
Table 1: Hyperparameter settings for each experiment. The set of examples that make up the prior
(⇡), including the target (z⇤), and the other examples in the training set (D-) are always drawn from
the same data distribution, except for the experiment performed in Figure 9.

Dataset Experiment Clipping norm C
Sampling Update steps T Model architecture ✓

Training dataset size Prior sizeprobability q (|D-|+ 1)

CIFAR-10 Figure 1b, Figure 6b, Figure 12b 1 1 100 WRN-28-10 500 -
Figure 2 1 1 100 WRN-28-10 500 10

MNIST

Figure 1a, Figure 6a, Figure 12a 0.1 1 100 MLP (784! 10! 10) 1,000 -
Figure 3 0.1 1 100 MLP (784! 10! 10) 1,000 21 � 211

Figure 4 0.1 0.02 1,000 MLP (784! 10! 10) 500 10
Figure 5 1 0.01-0.99 100 MLP (784! 10! 10) 1,000 10
Figure 7 0.1 1 100 MLP (784! 10, 100, 1000! 10) 1,000 10
Figure 8 0.1 1 100 MLP (784! 10! 10) 1,000 21, 23, 27

Figure 9 0.1 1 100 MLP (784! 10! 10) 1,000 10
Figure 10 0.1 1 100 MLP (784! 10! 10) 5, 129, 1,000 10
Figure 11 1.0 1 - - - 10
Figure 13 0.1, 1 1 100 MLP (784! 10! 10) 1,000 10
Figure 14 1 0.01-0.99 100 MLP (784! 10! 10) 1,000 2, 10, 100
Figure 15 1 0.01-0.99 100 MLP (784! 10! 10) 1,000 2, 10, 100

A Experimental details518

We detail the experimental settings used throughout the paper, and specific hyperparameters used for519

the various attacks we investigate. The exact configurations for each experiment are given in Table 1.520

We vary many experimental hyperparameters to investigate their effect on reconstruction, however,521

the default setting is described next.522

For MNIST experiments we use a two layer MLP with hidden width 10 and eLU activations. The523

attacks we design in this work perform equally well on all common activation functions, however it524

is well known that the model-based attack (Balle et al., 2022) performs poorly on piece-wise linear525

activations like ReLU. We set |D-| = 999 (and so the training set size is |D- [ {z
⇤
}| = 1, 000) and526

train with full-batch DP-SGD for T = 100 steps. For each ✏, we select the learning rate by sweeping527

over a range of values between 0.001 and 100; we do not use any momentum in optimization. We set528

C = 0.1, � = 10�5 and adjust the noise scale � for a given target ✏. The accuracy of this model is529

over 90% for 8✏ � 10, however we emphasize that our experiments on MNIST are meant to primarily530

investigate the tightness of our reconstruction upper bounds. We set the size of the prior ⇡ to ten,531

meaning the baseline probability of successful reconstruction is 10%.532

For the CIFAR-10 dataset, we use a Wide-ResNet (Zagoruyko & Komodakis, 2016) model with533

28 layers and width factor 10 (denoted as WRN-28-10), group normalization, and eLU activations.534

We align with the set-up of De et al. (2022), who fine-tune a WRN-28-10 model from ImageNet to535

CIFAR-10. However, because the model-based attack is highly expensive, we only fine-tune the final536

layer. We set |D-| = 499 (and so the training set size is |D- [ {z
⇤
}| = 500) and train with full-batch537

DP-SGD for T = 100 steps; again we sweep over the choice of learning rate for each value of ✏. We538

set C = 1, � = 10�5 and adjust the noise scale � for a given target ✏. The accuracy of this model is539

over 89% for 8✏ � 10, which is close to the state-of-the-art results given by De et al. (2022), who540

achieve 94.2% with the same fine-tuning setting at ✏ = 8 (with a substantially larger training set541

size). Again, we set the size of the prior ⇡ to ten, meaning the baseline probability of successful542

reconstruction is 10%.543

For the gradient-based and model-based attack we generate 1,000 reconstructions and for prior-aware544

attack experiments we generate 10,000 reconstructions from which we estimate a lower bound for545

probability of successful reconstruction. That is, for experiments in Section 2 repeat the attack 1,000546

times for targets randomly sampled from base dataset (MNIST or CIFAR-10), and for all other547

experiments we repeat the attack 10,000 times for targets randomly sampled from the prior, which548

is itself sampled from the base dataset (MNIST or CIFAR-10). We now give experimental details549

specific to the various attacks used throughout the paper. Note that for attack results, we report 95%550

confidence intervals around our lower bound estimate, however, in many cases these intervals are so551

tight it renders them invisible to the eye.552

Model-based attack details. For the model-based attack given by Balle et al. (2022), we train553

