Review of output-based error estimation and
mesh adaptation in computational fluid dynamics. AIAA journal, 49(4):673–694, 2011.

[8] Marsha J Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of computational Physics, 82(1):64–84, 1989.

[9] Timothy J Baker. Mesh adaptation strategies for problems in fluid dynamics. Finite Elements
in Analysis and Design, 25(3-4):243–273, 1997.

[10] Raunak Borker, Daniel Huang, Sebastian Grimberg, Charbel Farhat, Philip Avery, and Jason
Rabinovitch. Mesh adaptation framework for embedded boundary methods for computational
fluid dynamics and fluid-structure interaction. International Journal for Numerical Methods in
Fluids, 90(8):389–424, 2019.

[11] Zheyan Zhang, Yongxing Wang, Peter K Jimack, and He Wang. Meshingnet: A new mesh
generation method based on deep learning. In Computational Science–ICCS 2020: 20th
International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part III
20, pages 186–198. Springer, 2020.

[12] Joseph Gregory Wallwork. Mesh adaptation and adjoint methods for finite element coastal
ocean modelling. PhD thesis, Imperial College London, 2021.

[13] Joseph Gregory Wallwork, Jingyi Lu, Mingrui Zhang, and Matthew D Piggott. E2n: Error
estimation networks for goal-oriented mesh adaptation. arXiv preprint arXiv:2207.11233,
2022.

[14] M Ortiz and JJ Quigley Iv. Adaptive mesh refinement in strain localization problems. Computer
Methods in Applied Mechanics and Engineering, 90(1-3):781–804, 1991.

[15] Nikolas Provatas, Nigel Goldenfeld, and Jonathan Dantzig. Efficient computation of dendritic
microstructures using adaptive mesh refinement. Physical Review Letters, 80(15):3308, 1998.

[16] Erwin Stein. Adaptive finite elements in linear and nonlinear solid and structural mechanics,
volume 416. Springer Science & Business Media, 2007.

11

[17] Gaël Gibert, Benoit Prabel, Anthony Gravouil, and Clémentine Jacquemoud. A 3d automatic
mesh refinement x-fem approach for fatigue crack propagation. Finite Elements in Analysis
and Design, 157:21–37, 2019.

[18] Andrew J Cunningham, Adam Frank, Peggy Varnière, Sorin Mitran, and Thomas W Jones.
Simulating magnetohydrodynamical flow with constrained transport and adaptive mesh re-
finement: algorithms and tests of the astrobear code. The Astrophysical Journal Supplement
Series, 182(2):519, 2009.

[19] Greg L Bryan, Michael L Norman, Brian W O’Shea, Tom Abel, John H Wise, Matthew J
Turk, Daniel R Reynolds, David C Collins, Peng Wang, Samuel W Skillman, et al. Enzo: An
adaptive mesh refinement code for astrophysics. The Astrophysical Journal Supplement Series,
211(2):19, 2014.

[20] Thomas Guillet, Rüdiger Pakmor, Volker Springel, Praveen Chandrashekar, and Christian
Klingenberg. High-order magnetohydrodynamics for astrophysics with an adaptive mesh
refinement discontinuous galerkin scheme. Monthly Notices of the Royal Astronomical Society,
485(3):4209–4246, 2019.

[21] Olgierd Cecil Zienkiewicz and Jian Zhong Zhu. The superconvergent patch recovery and a
posteriori error estimates. part 1: The recovery technique. International Journal for Numerical
Methods in Engineering, 33(7):1331–1364, 1992.

[22] Arup Mukherjee. An adaptive finite element code for elliptic boundary value problems in three
dimensions with applications in numerical relativity. The Pennsylvania State University, 1996.

[23] Eisuke Kita and Norio Kamiya. Error estimation and adaptive mesh refinement in boundary
element method, an overview. Engineering Analysis with Boundary Elements, 25(7):479–495,
2001.

[24] Masayuki Yano and David L Darmofal. An optimization-based framework for anisotropic
simplex mesh adaptation. Journal of Computational Physics, 231(22):7626–7649, 2012.

[25] Wolfgang Bangerth and Rolf Rannacher. Adaptive Finite Element Methods for Differential
Equations. Birkhäuser, 2013.

[26] Jakub Cerveny, Veselin Dobrev, and Tzanio Kolev. Nonconforming mesh refinement for
high-order finite elements. SIAM Journal on Scientific Computing, 41(4):C367–C392, 2019.

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[28] Jiachen Yang, Tarik Dzanic, Brenden K Petersen, Jun Kudo, Ketan Mittal, Vladimir Tomov,
Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio Kolev, Robert Anderson, and Daniel
Faissol. Reinforcement learning for adaptive mesh refinement. 26th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2023.

[29] Jiachen Yang, Ketan Mittal, Tarik Dzanic, Socratis Petrides, Brendan Keith, Brenden Petersen,
Daniel Faissol, and Robert Anderson. Multi-agent reinforcement learning for adaptive mesh
refinement. 22nd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2023.

[30] Corbin Foucart, Aaron Charous, and Pierre FJ Lermusiaux. Deep reinforcement learning for
adaptive mesh refinement. arXiv preprint arXiv:2209.12351, 2022.

[31] Adrian Šošić, Wasiur R KhudaBukhsh, Abdelhak M Zoubir, and Heinz Koeppl. Inverse rein-
forcement learning in swarm systems. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pages 1413–1421, 2017.

[32] Maximilian Hüttenrauch, Šošić Adrian, and Gerhard Neumann. Deep reinforcement learning
for swarm systems. Journal of Machine Learning Research, 20(54):1–31, 2019.

[33] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of
the 37th International Conference on Machine Learning, pages 8459–8468. PMLR, 2020.

[34] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,
2009.

12

[35] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[36] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[37] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[38] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learn-
ing mesh-based simulation with graph networks. In International Conference on Learning
Representations, 2021.

[39] Jonas Linkerhägner, Niklas Freymuth, Paul Maria Scheikl, Franziska Mathis-Ullrich, and
Gerhard Neumann. Grounding graph network simulators using physical sensor observations.
In The Eleventh International Conference on Learning Representations (ICLR), 2023.

[40] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[41] Douglas N Arnold, Arup Mukherjee, and Luc Pouly. Locally adapted tetrahedral meshes using
bisection. SIAM Journal on Scientific Computing, 22(2):431–448, 2000.

[42] Rob Stevenson. The completion of locally refined simplicial partitions created by bisection.
Mathematics of computation, 77(261):227–241, 2008.

[43] Anand Nagarajan and Soheil Soghrati. Conforming to interface structured adaptive mesh
refinement: 3d algorithm and implementation. Computational Mechanics, 62:1213–1238,
2018.

[44] K Ho-Le. Finite element mesh generation methods: a review and classification. Computer-
aided design, 20(1):27–38, 1988.