40K shadow models, and as stated above, construct a test set by training a further 1,000 models554

on 1,000 different targets (and D-) from which we evaluate our reconstructions. We use the same555

architecture for the RecoNN network and optimization hyperparameters as described in the MNIST556

and CIFAR-10 experiments in Balle et al. (2022), and refer the interested reader there for details.557
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(a) Examples of reconstructions on MNIST. (b) Examples of reconstructions on CIFAR-10.

Figure 6: We give qualitative examples of reconstructions in Figure 6a and Figure 6b for the gradient-
based reconstruction attack described in Section 2.

Gradient-based attack details. Our optimization hyperparameters are the same for both MNIST558

and CIFAR-10. We initialize a ẑ from uniform noise and optimize it with respect to the loss given in559

Equation (1) for 1M steps of gradient descent with a learning rate of 0.01. We found that the loss560

occasionally diverges and it is useful to have random restarts of the optimization process; we set the561

number of random restarts to five. Note we assume that the label of z⇤ is known to the adversary.562

This is a standard assumption in training data reconstruction attacks on federated learning, as Zhao563

et al. (2020) demonstrated the label of the target can be inferred given access to gradients. If we did564

not make this assumption, we can run the attack be exhaustively searching over all possible labels.565

For the datasets we consider, this would increase the cost of the attack by a factor of ten. We evaluate566

the attack using the same 1,000 targets used to evaluate the model-based attack.567

Prior-aware attack details. The prior-aware attacks given in Algorithm 2 (and in Algorithm 3)568

have no specific hyper-parameters that need to be set. As stated, the attack proceeds by summing the569

inner-product defined in Section 3.3 over all training steps for each sample in the prior and selecting570

the sample that maximizes this sum as the reconstruction. One practical note is that we found it571

useful to normalize privatized gradients such that the privatized gradient containing the target will be572

sampled from a Gaussian with unit mean instead of C2, which will be sensitive to choice of C and573

can lead to numerical precision issues.574

Estimating � details. As described in Section 3, ⌫ is instantiated as N (0,�2
I), a T -dimensional575

isotropic Gaussian distribution with zero mean, and µ is given by
P

w2{0,1}T p(w)N (w,�2
I), a576

mixture of T -dimensional isotropic Gaussian distributions with means in {0, 1}T sampled according577

to B(q, T ). Throughout all experiments, we use 1M independent Gaussian samples to compute the578

estimation of � given by the procedure in Algorithm 1, and because we use a discrete prior of size579

|⇡|, the base probability of reconstruction success, , is given as 1/|⇡|.580

B Visualization of reconstruction attacks on MNIST and CIFAR-10581

In Figure 6, we give a selection of examples for the gradient-based reconstruction attack presented in582

Section 2 and plotted in Figure 1.583

C Does the model size make a difference to the prior-aware attack?584

Our results on MNIST and CIFAR-10 suggest that the model size does not impact the tightness of585

our reconstruction attack (lower bound on probability of success); the MLP model used for MNIST586

has 7,960 trainable parameters, while the WRN-28-10 model used for CIFAR-10 has 36.5M. We587

systematically evaluate the impact of the model size on our prior-aware attack by increasing the588

size of the MLP hidden layer by factors of ten, creating models with 7,960, 79,600, and 796,000589

parameters. Results are given in Figure 7, where we observe almost no difference in terms of attack590

success between the different model sizes.591
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(a) Width: 10. (b) Width: 100. (c) Width: 1000.

Figure 7: Comparison of model sizes on reconstruction by varying the hidden layer width in a two
layer MLP.

(a) Prior size is 2. (b) Prior size is 8. (c) Prior size is 128.

Figure 8: Comparison of prior-aware and gradient-based attack for different prior sizes.

D Comparing the gradient-based attack with the prior-aware attack592

Our experiments have mainly been concerned with measuring how DP affects an adversary’s ability to593

infer which point was included in training, given that they have access to all possible points that could594

have been included, in the form of a discrete prior. This experimental set-up departs from Figure 1,595

where we assumed the adversary does not have access to a prior set, and so cannot run the prior-aware596

attack as described in Algorithm 2. Following on from results in Section 3.4, we transform these597

gradient-based attack experimental findings into a probability of successful reconstruction by running598

a post-processing conversion, allowing us to measure how the assumption of adversarial access to the599

discrete prior affects reconstruction success. We run the post-processing conversion in the following600

way: Given a target sample z
⇤ and a reconstruction ẑ found through optimizing the gradient based601

loss in Equation (1), we construct a prior consisting of z⇤ and n� 1 randomly selected points from602

the MNIST dataset, where n = 10. We then measure the L2 distance between ẑ and every point in603

this constructed prior, and assign reconstruction a success if the smallest distance is with respect to604

z
⇤. For each target z⇤, we repeat this procedure 1,000 times, with different random selections of size605

n� 1, and overall report the average reconstruction success over 1,000 different targets.606

This allows us to compare the gradient-based attack (which is prior “unaware”) directly to our607

prior-aware attack. Results are shown in Figure 8, where we vary the size of the prior between 2,608

8, and 128. In all cases, we see an order of magnitude difference between the gradient-based and609

prior-aware attack in terms of reconstruction success. This suggests that if we assume the adversary610

does not have prior knowledge of the possible set of target points, the minimum value of ✏ necessary611

to protect against reconstruction attacks increases.612

E Effects of the threat model and prior distribution on reconstruction613

The ability to reconstruct a training data point will naturally depend on the threat model in which614

the security game is instantiated. So far, we have limited our investigation to align with the standard615

adversary assumptions in the DP threat model. We have also limited ourselves to a setting where the616

prior is sampled from the same base distribution as D-. These choices will change the performance617

of our attack, which is what we measure next.618

Prior type. We measure how the choice of prior affects reconstruction in Figure 9. We train models619

when the prior is from the same distribution as the rest of the training set (MNIST), and when the620

prior is sampled random noise. Note, because the target point z⇤ is included in the prior, this means621
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Figure 9: Comparison of how the choice of prior, ⇡, affects reconstruction success. The prior is
selected from a set of examples sampled from MNIST or uniform noise (that has the same

intra-sample distance statistics as the MNIST prior).

we measure how reconstruction success changes when we change the distribution the target was622

sampled from. One may expect that the choice of prior to make a difference to reconstruction success623

if the attack relies on distinguishability between D- and z
⇤ with respect to some function operating624

on points and model parameters (e.g. the difference in loss between points in D- and z
⇤). However,625

we see that there is little difference between the two; both are close to the upper bound.626

On reflection, this is expected as our objective is simply the sum of samples from a Gaussian, and627

so the choice of prior may impact our probability of correct inference if this choice affects the628

probability that a point will be clipped, or if points in the prior have correlated gradients. We explore629

how different values of clipping, C, can change reconstruction success probability in Appendix L.630

Knowledge of batch gradients. The DP threat model assumes the adversary has knowledge of the631

gradients of all samples other than the target z⇤. Here, we measure how important this assumption632

is to our attack. We compare the prior-aware attack (which maximizes
PT

t=1hclipC(r✓t`(zi)), ḡti)633

against the attack that selects the zi maximizing
PT

t=1hclipC(r✓t`(zi)), gti, where the adversary634

does not subtract the known gradients from the objective.635

In Figure 10, we compare, in a full-batch setting, when |D-| is small (set to 4), and see the attack does636

perform worse when we do not deduct known gradients. However, the effect is more pronounced as637

|D-| becomes larger, the attack completely fails when setting it to 128. This is somewhat expected,638

as with a larger number of samples in a batch it is highly likely there are gradients correlated with639

the z
⇤ target gradient, masking out its individual contribution and introducing noise into the attack640

objective.641

F Improved prior-aware attack algorithm642

As explained in Section 4, the prior-aware attack in Algorithm 2 does not account for the variance643

introduced into the attack objective in mini-batch DP-SGD, and so we design a more efficient attack644

specifically for the mini-batch setting. We give the pseudo-code for this improved prior-aware attack645

in Algorithm 3.646
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Figure 10: In line with the DP threat model, our attack in Algorithm 2 assumes the adversary can
subtract known gradients from the privatized gradient. We measure what effect removing this

assumption has on reconstruction success probability. When the size of the training set is small,
removing this assumption has a minor effect, while reconstruction success drops to random with a

larger training set size.