[45] Mark T Jones and Paul E Plassmann. Adaptive refinement of unstructured finite-element
meshes. Finite Elements in Analysis and Design, 25(1-2):41–60, 1997.

[46] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator
with built-in pre-and post-processing facilities. International journal for numerical methods in
engineering, 79(11):1309–1331, 2009.

[47] Pierre Baqué, Edoardo Remelli, François Fleuret, and Pascal Fua. Geodesic convolutional
shape optimization. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
481–490. PMLR, 2018.

[48] Nikita Durasov, Artem Lukoyanov, Jonathan Donier, and Pascal Fua. Debosh: Deep bayesian
shape optimization. arXiv preprint arXiv:2109.13337, 2021.

[49] Kelsey R Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez,
Peter Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical design using differentiable learned
simulators. arXiv preprint arXiv:2202.00728, 2022.

[50] Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks.
Computer Graphics Forum, 37(8):171–182, 2018.

[51] Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent Space Physics: Towards Learning
the Temporal Evolution of Fluid Flow. Computer Graphics Forum, 2019.

[52] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow
approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, page 481–490, New York, NY, USA, 2016.
Association for Computing Machinery.

[53] Mengyu Chu and Nils Thuerey. Data-driven synthesis of smoke flows with cnn-based feature
descriptors. ACM Trans. Graph., 36(4), jul 2017.

13

[54] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempoGAN: A Temporally Coherent,
Volumetric GAN for Super-resolution Fluid Flow. ACM Transactions on Graphics (TOG),
37(4):95, 2018.

[55] Yao Zhang, Woong Je Sung, and Dimitri N. Mavris. Application of convolutional neural
network to predict airfoil lift coefficient. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, 2018.

[56] Clemens Zimmerling, Daniel Trippe, Benedikt Fengler, and Luise Kärger. An approach for
rapid prediction of textile draping results for variable composite component geometries using
deep neural networks. AIP Conference Proceedings, 2113(1), 07 2019. 020007.

[57] Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. Deep Fluids: A Generative Network for Parameterized Fluid Simulations.
Computer Graphics Forum (Proc. Eurographics), 38(2), 2019.

[58] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik.
Prediction of aerodynamic flow fields using convolutional neural networks. Computational
Mechanics, 64(2):525–545, jun 2019.

[59] Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid
simulation with continuous convolutions. In International Conference on Learning Represen-
tations, 2020.

[60] Clemens Zimmerling, Christian Poppe, Oliver Stein, and Luise Kärger. Optimisation of
manufacturing process parameters for variable component geometries using reinforcement
learning. Materials & Design, 214:110423, 2022.

[61] Zehang Weng, Fabian Paus, Anastasiia Varava, Hang Yin, Tamim Asfour, and Danica Kragic.
Graph-based task-specific prediction models for interactions between deformable and rigid
objects. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5741–5748, 2021.

[62] Xu Han, Han Gao, Tobias Pffaf, Jian-Xun Wang, and Li-Ping Liu. Predicting physics in
mesh-reduced space with temporal attention. CoRR, abs/2201.09113, 2022.

[63] Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia.
Multiscale meshgraphnets. In ICML 2022 2nd AI for Science Workshop, 2022.

[64] Kelsey R Allen, Tatiana Lopez Guevara, Yulia Rubanova, Kimberly Stachenfeld, Alvaro
Sanchez-Gonzalez, Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn
discontinuous, rigid contact dynamics. Conference on Robot Learning (CoRL)., 2022.

[65] Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction
graph networks. The Eleventh International Conference on Learning Representations (ICLR),
2023.

[66] Tailin Wu, Takashi Maruyama, Qingqing Zhao, Gordon Wetzstein, and Jure Leskovec. Learn-
ing controllable adaptive simulation for multi-resolution physics. In The Eleventh International
Conference on Learning Representations, 2023.

[67] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational physics, 378:686–707, 2019.

[68] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis.
Physics-informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica
Sinica, 37(12):1727–1738, 2021.

[69] Tobias Würth, Constantin Krauß, Clemens Zimmerling, and Luise Kärger. Physics-informed
neural networks for data-free surrogate modelling and engineering optimization–an example
from composite manufacturing. Materials & Design, 231:112034, 2023.

[70] Keefe Huang, Moritz Krügener, Alistair Brown, Friedrich Menhorn, Hans-Joachim Bungartz,
and Dirk Hartmann. Machine learning-based optimal mesh generation in computational fluid
dynamics. arXiv preprint arXiv:2102.12923, 2021.

[71] Balthazar Donon, Zhengying Liu, Wenzhuo LIU, Isabelle Guyon, Antoine Marot, and Marc
Schoenauer. Deep statistical solvers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,

14

and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
7910–7921. Curran Associates, Inc., 2020.

[72] Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin
networks: A unified framework for solving pde-governed forward and inverse problems.
Computer Methods in Applied Mechanics and Engineering, 390:114502, 2022.

[73] Masanobu Horie and NAOTO MITSUME. Physics-embedded neural networks: Graph neural
pde solvers with mixed boundary conditions. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 23218–23229. Curran Associates, Inc., 2022.

[74] Jan Bohn and Michael Feischl. Recurrent neural networks as optimal mesh refinement
strategies. Computers & Mathematics with Applications, 97:61–76, 2021.

[75] Roland Becker and Rolf Rannacher. Weighted a posteriori error control in FE methods. IWR,
1996.

[76] Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estima-
tion in finite element methods. Acta numerica, 10:1–102, 2001.

[77] Krzysztof J Fidkowski and Guodong Chen. Metric-based, goal-oriented mesh adaptation using
machine learning. Journal of Computational Physics, 426:109957, 2021.

[78] Guodong Chen and Krzysztof J Fidkowski. Output-based adaptive aerodynamic simulations
using convolutional neural networks. Computers & Fluids, 223:104947, 2021.

[79] Julian Roth, Max Schröder, and Thomas Wick. Neural network guided adjoint computations
in dual weighted residual error estimation. SN Applied Sciences, 4(2):62, 2022.

[80] Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable
pde solvers and graph neural networks for fluid flow prediction. In international conference
on machine learning, pages 2402–2411. PMLR, 2020.

[81] Andrew Gillette, Brendan Keith, and Socratis Petrides. Learning robust marking policies for
adaptive mesh refinement. arXiv preprint arXiv:2207.06339, 2022.

[82] Jie Pan, Jingwei Huang, Gengdong Cheng, and Yong Zeng. Reinforcement learning for
automatic quadrilateral mesh generation: A soft actor–critic approach. Neural Networks,
157:288–304, 2023.

[83] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls,
et al. Value-decomposition networks for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

[84] Andrew Cohen, Ervin Teng, Vincent-Pierre Berges, Ruo-Ping Dong, Hunter Henry, Marwan
Mattar, Alexander Zook, and Sujoy Ganguly. On the use and misuse of absorbing states in
multi-agent reinforcement learning. arXiv preprint arXiv:2111.05992, 2021.