Algorithm 3 Improved prior-aware attack

Input: Discrete prior ⇡ = {z1, . . . , zn}, Model parameters {✓1, ✓1, . . . , ✓T }, Privatized gradients
(with known gradients subtracted) {ḡ1, . . . , ḡT }, sampling probability q, function that takes the
top qT values from a set of observed gradients topqT
Observations: O  {}

Output: Reconstruction guess ẑ 2 ⇡

for i 2 [1, 2, . . . , n] do
R {}

for t 2 [1, 2, . . . , T ] do
R[t] hclipC(r✓t`(✓t, zi)), ḡti

end for
R topqT (R)
O[i] sum(R)

end for
î argmaxO
return ẑ  ⇡[̂i]

G Alternative variant of the prior-aware attack647

Here, we state an alternative attack that uses the log-likelihood to find out which point in the prior648

set is used for training. Assume we have T steps with clipping threshold C = 1, noise �, and the649

sampling rate is q.650

Let ḡ1, . . . , ḡT be the observed gradients minus the gradient of the examples that are known to be in651

the batch and let l1, . . . , lT be the `2 norms of these gradients.652

For each example z in the prior set let gz1 , . . . , gzT be the clipped gradient of the example on the653

intermediate model. Also let lz1, . . . , lzT be the `2 norms of (ḡ1 � g
z
1), . . . , (ḡT � g

z
T ).654

Now we describe the optimal attack based on l
z
i . For each example z, calculate the following:655

sz =
P

i2[T ] ln(1�q+qe

�(lzi )2+l2i
2�2 ). It is easy to observe that this is the log probability of outputting656

the steps conditioned on z being used in the training set. Then since the prior is uniform over the657

prior set, we can choose the z with maximum sz and report that as the example in the batch.658

In fact, this attack could be extended to the non-uniform prior by choosing the example that maximizes659

sz · pz , where pz is the original probability of z.660
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H Comparison with Guo et al. (2022b)661

Figure 11: Comparison of our upper bound on advantage (Equation (4)) with Guo et al. (2022b) as
function of � for a uniform prior of size ten. We use a single step of DP-SGD with no mini-batch

subsampling, and use 100, 000 samples for Monte-Carlo approximation.

Table 2: Comparison of our upper bound on advantage (Equation (4)) with Guo et al. (2022b) and the
Guo et al. (2022b) Monte-Carlo approximation (abbreviated to MC) as function of � for a uniform
prior size of ten and one hundred.

Prior size Method Advantage upper bound
�

0.5 1 1.5 2 2.5 3

10
Guo et al. (2022b) 0.976 0.593 0.380 0.274 0.213 0.174
Guo et al. (2022b) (MC) 0.771 0.397 0.257 0.184 0.144 0.118
Ours 0.737 0.322 0.189 0.128 0.099 0.080

100
Guo et al. (2022b) 0.861 0.346 0.195 0.131 0.097 0.076
Guo et al. (2022b) (MC) 0.549 0.210 0.120 0.081 0.062 0.049
Ours 0.362 0.077 0.035 0.024 0.018 0.012

Recently, Guo et al. (2022b) have analyzed reconstruction of discrete training data. They note that662

DP bounds the mutual information shared between training data and learned parameters, and use663

Fano’s inequality to convert this into a bound on reconstruction success. In particular, they define the664

advantage of the adversary as665

Adv :=
padversary success � p

max
⇡

1� pmax
⇡

2 [0, 1]. (4)

where pmax
⇡ is the maximum sampling probability from the prior, ⇡, and padversary success is the probabil-666

ity that the adversary is successful at inferring which point in the prior was included in training. They667

then bound the advantage by lower bounding the adversary’s error t := 1 � padversary success and by668

appealing to Fano’s inequality they show this can be done by finding the smallest t 2 [0, 1] satisfying669

f(t) :=H(⇡)� I(⇡;w) + t log t+ (1� t) log(1� t)

� t log(|⇡|� 1)  0,
(5)

where w is output of the private mechanism, H(⇡) is the entropy of the prior, and I(⇡;w) is the670

mutual information between the prior and output of the private mechanism. For an (↵, ✏)-RDP671

mechanism, I(⇡;w)  ✏, and so I(⇡;w) can be replaced by ✏ in Equation (5). However, Guo et al.672

(2022b) show that for the Gaussian mechanism, this can improved upon either by using a Monte-Carlo673

approximation of I(⇡;w) — this involves approximating the KL divergence between a Gaussian and674

a Gaussian mixture — or by showing that I(⇡;w)  �
P|⇡|

i=1 p
i
⇡ log

✓
p
i
⇡ + (1� p

i
⇡) exp

⇣
��2

2�2

⌘◆
,675
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where � is the sensitivity of the mechanism, and p
i
⇡ is the probability of selecting the ith element676

from the prior. We use a uniform prior in all our experiments and so H(⇡) = � log( 1
|⇡| ) and677

p
i
⇡ = p

max
⇡ = 1

|⇡| .678

We convert our bound on success probability to advantage and compare with the Guo et al. (2022b)679

upper bound (and its Monte-Carlo approximation) in Figure 11 and Table 2, and note our bound is680

tighter.681

I Experiments with very small priors (aka. experiments where the adversary682

has no background knowledge about the target)683

Our experiments in Section 3 and Section 4 were conducted with an adversary who has side informa-684

tion about the target point. Here, we reduce the amount of background knowledge the adversary has685

about the target, and measure how this affects the reconstruction upper bound and attack success.686

We do this in the following set-up: Given a target z, we initialize our reconstruction from uniform687

noise and optimize with the gradient-based reconstruction attack introduced in Section 2 to produce688

ẑ. We mark ẑ as a successful reconstruction of z if 1
d

Pd
i=1 I[|z[i]� ẑ[i]| < �] � ⇢, where ⇢ 2 [0, 1],689

d is the data dimensionality, and we set � = 32
255 in our experiments. If ⇢ = 1 this means we mark690

the reconstruction as successful if kẑ � zk1 < �, and for ⇢ < 1, then at least a fraction ⇢ values691

in ẑ must be within an `1 ball of radius � from z. Under the assumption the adversary has no692

background knowledge of the target point, with � = 32
255 and a uniform prior, the prior probability of693

reconstruction is given by (2⇥32/256)d⇢ — if ⇢ = 1, for MNIST and CIFAR-10, this means the prior694

probability of a successful reconstruction is 9.66⇥ 10�473 and 2.96⇥ 10�1850, respectively.695

We plot the reconstruction upper bound compared to the attack success for different values of ⇢ in696

Figure 12. We also visualize the quality of reconstructions for different values of ⇢. Even for ⇢ = 0.6,697

where 40% of the reconstruction pixels can take any value, and the remaining 60% are within an698

absolute value of 32
255 from the target, one can easily identify that the reconstructions look visually699

similar to the target.700
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(a) Comparison of reconstruction success under a very

small prior for MNIST, where we judge a reconstruction
as successful if at least ⇢ pixels are within an absolute

distance of 32
255 of the target.

(b) Comparison of reconstruction success under a very

small prior for CIFAR-10, where we judge a
reconstruction as successful if at least ⇢ pixels are
within an absolute distance of 32

255 of the target.

(c) MNIST examples of reconstructions where at least ⇢
pixels are within an absolute distance of 32

255 of the
target.

(d) CIFAR-10 examples of reconstructions where at
least ⇢ pixels are within an absolute distance of 32

255 of
the target.

Figure 12: Comparison of reconstruction success under a very small prior. The prior probability of
success for MNIST and CIFAR-10 are 9.66⇥ 10�473 and 2.96⇥ 10�1850, respectively.

J Estimating  from samples701

Here, we discuss how to estimate the base probability of reconstruction success, , if the adversary702

can only sample from the prior distribution.703

Let ⇡̂ be the empirical distribution obtained by taking N independent samples from the prior and704

̂ = ⇡̂,⇢(⌘) be the corresponding parameter for this discrete approximation to ⇡ – this can be705

computed using the methods sketched in Section 3. Then we have the following concentration bound.706

Proposition 5. With probability 1� e
�N⌧2/2

we have707

 
̂

1� ⌧
.