[85] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[86] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[87] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[88] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[89] Tom Gustafsson and Geordie Drummond Mcbain. scikit-fem: A python package for finite
element assembly. Journal of Open Source Software, 5(52):2369, 2020.

[90] Peter Binev, Wolfgang Dahmen, and Ron DeVore. Adaptive finite element methods with
convergence rates. Numerische Mathematik, 97:219–268, 2004.

[91] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. Algorithms and
data structures for massively parallel generic adaptive finite element codes. ACM Transactions
on Mathematical Software (TOMS), 38(2):1–28, 2012.

15

[92] Walter A Strauss. Partial differential equations: An introduction. John Wiley & Sons, 2007.
[93] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc

Bellemare. Deep reinforcement learning at the edge of the statistical precipice. Advances in
neural information processing systems, 34:29304–29320, 2021.

[94] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. stat, 1050:4, 2018.

[95] Alfio Quarteroni and Silvia Quarteroni. Numerical models for differential problems, volume 2.
Springer, 2009.

[96] Volker John et al. Finite element methods for incompressible flow problems, volume 51.
Springer, 2016.

[97] Olek C Zienkiewicz, Robert Leroy Taylor, and Jian Z Zhu. The finite element method: its basis
and fundamentals. Elsevier, 2005.

[98] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain
Gelly, and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-scale
study. In International Conference on Learning Representations, 2021.

[99] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[100] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will
Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[101] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[102] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR, 2016.

[103] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

[104] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[105] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[106] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. stat, 1050:21,
2016.

[107] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

16

A Message Passing Network Architecture

Given a graph G = (V, E ,XV ,XE), Message Passing Networks (MPN) [33, 38, 39] are GNNs
consisting of L Message Passing Steps. Each step l receives the output of the previous step and
updates the features XV , XE for all nodes v ∈ V and edges e ∈ E . Using linear embeddings x0

v and
x0
e of the initial node and edge features, the l-th step is given as

xl+1
e = f l

E(x
l
v,x

l
u,x

l
e), with e = (u, v),

xl+1
v = f l

V(x
l
v,

⊕
e=(v,u)∈E

xl+1
e).

The operator ⊕ is a permutation-invariant aggregation such as a sum, max, or mean operator. Each f l
·

is a learned function that we generally parameterize as a simple MLP. The network’s final output is a
learned representation xL

v for each node v ∈ V .

B Systems of Equations

In its most general form, the FEM is used to approximate the solution u(x) that satisfies the weak
formulation ∀x : ∀v(x) : a(u(x),v(x)) = l(v(x)) of the underlying system of equations for the
set of test functions v. In the following, we describe the specific equations and boundary conditions
used for our experiments.

B.1 Laplace’s Equation

Let Ω be a domain with an inner boundary ∂Ω0 and an outer boundary ∂Ω1. We seek a solution u(x)
that satisfies the weak formulation of the Laplace Equation∫

Ω

∇u(x) · ∇v(x) dx = 0

for all test functions v(x). Additionally, the solution has to satisfy the Dirichlet boundary conditions

u(x) = 0, x ∈ ∂Ω0 and u(x) = 1,x ∈ ∂Ω1.

We use a unit square (0, 1)2 for the outer boundary ∂Ω0 of the domain and add a randomly sampled
square hole, whose borders are considered to be the inner boundary ∂Ω1. The size of the hole
is sampled from the uniform distribution U(0.05, 0.25)2, and its mean position is sampled from
U(0.2, 0.8)2. We add the closest distance to the inner boundary as an additional node feature.

B.2 Poisson’s Equation

The weak formulation of the considered Poisson problem is given as∫
Ω

∇u(x) · ∇v(x) dx =

∫
Ω

f(x)v(x) dx ∀v.

Here, f(x) : Ω → R denotes the load function and v(x) the test function. In addition to the
weak formulation, the solution must be zero on the boundary ∂Ω of the domain Ω. We model
Poisson’s Equation on L-shaped domains Ω, using a rectangular cutoff whose lower left corner is
sampled from p0 ∼ U(0.2, 0.95)2, resulting in a domain Ω = (0, 1)2\(p0 × (1, 1)). On this domain,
we sample a Gaussian Mixture Model with 3 components. Each component’s mean is sampled
from U(0.1, 0.9)2, and we use rejection sampling to ensure that all means lie within the domain.
The components’ covariances are determined by first drawing diagonal covariances, where each
dimension is drawn independently from a log-uniform distribution exp(U(log(0.0003, 0.003))). The
diagonal covariances are then rotated by a random angle in U(0, 180) to produce Gaussians with a
full covariance matrix. The component weights are drawn from the distribution exp(N(0, 1)) + 1
and subsequently normalized, where the 1 in the end is used to ensure that all components have
relevant weight. The evaluation of the load function f at the respective face midpoint is added as a
node feature.

17

B.3 Stokes flow

Let u(x) be the velocity field and p(x) the pressure field. We consider a Stokes flow of a fluid
through a channel. Therefore, we seek a solution u and p, which satisfy the weak formulation of the
Stokes flow without a forcing term

ν

∫
Ω

∇v · ∇u dx−
∫
Ω

(∇ · v)p dx = 0 ∀v∫
Ω

(∇ · u)q dx = 0 ∀q,

wherein v(x) and q(x) denote the test functions [95]. We define the inlet-profile as

u(x = 0, y) = uPy(1− y) + sin (φ+ 2πy).

At the outlet, the gradient of velocity ∇u(x = 1, y) = 0 is set to zero. Additionally, we assume a
no-slip condition u = 0 at all boundaries except for the inlet and the outlet. For stability purposes,
we use P1/P2 Taylor-Hood-elements, i.e., quadratic shape functions for the velocity and linear
shape functions for the pressure [96]. We sample the quadratic part uP of the velocity inlet from
a log-uniform distribution exp(U(log(0.5, 2))). The class of domains uses a unit square for the
outer boundary and 3 rhomboid holes with length 0.4 and height 0.2 whose centers are set to
y ∈ {0.2, 0.5, 0.8} in y-direction and randomly sampled from U(0.3, 0.7) in x-direction. We
optimize the meshes for the prediction accuracy of the velocity in x and y direction and calculate the
overall error as the norm of these errors.

B.4 Linear Elasticity

We are looking for the steady-state deformation of a solid under stress, due to displacements at the
boundary of the part ∂Ω. Here, we are interested in both the norm of the deformation and the norm
of the stress. The weak formulation of the considered problem on the domain Ω without body forces
is given as [97] ∫

Ω

σ (ε (u)) : ε (v) dx = 0.