The proof is given in Appendix M.708

K Discussion on related work709

Here, we give a more detailed discussion of relevant related work over what is surfaced in Section 1710

and Section 2.711

DP and reconstruction. By construction, differential privacy bounds the success of a membership712

inference attack, where the aim is to infer if a point z was in or out of the training set. While713

the connection between membership inference and DP is well understood, less is known about the714

relationship between training data reconstruction attacks and DP. A number of recent works have715

begun to remedy this in the context of models trained with DP-SGD by studying the value of ✏716
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required to thwart training data reconstruction attacks (Bhowmick et al., 2018; Balle et al., 2022;717

Guo et al., 2022a,b; Stock et al., 2022). Of course, because differential privacy bounds membership718

inference, it will also bound ones ability to reconstruct training data; if one cannot determine if z was719

used in training, they will not be able to reconstruct that point. These works are interested in both720

formalizing training data reconstruction attacks, and quantifying the necessary ✏ required to bound its721

success. Most of these works share a common finding – the ✏ value needed for this bound is much722

larger than the value required to protect against membership inference attacks (< 10 in practice).723

If all other parameters in q
p

T log( 1
� )/" remain fixed, one can see that a larger value of ✏ reduces the724

scale of noise we add to gradients, which in turn results in models that achieve smaller generalization725

error than models trained with DP-SGD that protect against membership inference.726

The claim that a protection against membership inference attacks also protects against training data727

reconstruction attacks glosses over many subtleties. For example, if z was not included in training it728

could still have a non-zero probability of reconstruction if samples that are close to z were included729

in training. Balle et al. (2022) take the approach of formalizing training reconstruction attacks in a730

Bayesian framework, where they compute a prior probability of reconstruction, and then find how731

much more information an adversary gains by observing the output of DP-SGD.732

Balle et al. (2022) use an average-case definition of reconstruction over the output of a randomized733

mechanism. In contrast, Bhowmick et al. (2018) define a worst-case formalization, asking when734

should an adversary not be able to reconstruct a point of interest regardless of the output of the735

mechanism. Unfortunately, such worst-case guarantees are not attainable under DP-relaxations like736

(✏, �)-DP and RDP, because the privacy loss is not bounded; there is a small probability that the737

privacy loss will be high.738

Stock et al. (2022) focus on bounding reconstruction for language tasks. They use the probability739

preservation guarantee from RDP to derive reconstruction bounds, showing that the length of a secret740

within a piece of text itself provides privacy. They translate this to show a smaller amount of DP741

noise is required to protect longer secrets.742

While Balle et al. (2022) propose a Bayesian formalization for reconstruction error, Guo et al. (2022a)743

propose a frequentist definition. They show that if M is (2, ✏)-RDP, then the reconstruction MSE is744

lower bounded by
Pd

i=1 diami(Z)2/4d(e✏�1), where diami(Z) is the diameter of the space Z in the ith745

dimension.746

Gradient inversion attacks. The early works of Wang et al. (2019) and Zhu et al. (2019) showed747

that one can invert single image representation from gradients of a deep neural network. Zhu et al.748

(2019) actually went beyond this and showed one can jointly reconstruct both the image and label749

representation. The idea is that given a target point z, a loss function `, and an observed gradient750

(wrt to model parameters ✓) gz = r✓`(✓, z), to construct a ẑ such that ẑ = argminz0kgz0 � gzk.751

The expectation is that images that have similar gradients will be visually similar. By optimizing752

the above objective with gradient descent, Zhu et al. (2019) showed that one can construct visually753

accurate reconstruction on standard image benchmark datasets like CIFAR-10.754

Jeon et al. (2021); Yin et al. (2021); Jin et al. (2021); Huang et al. (2021); Geiping et al. (2020)755

proposed a number of improvements over the reconstruction algorithm used in Zhu et al. (2019): they756

showed how to reconstruct multiple training points in batched gradient descent, how to optimize757

against batch normalization statistics, and incorporate priors into the optimization procedure, amongst758

other improvements.759

The aforementioned attacks assumed an adversary has access to gradients through intermediate760

model updates. Balle et al. (2022) instead investigate reconstruction attacks when adversary can761

only observe a model after it has finished training, and propose attacks against (parametric) ML762

models under this threat model. However, the attack they construct is computationally demanding as763

it involves retraining thousands of models. This computational bottleneck is also a factor in Haim764

et al. (2022), who also investigate training data reconstruction attacks where the adversary has access765

only to final model parameters.766
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(a) Average gradient norm (over all samples and steps)
for different values of ✏ at C = 0.1 and C = 1.

(b) Reconstruction success probability for different
values of ✏ at C = 0.1 and C = 1.

Figure 13: Comparison of how reconstruction success is changes with the clipping norm, C. We see
that if examples have a gradient norm smaller than C, and so are not clipped, reconstruction success

probability becomes smaller.