Here, u(x) is the displacement field, v(x) is the test function, and ε (u) = 1
2 (∇u+ (∇u)⊤) is the

strain tensor. σ (ε) is the stress tensor, which is given as σ (ε) = 2µε+ λtr(ε)I in a linear-elastic
and isotropic case. The Lamé parameters λ = Eν

(1+ν)(1−2ν) and µ = E
2(1+ν) can be calculated with

the problem specific Young’s modulus E = 1 and the Poisson ratio ν = 0.3. The displacement
u(x = 0, y) = u0 on the left side of the boundary is specified by a task-dependent parameter
u0, whereas the displacement u(x = L, y) = 0 is set to zero on the right boundary. The stress
σ · n = 0 is zero normal to the boundary at both the top and bottom of the part. We use the same
class of L-shaped domains as in the Poisson problem in Section B.2 and set uP by drawing a random
angle from U [0, π] to pull on the domain from different angles, and add random magnitude from
U(0.2, 0.8). We add the task-dependent displacement uP as a feature to all nodes. We are interested
in the norm of the displacement field u and the resulting Von-Mises stress, giving us a 2-dimensional
objective. We weight both dimensions equally in the reward.

B.5 Non-stationary Heat Diffusion

We consider a non-stationary thermal diffusion problem defined by the weak formulation∫
Ω

∂u

∂t
dx+

∫
Ω

a∇u · ∇v dx =

∫
Ω

fv dx ∀v,

wherein u denotes the temperature, v the test function, a the thermal diffusivity and f a heat
distribution, given as

f = q exp (−100 ((x− xp(τ)) + (y − yp(τ)))) .

The position of the maximum heat entry pτ (τ) = (xp(τ), yp(τ)) is changing over time, while its
magnitude is scaled by a factor q. The temperature u ∈ ∂Ω is set to zero on all boundaries. For the

18

time-integration, the implicit Euler method is applied. We use a total of τmax = 20 time steps in
{0.5, . . . , 10}, a scaling factor of q = 1000 and a diffusivity a = 0.001. The position of the heat
source at step τ is linearly interpolated as pτ = p0 + τ

τmax
(pτmax − p0), where the start and goal

positions p0 and pτmax are randomly drawn from the domain. To create our domains, we start with 10
points that are equidistantly placed on a circle with center (0.5, 0.5) and radius 0.4. Each point is
distorted by a random value drawn from U(−0.2, 0.2)2. We then normalize the resulting points to
be in (0, 1)2 and calculate the convex hull. The result is a family of convex polygons with up to 10
vertices. We measure the error and solution of the final simulation step, and provide the distance to
the start and end position of the heat source as additional node features for each element.

C Further Experiments

C.1 Experiment Details

All experiments are repeated for 10 random seeds with randomized PDEs and network parameters.
All domains are normalized to be in (0, 1)2 unless mentioned otherwise. The initial meshes are
created using meshpy2. For practical purposes, we add an element threshold βmax in our environments,
and terminate an episode with a large negative reward when this threshold is exceeded. We train all
policies on 100 training PDEs and evaluate the resulting final policies on 100 different evaluation
PDEs that we keep consistent across random seeds for better comparability. All experiments are
run for up to 2 days on 8 cores of an Intel Xeon Platinum 8358 CPU. In terms of total compute, we
train 4 different learned methods, namely the 3 RL baselines and our method, on 5 separate tasks.
Each experiment is repeated for 10 different target mesh resolutions and 10 repetitions, resulting in
5 · 4 · 10 · 10 = 2000 main experiments. Additionally, we use a similar amount of compute for the
combined ablations, preliminary experiments and heuristics.

C.2 Maximum Reward

Equation 3 scales the reduction in error of each element by its area. This modification encourages the
policy to focus on smaller elements, effectively shifting the objective from an reduction in average
error across the mesh to a minimization of error densities. An alternate way to phrase this objective is
to make the reward depend on the reduction in maximum error per element. For this, we modify the
error estimate per element of Equation 2 to read

êrr(Ωt
i) ≈ max

Ω∗
m⊆Ωt

i

∣∣∣uΩ∗(pΩ∗
m
)− uΩt(pΩ∗

m
)
∣∣∣,

and subsequently drop the area scaling and replace the sum in Equation 3 with a maximum, i.e.,

r′(Ωt
i) :=

(
err(Ωt

i)−max
j

Mt
ijerr(Ωt+1

j)

)
− α

∑
j

Mt
ij − 1

 .

While conceptually simpler than our reward formulation, evaluating the decrease in maximum error
only optimizes this objective, which may result in worse meshes when looking at, e.g., the mean
error. The left side of Figure 6 compares this alternate reward formulation to that of ASMR. We find
that both reward schemes perform similarly. Therefore, we opt for the reward function defined in
Equation 3 for simplicity and easier comparison with the baseline methods.

D Extended Results

D.1 Proximal Policy Optimization and Deep Q-Networks.

The left side of Figure 7 shows results on Poisson’s Equation for PPO and DQN as the RL backbone
for all learned methods. We find that PPO outperforms DQN, suggesting that an on-policy objective
is favorable for the changing observation and action spaces of AMR. We use a mean instead of a sum
for the agent mapping of the targets of the Q-values for the DQN experiments with ASMR as this

2https://github.com/inducer/meshpy

19

https://github.com/inducer/meshpy

ASMR (Ours, PPO) ASMR (DQN) VDGN-like (PPO) VDGN (DQN)
Single Agent (PPO) Single Agent (DQN) VDGN-like (PPO, GAT) VDGN (DQN, GAT)
Sweep (PPO) Sweep (DQN) ASMR (PPO, GAT) Uniform Refinement

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

E
rr

or
Poisson - PPO and DQN

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Elements (×10
3
)

Poisson - MPN and GAT

Figure 7: Pareto plot of normalized squared errors and number of final mesh elements on Poisson’s
equation for (Left) PPO and DQN for all RL baselines and (Right) GAT and MPN for ASMR and
VDGN(-like). PPO generally results in better performance. ASMR works well for both MPNs and
GATs, while the VDGN-like baseline is more stable when using MPNs.

seems to experimentally increase training stability. For the VDGN-like variant that uses PPO, we
factorize the value function instead of the Q-function, i.e., we define the value function of the full
mesh as the sum of value functions of the individual mesh elements. We choose PPO for all other
experiments as it leads to better performance for all methods.

D.2 Message Passing and Graph Attention Networks.

The right side of Figure 7 compares MPNs and GATs for ASMR and VDGN. For ASMR, the
performance between MPNs and GATs is comparable, while VDGN seems to be more stable and
produce better refinements when using MPNs. We use MPNs for the other experiments as it seems to
benefit VDGN while decreasing the performance of our method.

D.3 Initial Meshes for the ZZ Error.

Figure 8 compares the ZZ Error Heuristic when directly applied to the initial mesh to variants that
instead start each refinement procedure by uniformly refining either once or twice. We find that
the method greatly benefits from two initial uniform refinements, likely because the heuristic may
not detect gradients for interesting parts of the domain if the corresponding elements are too coarse.
Given these results, we use the twice refined version for all experiments, noting that the RL based
methods avoid having to tune the initial mesh by design.

D.4 Target Mesh Resolutions

All RL methods use some parameter to control the number of target elements of the final refined mesh.
ASMR and VDGN use an element penalty α, Sweep uses a budget Nmax, and Single Agent different
numbers of rollout steps T . We visualize evaluations for different target resolutions in Figure 9. The
results indicate that ASMR provides meshes with consistent numbers of elements for a given target
resolution, while the other RL methods produce meshes with inconsistent numbers of elements over
target resolutions. The concrete target resolution parameters for all experiments are found in Table 2.

D.5 Ablations.

Node Features. ASMR utilizes both task-dependent information, such as the evaluation of the
load function for Poisson’s Equation, and the local solution u(x) per mesh element as part of its
observation graph. Here, we experiment how the performance is affected if either of these features
is left out. Additionally, we consider a variant where we include explicit (x, y) positions of each
element midpoint as node features. The results are shown on the left of Figure 10. We find that

20

ASMR (Ours) Heuristic (ZZ Error, No Uniform Refinements)
Heuristic (ZZ Error, 1 Uniform Refinement) Heuristic (ZZ Error, 2 Uniform Refinements)
Uniform Refinement

0.0 2.0 4.0 6.0 8.0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

E
rr

or

Poisson - ZZ Error Heuristic

Figure 8: Pareto plot of normalized squared errors and number of final mesh elements on Poisson’s
equation for the Zienkiewicz-Zhu Error Estimator (ZZ Error) Heuristic when using either no, 1, or 2
initial uniform refinements. The ZZ Error Heuristic produces better refinements when provided with
a finer initial mesh at the cost of not being able to produce meshes with very few elements.

Low Target Resolution Intermediate Target Resolution High Target Resolution Uniform Refinement

10
−4

10
−3

10
−2

10
−1

10
0

Sq
ua

re
d

E
rr

or

ASMR VDGN-like (PPO)

0.0 2.0 4.0 6.0 8.0 10.0

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

E
rr

or

Single Agent

0.0 2.0 4.0 6.0 8.0 10.0

Elements (×10
3
)

Sweep

Figure 9: Pareto plot of normalized squared errors and number of final mesh elements for the linear
elasticity task for all RL methods. Small blue dots indicate a policy trained on a coarse target mesh
resolution, which corresponds to large element penalties α for ASMR and VDGN-like, a small budget
Nmax for Sweep and a low number of rollout steps T for Single Agent. Large red dots correspond
to a finer target meshes, and the medium-sized purple dots interpolate between the two. Details on
the target resolution parameters are found in Table 2. We find that ASMR provides high-quality
refinements with consistent numbers of final mesh elements for any given target resolution, whereas
the other methods yield poor-quality refinements (Sweep) or inconsistent results (VDGN-like, Single
Agent) for similar target resolutions and different random seeds.

21

ASMR (Ours, 100 PDE) ASMR (1 PDE) ASMR (10 PDEs) ASMR (1000 PDEs)
ASMR (No Load Function) ASMR (Node Positions) ASMR (No Solution) Uniform Refinement

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

E
rr

or

Poisson - Node Features

0.0 2.0 4.0 6.0 8.0

Elements (×10
3
)

Poisson - Num. Training PDEs

Figure 10: Pareto plot of normalized Top 0.1% of errors and number of final mesh elements for
Poisson’s Equation. (Left) Omitting either the solution or evaluation of the load function per element
leads to a decrease in refinement quality. Explicit node positions slightly decreases performance, likely
because they cause the observation to lose equivariance w.r.t., e.g., reflection. (Right) Performance
is reduced for fewer training PDEs, but stabilizes around 100 PDEs. Interestingly, ASMR achieves
better-than performance when using a single training PDE, meaning that it can generalize from a
single training example. This ability is likely a result of our spatial problem formulation.

both the task-dependent features and the solution are important for the performance of our approach.
Omitting positional features slightly improves performance, presumably because the features assign
a fixed position to each mesh element, causing the observation graph to no longer be equivariant
to rotation, translation and reflection. Interestingly, ASMR provides reasonable refinements even
without solution information, suggesting that the RL algorithm is able to detect relevant regions of
the PDE from just an encoding of the domain and the boundary conditions and forcing functions.

Number of Training PDEs Since calculating the fine-grained reference Ω∗ is slow for large meshes
and complex tasks, we want to minimize the number of unique PDEs that we need during training.
We use 100 PDEs in our other experiments, and additionally visualize results for 1, 10 and 1000
training PDEs on the right of Figure 10. We find that fewer than 100 PDEs lead to less stable
and reliable results, and that there is only a minor advantage in using 1000 PDEs compared to our
100. Noticeably, a single training PDE results in suitable refinements, which hints at significant
generalization capabilities that are likely granted by our spatial treatment of the underlying task.

D.6 Alternate Error Metrics

Section 5 evaluates all approaches on the normalized squared error of the mesh. This metric captures
both the average error across the domain, leading to a low mean error, and outliers, thus punishing a
high maximum error. Here, we additionally present normalized mean and maximum error metrics
to provide a more thorough nuanced evaluation. The first directly quantifies the average absolute
error of the mesh, which makes it easy to interpret and less sensitive to outliers. The maximum
error metric measures the worst-case performance, which is crucial for applications where a single
high-error prediction could be costly. Since the maximum remaining error is susceptible to outliers,
we approximate it as the average of the Top 0.1% of errors of all integration points pΩ∗

m
. For

comparability across PDEs, we normalize both metrics by the respective error of the initial mesh Ω0.

Figure 11 displays the results for all tasks and both alternate metrics. The general trends for both
metrics are consistent with that of the squared error in Section 5, with ASMR outperforming all
learned baselines while being on par with or better than the Heuristics in most cases. The Oracle
Error Heuristic performs particularly well on the mean error metric, as it selects elements with high
integrated error for refinement. Conversely, the Maximum Oracle Error Heuristic excels on the top
0.1% error metric, as it specifically targets elements with a high maximum error. Notably, the mean
error metric tends to favor more uniform meshes due to its lower sensitivity to outliers, enabling
baselines like Sweep, which generally produce relatively uniform meshes, to yield better performance
here when compared to the other metrics.