L More experiments on the effect of DP-SGD hyperparameters767

We extend on our investigation into the effect that DP-SGD hyperparameters have on reconstruction.768

We begin by varying the clipping norm parameter, C, and measure the effect on reconstruction. Fol-769

lowing this, we replicate our results from Section 4 (the effect hyperparameters have on reconstruction770

at a fixed ✏) across different values of ✏ and prior sizes, |⇡|.771

L.1 Effect of clipping norm772

If we look again at our attack set-up in Algorithm 2, we see that in essence we are either summing a773

set of samples only from a Gaussian centred at zero or a Gaussian centred at C2. If the gradient of774

the target point is not clipped, then this will reduce the sum of gradients when the target is included in775

a batch, as the Gaussian will be centred at a value smaller than C
2. This will increase the probability776

that the objective is not maximized by the target point.777

We demonstrate how this changes the reconstruction success probability by training a model for 100778

steps with a clipping norm of 0.1 or 1, and measuring the average gradient norm of all samples over779

all steps. Results are shown in Figure 13. We see at C = 0.1, our attack is tight to the upper bound,780

and the average gradient norm is 0.1 for all values of ✏; all individual gradients are clipped. When781

C = 1, the average gradient norm decreases from 0.9 at ✏ = 1 to 0.5 at ✏ = 40, and we see a larger782

gap between upper and lower bounds. The fact that some gradients may not be clipped is not taken783

into account by our theory used to compute upper bounds, and so we conjecture that the reduction is784

reconstruction success is a real effect rather than a weakness of our attack.785

We note that these findings chime with work on individual privacy accounting (Feldman & Zrnic,786

2021; Yu et al., 2022; Ligett et al., 2017; Redberg & Wang, 2021). An individual sample’s privacy787

loss is often much smaller than what is accounted for by DP bounds. These works use the gradient788

norm of an individual sample to measure the true privacy loss, the claim is that if the gradient norm is789

smaller than the clipping norm, the amount of noise added is too large, as the DP accountant assumes790

all samples are clipped. Our experiments support the claim that there is a disparity in privacy loss791

between samples whose gradients are and are not clipped.792

L.2 More results on the effect of DP-SGD hyperparameters at a fixed ✏793

In Section 4, we demonstrated that the success of a reconstruction attack cannot be captured only794

by the (✏, �) guarantee, when ✏ = 4 and the size of the prior, ⇡, is set to ten. We now observe how795

these results change across different ✏ and |⇡|, where we again fix the number of updates to T = 100,796

C = 1, vary q 2 [0.01, 0.99], and adjust � accordingly.797

Firstly, in Figure 14, we measure the upper and lower bound ((improved) prior-aware attack) on798

the probability of successful reconstruction across different q. In all settings, we observe smaller799

reconstruction success at smaller q, where the largest fluctuations in reconstruction success are for800
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(a) ✏ = 1, |⇡| = 2. (b) ✏ = 4, |⇡| = 2. (c) ✏ = 8, |⇡| = 2. (d) ✏ = 16, |⇡| = 2.

(e) ✏ = 1, |⇡| = 10. (f) ✏ = 4, |⇡| = 10. (g) ✏ = 8, |⇡| = 10. (h) ✏ = 16, |⇡| = 10.

(i) ✏ = 1, |⇡| = 100. (j) ✏ = 4, |⇡| = 100. (k) ✏ = 8, |⇡| = 100. (l) ✏ = 16, |⇡| = 100.

Figure 14: How the upper bound and (improved) prior-aware attack change as a function of q at a
fixed value of ✏ and prior size, |⇡|. The amount of privacy leaked through a reconstruction at a fixed

value of ✏ can change with different q.

larger values of ✏. We visualise this in another way by plotting � against q and report the upper bound801

in Figure 15. Note that the color ranges in Figure 15 are independent across subfigures.802

M Proofs803

Throughout the proofs we make some of our notation more succinct for convenience. For a probability804

distribution ! we write !(E) = P![E], and rewrite B(µ, ⌫) = sup{Pµ[E] : E s.t. P⌫ [E]  }805

as sup⌫(E) µ(E). Given a distribution ! and function � taking values in [0, 1] we also write806

!(�) = EX⇠![�(X)].807

M.1 Proof of Theorem 2808

We say that a pair of distributions (µ, ⌫) is testable if for all  2 [0, 1] we have809

inf
⌫(�)

(1� µ(�)) = inf
⌫(E)

(1� µ(E)) ,

where the infimum on the left is over all [0, 1]-valued measurable functions and the one on the right is810

over measurable events (i.e. {0, 1}-valued functions). The Neyman-Pearson lemma (see e.g. Lehmann811