22

ASMR (Ours) Single Agent VDGN-like (PPO) Sweep
Heuristic (Oracle Error) Heuristic (Max. Oracle Err.) Heuristic (ZZ Error) Uniform Refinement

0.0 2.0 4.0 6.0 8.0

10
−2

10
−1

10
0

M
ea

n
E

rr
or

Laplace’s Equation

0.0 2.0 4.0 6.0 8.0

10
−2

10
−1

10
0

To
p
0
.1

%
E

rr
or

Laplace’s Equation

0.0 2.0 4.0 6.0 8.0

10
−2

10
−1

10
0

M
ea

n
E

rr
or

Poisson’s Equation

0.0 2.0 4.0 6.0 8.0

10
−2

10
−1

10
0

To
p
0
.1

%
E

rr
or

Poisson’s Equation

0.0 2.0 4.0 6.0 8.0 10.0

10
−3

10
−2

10
−1

10
0

M
ea

n
E

rr
or

Stokes Flow

0.0 2.0 4.0 6.0 8.0 10.0

10
−2

10
−1

10
0

To
p
0
.1

%
E

rr
or

Stokes Flow

0.0 2.0 4.0 6.0 8.0 10.0 12.0

10
−2

10
−1

10
0

M
ea

n
E

rr
or

Linear Elasticity

0.0 2.0 4.0 6.0 8.0 10.0 12.0

10
−1

10
0

To
p
0
.1

%
E

rr
or

Linear Elasticity

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

10
−2

10
−1

10
0

Elements (×10
3
)

M
ea

n
E

rr
or

Heat Diffusion

0.0 1.0 2.0 3.0 4.0 5.0 6.0

10
−2

10
−1

10
0

Elements (×10
3
)

To
p
0
.1

%
E

rr
or

Heat Diffusion

Figure 11: Pareto plot of (left) normalized mean errors and (right) normalized top 0.1% errors
compared to number of final mesh elements across different tasks. Performance on both metrics is
highly correlated and generally consistent with that of the squared error in Figures 4 and 5. ASMR
outperforms all learned baselines on both metrics and all tasks.

23

E Generalization Capabilities and Runtime Experiments

E.1 Domain Size Generalization

0.02

0.04

0.06

0.08

0.10

0.12

0.000975

0.001000

0.001025

0.001050

0.001075

0.001100

0.001125

0.001150

0.001175

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 12: Random training PDEs and ASMR refinements for the domain size generalization
experiments. The solutions are on different scales as indicated by the colorbars on the left of the
meshes.

We experiment with the abilities of ASMR to generalize to larger domains during inference for
Poisson’s equation. Such generalization is non-trivial due to the varying boundary conditions and
complexities arising from domain scaling, yet extremely useful in practical scenarios where a policy
is trained on small and relatively cheap training domains, and then applied to a much larger setups
during inference. To generalize to larger domains, we modify the training PDEs to mimic larger mesh
segments by altering boundary conditions and load functions. The means of the load function are
sampled from a centered unit Gaussian, allowing components outside the mesh. We use domains
with random holes for varied initial meshes and apply random Gaussian loads to selected boundary
parts as ’inlets’. Examplary training PDEs and ASMR refinements can be seen in Figure 12. We
further add an L2 norm of 3e−4 to combat overfitting and omit the per-domain normalization in
favor of a constant normalization factor of 100, i.e., use 100 · êrr(Ω) instead of err(Ω) in Equation 3.
These modifications can be seen as data augmentation and only affect the training environments
without changing the ASMR algorithm. We evaluate the resulting policy on larger, spiral-shaped
domains with initial elements of the same size as the evaluation domains. Figure 13 shows that ASMR
consistently provides high-quality refinements as the domain increases size (left) while leading to
more and more significant speedups when compared to the reference uniform refinement (right).
Here, we use a spiral-shaped domain and load functions with 16 randomly placed components. A
slice of these figures for a normalized squared error of 0.001 is provided in the main paper in Table 1.

Figure 14 shows how the same procedure scales to inference on a spiral mesh of size 20× 20 with a
load function with 81 components. The refined mesh has more than 50 000 elements, which is several
times larger than any refinement shown by previous work. Creating and solving this mesh using
ASMR is roughly 100 times faster than solving the fine-grained reference Ω∗. A close-up for the
marked region is shown on the right side of Figure 15. The left side of Figure 15 compares ASMR
trained on the generalization environments with the setup used throughout the paper, showing that the
additional generalization capabilities only lead to a marginal decrease in performance on the original
evaluation PDEs.

E.2 Same-scale Generalization Capabilities

We additionally visualize ASMR on Poisson’s equation on domains of size 1× 1, i.e., of the same
size that is seen during training. Here, we utilize the regular training environments without the
above augmentation and perform inference on 3 different domain types used in throughout the main
experiments, plus a simple rectangular domain Ω = (0, 1)2 and randomly generated trapezoids. We
sample 3 random domains per class, and use Gaussian Mixture Model load functions with 1, 3 and 5
components respectively. Figure 16 shows refinements of an ASMR policy with α = 0.0075 for the
resulting 3× 5 problems. We find that ASMR generalizes across domains and load functions, which
is likely a result of the Swarm RL setting, where each mesh element is governed by its own agent.

E.3 Runtime Comparison.

Finally, we compare the wallclock-time of our approach with that of directly computing the fine-
grained uniform mesh Ω∗ on the evaluation PDEs. For ASMR, we measure the cumulative time of

24

Poisson - Domain Size Generalization
2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

7 × 7 8 × 8 Uniform Refinement Reference Meshes

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Elements

Sq
ua

re
d

E
rr

or

10
3

10
4

10
5

0.03

0.1

0.3

1

3

10

30

100

Number of Elements

Ti
m

e
[s
]

Figure 13: (Left) Pareto plot of the normalized squared error for ASMR evaluated on domains of size
N ×N . While the initial number of elements increases with the size of the domain, fewer relative
elements are needed to achieve a given error threshold, suggesting that there are fewer elements with
a significant error in larger domains. (Right) Wallclock-time in seconds of ASMR (points, solid lines)
for different numbers of elements compared to the uniform reference Ω∗ (dashed lines). ASMR
provides high-quality refinements across different domain sizes, achieving larger and larger speedups
when compared to the uniform mesh as the size of the domain increases.

creating an initial coarse mesh, iteratively solving the problem on this mesh, computing the resulting
observation graphs after every step, feeding each observation graph to the policy to obtain a set of
actions, and using each set of actions to refine the mesh a total of T = 6 times. For the uniform
mesh, we simply measure the time it takes to refine the coarse mesh 6 times and to subsequently
solve the problem on the resulting mesh. We use a single 8-Core AMD Ryzen 7 3700X Processor
for all measurements. Figure 17 shows the results for all tasks. We find that our approach is
always significantly faster than computing the fine-grained mesh despite the comparatively large
computational overhead. Further, the final resolution of the refined mesh produced by our method
trades off the wallclock-time of the method, meaning that ASMR can be trained to generate coarser
or finer meshes depending on task-specific computational budgets. Notably, for the Stokes flow
equations, which use P1/P2 Taylor-Hood-elements, our method is more than 30 times faster than Ω∗

even for highly refined final meshes. Since the Local Oracle baseline requires the calculation of Ω∗

and otherwise follows a similar iterative refinement procedure, its runtime is dominated by Ω∗.

25

Figure 14: Visualization of a refinement produced by the policy of Figure 12 on a 20 × 20 spiral
domain. The presented mesh has 53 189 elements and ASMR produces it in about 10 seconds on
a regular CPU, whereas a uniform refinement Ω∗ takes more than 20 minutes. A close-up of the
marked region is shown on the right side of Figure 15. ASMR provides highly accurate refinements
for domains that are significantly larger than those seen during training.

F Hyperparameters

F.1 General Hyperparameters

We use the same hyperparameters across all methods and environments unless mentioned otherwise.

PPO. We largely follow the suggestions of [98] for our PPO parameters. We train each PPO policy
for a total of 400 iterations. In each iteration, the algorithm samples 256 environment transitions and
then trains on them for 5 epochs with a batch size of 32. The value function loss is multiplied with
a factor of 0.5 and we clip the gradient norm to 0.5. The policy and value function clip ranges are
chosen to be 0.2. We normalize the observations with a running mean and standard deviation. The
discount factor is γ = 0.99 and advantages are estimated via Generalized Advantage Estimate [99]
with λ = 0.95. We compute an agent’s advantage by subtracting the agent-wise value estimates from
the combination of local and global returns in Equation 4.

DQN. For DQN-based approaches, we instead train for 24 ∗ 400 = 9600 steps, where each step
consists of executing an environment transition and then drawing a batch of 32 samples from the replay
buffer for a single gradient update. We additionally draw 500 initial random replay buffer samples
before the first training step. We keep 10000 transitions in the replay buffer, since each transition
represents a full mesh and an action on each graph element. We experimented with both larger replay

26

ASMR (Ours) ASMR (Generalization Environments) Heuristic (ZZ Error)
Heuristic (Oracle Error) Heuristic (Max. Oracle Err.) Uniform Refinement

0.0 2.0 4.0 6.0 8.0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Elements (×10
3
)

Sq
ua

re
d

er
ro

r

Poisson - Squared error

Figure 15: (Left) Pareto plot of the normalized squared error for ASMR trained on regular (blue) and
generalizing (green) environments evaluated on 1× 1 evaluation PDEs. (Right) A local region of the
mesh in Figure 14. Adding data augmentation in the training environments allows generalization to
significantly larger meshes during inference at the cost of slightly decreased refinement quality.

buffers and more training steps in preliminary experiments, finding that neither significantly improve
performance, but may lead to very long runtimes and large memory requirements. During training,
we draw actions using a Boltzmann distribution over the predicted Q-values per agent, where we
linearly decrease the temperature of the distribution from 1 to 0.01 in the first 4800 steps. We find that
this action selection strategy leads to more correlated actions when compared to an epsilon greedy
action sampling, which stabilizes the training for our iterative mesh refinement problems. We update
the target networks using Polyak averaging at a rate of 0.99 per step. Further, we follow previous
work [100] and include a number of common improvements for DQNs in our implementation. These
are double Q-learning [101], dueling Q-networks [102] and prioritized experience replay [103].

Neural Networks. All networks are implemented in PyTorch [104] and trained using the ADAM
optimizer [105] with a learning rate of 3.0e-4 unless mentioned otherwise. All MLPs use 2 hidden
layers and a latent dimension of 64. We use separate MPNs for the policy and the value function.
Each MPN consists of 2 message passing steps, where each update function is represented as an
MLP with LeakyReLU activation functions. The policy and value function heads are additional
MLPs with tanh activation functions acting on the final latent node features of the MPN. All message
aggregations

⊕
are mean aggregations. Additionally, we apply Layer Normalization [106] and

Residual Connections [107] independently for the node and edge features after each message passing
step.

F.2 Baseline-Specific Parameters

For Single Agent, we use a maximum refinement depth of 10 refinements per element to avoid
numerical instabilities during simulation, skipping actions that try to refine elements that have been
refined too often. We consider environment sequences of up to T = 400 steps since the method
marks only one element at a time. For Sweep, the agent is placed on a random mesh element for each
training step and may decide not to refine this element, resulting in no change in the mesh. Here, we
follow the proposed hyperparameters for this approach and train each rollout for 200 steps. As this
approach is based on purely local agents, we adapt our input features per element to consist of our
regular node features, the global resource budget proposed by the authors, the mean solution and
area of the element’s neighbors and the average distance to them. The global budget is controlled
via a maximum number of elements Nmax, allowing to get refinements of different granularity. To
accommodate for less overall changes in the mesh, we increase the number of environment transitions

27

1
C

om
po

ne
nt

3
C

om
po

ne
nt

s
5

C
om

po
ne

nt
s

L Shape Rhomboid Holes Square Hole Convex Polygon Square

Figure 16: ASMR refinements for different domains and Poisson’s equation with a Gaussian Mixture
Model load with 1, 3 and 5 components. Even though the ASMR policy is only trained on L-shaped
domains with 3 components in the load function and no data augmentation, it generalizes to different
domains and loads.

of PPO to 512, and the number of DQN steps to 96 ∗ 400 = 38400. Finally, we use a learning rate of
1.0e-5 instead of 3.0e-4 for the DQN variant of VDGN to stabilize its training.

F.3 Refinement Hyperparameters

The AMR methods considered in this work use different parameters to control the granularity of the
final refined mesh. ASMR and VDGN use an element penalty α, while Sweep considers an element
budget Nmax. Single Agent varies the number of rollout steps T . For each learned method and task,
we choose 10 different values for the refinement parameter that showcase a wide range of final mesh
resolutions. For the Oracle, Maximum Oracle, and ZZ Error Heuristics we instead cover a range of
up to 100 parameter thresholds θ, yielding one aggregated evaluation result per threshold.

Table 2 lists the different ranges for these parameters for the different tasks. For stability purposes,
we set a maximum number of 20 000 elements during training for all experiments except for the
Sweep baseline, as this baseline uses its own element budget instead. If this number is surpassed, a
constant penalty of 1000 is subtracted from the reward and the episode terminates early.

28

Laplace’s Equation Poisson’s Equation Stokes Flow Linear Elasticity Heat Diffusion
Reference Meshes Uniform Refinement

0.0 2.0 4.0 6.0 8.0 10.0 12.0
10−2

10−1

100

101

102

Elements (×10
3
)

Ti
m

e
[s
]

Figure 17: Wallclock-time in seconds of ASMR (points, solid lines) for different numbers of elements
compared to the uniform reference Ω∗ (dashed lines). Each task is denoted by its color, and the full
lines represent a quadratic regression of the wallclock-time of our method for different numbers
of final elements. On average, Ω∗ contains about 105 elements, with concrete numbers varying
depending on the domain. Our approach is significantly faster than the reference for all tasks,
achieving speedups of factor 2-30 for reasonable numbers of elements.

Table 2: Ranges for the different refinement hyperparameters for all tasks. ASMR and VDGN apply
an element penalty α, but only ASMR scales the area of each element with its area in Equation 3.
Sweep uses an element budget Nmax. Single Agent varies the number of rollout steps T , and the
Oracle Error, Maximum Oracle Error and ZZ Error Heuristics use of different error thresholds θ.

Method Task
Laplace Poisson Stokes Flow Lin. Elast. Heat Diff.

ASMR (α) [0.01, 0.3] [0.002, 0.1] [0.006, 0.15] [0.01, 0.15] [0.003, 0.3]
VDGN(-like) (α) [2e−5, 5e−2] [2e−5, 5e−2] [3e−4, 5e−3] [1e−5, 1e−2] [5e−6, 5e−3]
Sweep (Nmax) [200, 3000] [200, 3000] [200, 3500] [500, 6000] [400, 5000]
Single Agent (T) [25, 400] [25, 400] [25, 400] [25, 400] [25, 400]
Oracle Error (θ) [0.25, 1.00] [0.1, 1.0] [0.16, 1.0] [0.02, 1.0] [0.03, 1.0]
Max. Oracle Err. (θ) [0.20, 1.0] [0.2, 1.0] [0.1, 1.0] [0.01, 1.0] [0.02, 1.0]
ZZ Error (θ) [0.001, 1] [0.002, 1] [0.001, 1] [0.001, 1] [0.001, 1]

G Visualizations

We provide additional visualizations for our method on all tasks, and for all methods on the Poisson
task. All visualizations show the final refined mesh of the respective method for 5 different refinement
levels on 3 randomly selected PDEs. For the RL methods, all policies are taken from the first
repetition of the 10 random seeds conducted for the respective experiment.

G.1 ASMR Refinements

We visualize exemplary refinements of ASMR policies for all considered tasks in Figures 18
(Laplace’s equation), 19 (Poisson’s equation), 20 (Stokes equation), 21 (Linear Elasticity), and 22
(Heat Diffusion). Across all tasks, ASMR is able to provide highly accurate refinements for different
numbers of total elements.

29

G.2 Baseline Comparisons

Figure 23 shows refinements for Single Agent for different total timesteps T , Figure 24 presents
VDGN with different α values. Figure 25 visualizes refinements of Sweep for a varying number of
maximum elements Nmax. Figures 26, 27 and 28 show refinements of the Oracle, Maximum Oracle
and ZZ Error Heuristics for different values of the threshold θ.

The visualizations show that the RL baselines struggle to provide consistent high-quality refinements
for different mesh resolutions. The Single Agent baseline sometimes focuses on uninteresting regions
of the mesh or refines the same area too often. The VDGN-like baseline performs well in some cases,
but collapses to no refinements or fully uniform refinements for some evaluation PDE. Sweep provides
almost uniform refinements for most PDEs and element budgets, likely as a result of the misalignment
in the environment transitions between training and inference. The Heuristics greedily refine the
elements with the largest error estimates in their respective metric, regardless of the resulting decrease
in error. This behavior generally leads to locally accurate refinements, but fails to effectively decrease
the mesh error in some cases. Additionally, the heuristics act locally, which causes potential issues for
PDEs with global dependencies [92] and conforming refinements. The ZZ Error Heuristic sometimes
misses regions of interest, but provides a much smoother refinement than the Oracle Error Heuristic,
which can be beneficial for the error reduction in some cases.

G.3 Element Markings

Figure 29 visualizes a full rollout of our method, including the markings of the elements after every
step.

α = 0.2 α = 0.1 α = 0.075 α = 0.03 α = 0.015

Figure 18: Final refined meshes of ASMR for randomly sampled PDEs for the Laplace equation for
different element penalties α.

30

α = 0.1 α = 0.05 α = 0.03 α = 0.01 α = 0.005

Figure 19: Final refined meshes of ASMR for randomly sampled PDEs for the Poisson equation for
different element penalties α.

α = 0.2 α = 0.1 α = 0.05 α = 0.03 α = 0.02

Figure 20: Final refined meshes of ASMR for randomly sampled PDEs for the Stokes flow task for
different element penalties α.

31

α = 0.1 α = 0.075 α = 0.025 α = 0.009 α = 0.007

Figure 21: Final refined meshes of ASMR for randomly sampled PDEs for the linear elasticity task
for different element penalties α. The visualizations show the deformed meshes, which are originally
L-shaped.

α = 0.1 α = 0.05 α = 0.03 α = 0.01 α = 0.005

Figure 22: Final refined meshes of ASMR for randomly sampled PDEs for the non-stationary heat
diffusion task for different element penalties α.

32

T = 50 T = 100 T = 200 T = 300 T = 400

Figure 23: Final refined meshes of the Single Agent baseline for the Poisson equation on randomly
sampled PDEs for different environment rollout lengths T .

α = 0.05 α = 0.01 α = 0.005 α = 0.0005 α = 5e− 05

Figure 24: Final refined meshes of the VDGN-like baseline for the Poisson equation on randomly
sampled PDEs for different element penalties α.

33

Nmax = 200 Nmax = 500 Nmax = 750 Nmax = 1500 Nmax = 2000

Figure 25: Final refined meshes of the Sweep baseline for the Poisson equation on randomly sampled
PDEs for different maximum numbers of elements Nmax.

θ = 0.9 θ = 0.6 θ = 0.5 θ = 0.4 θ = 0.2

Figure 26: Final refined meshes of the Local Oracle baseline for the Poisson equation on randomly
sampled PDEs for different error thresholds θ.

34

θ = 0.9 θ = 0.6 θ = 0.5 θ = 0.4 θ = 0.2

Figure 27: Final refined meshes of the Local Maximum Oracle baseline for the Poisson equation on
randomly sampled PDEs for different error thresholds θ.

θ = 0.5 θ = 0.25 θ = 0.125 θ = 0.0625 θ = 0.03125

Figure 28: Final refined meshes of the ZZ Error for the Poisson equation on randomly sampled PDEs
for different error thresholds θ.

35

Figure 29: Visualization of a full rollout of our method on a Poisson task, including the markings of
the elements after every step. The figures in the first and third row show the markings, and the second
and fourth row show the resulting refined meshes.

36

	Introduction
	Related Work
	Adaptive Swarm Mesh Refinement
	Experiments
	Results
	Conclusion
	Message Passing Network Architecture
	Systems of Equations
	Laplace's Equation
	Poisson's Equation
	Stokes flow
	Linear Elasticity
	Non-stationary Heat Diffusion

	Further Experiments
	Experiment Details
	Maximum Reward

	Extended Results
	Proximal Policy Optimization and Deep Q-Networks.
	Message Passing and Graph Attention Networks.
	Initial Meshes for the ZZ Error.
	Target Mesh Resolutions
	Ablations.
	Alternate Error Metrics

	Generalization Capabilities and Runtime Experiments
	Domain Size Generalization
	Same-scale Generalization Capabilities
	Runtime Comparison.

	Hyperparameters
	General Hyperparameters
	Baseline-Specific Parameters
	Refinement Hyperparameters

	Visualizations
	ASMR Refinements
	Baseline Comparisons
	Element Markings