& Romano (2005)) implies that this condition is satisfied whenever the statistical hypothesis problem812

of distinguishing between µ and ⌫ admits a uniformly most powerful test. For example, this is the813

case for distributions on Rd where the density ratio µ/⌫ is a continuous function.814

Theorem 6 (Formal version of Theorem 2). Fix ⇡ and ⇢. Suppose that for every fixed dataset D- there815

exists a distribution µD- such that supz2supp(⇡) B(µDz , ⌫D-)  B(µD- , ⌫D-) for all  2 [0, 1]. If816

the pair (µ, ⌫) is testable, then M is (⌘, �)-ReRo with817

� = sup
D-

sup
⌫D- (E)⇡,⇢(⌘)

µD-(E) .

The following lemma from Dong et al. (2019) will be useful.818

Lemma 7. For any µ and ⌫, the function  7! inf⌫(�)(1� µ(�)) is convex in [0, 1].819

Lemma 8. For any testable pair (µ, ⌫), the function  7! sup⌫(E) µ(E) is concave.820
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Proof. By the testability assumption we have821

sup
⌫(E)

µ(E) = sup
⌫(E)

µ(E)

= sup
⌫(E)

(1� µ(Ē))

= 1� inf
⌫(E)

µ(Ē)

= 1� inf
⌫(E)

(1� µ(E))

= 1� inf
⌫(�)

(1� µ(�)) .

Concavity now follows from Lemma 7.822

Proof of Theorem 6. Fix D- and let  = ⇡,⇢(⌘) throughout. Let also ⌫ = ⌫D- , µz = µDz , ⌫⇤ = ⌫
⇤
D-

823

and µ
⇤ = µ

⇤
D-

.824

Expanding the probability of successful reconstruction, we get:825

PZ⇠⇡,W⇠M(D-[{Z})[⇢(Z,R(W ))  ⌘] = EZ⇠⇡PW⇠M(D-[{Z})[⇢(Z,R(W ))  ⌘]

= EZ⇠⇡EW⇠M(D-[{Z})I[⇢(Z,R(W ))  ⌘]

= EZ⇠⇡EW⇠µZ I[⇢(Z,R(W ))  ⌘]

= EZ⇠⇡EW⇠⌫


µZ(W )

⌫(W )
I[⇢(Z,R(w))  ⌘]

�
.

Now fix z 2 supp(⇡) and let z = PW⇠⌫ [⇢(z,R(W ))  ⌘]. Using the assumption on µ
⇤ we get:826

EW⇠⌫


µz(W )

⌫(W )
I[⇢(z,R(w))  ⌘]

�
 sup

⌫(E)z

EW⇠⌫


µz(W )

⌫(W )
I[W 2 E]

�
(By definition of )

= sup
⌫(E)z

EW⇠µz [I[W 2 E]]

= sup
⌫(E)z

µz(E)

 sup
⌫⇤(E)z

µ
⇤(E) . (By definition of µ⇤ and ⌫

⇤.)

Finally, using Lemma 8 and Jensen’s inequality on the following gives the result:827

EZ⇠⇡[Z ] = EZ⇠⇡PW⇠⌫ [⇢(Z,R(W ))  ⌘]

= EW⇠⌫PZ⇠⇡[⇢(Z,R(W ))  ⌘]

 EW⇠⌫

=  .

M.2 Proof of Corollary 3828

Here we prove Corollary 3. We will use the following shorthand notation for convenience: µ =829

N (B(T, q),�2
I) and ⌫ = N (0,�2

I). To prove our result, we use the notion of TVa.830

Definition 9 (Mahloujifar et al. (2022)). For two probability distributions !1(·) and !2(·), TVa is

defined as

TVa(!1,!2) =

Z
|!1(x)� a · !2(x)| dx.

Now we state the following lemma borrowed from Mahloujifar et al. (2022).831

Lemma 10 (Theorem 6 in Mahloujifar et al. (2022)). Let ⌫D- , µDz be the output distribution of832

DP-SGD applied to D- and Dz respectively, with noise multiplier �, sampling rate q. Then we have833

TVa(⌫D- , µDz )  TVa(⌫, µ) .
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Now, we state the following lemma that connects TVa to blow-up function.834

Lemma 11 (Lemma 21 in Zhu et al. (2022).). For any pair of distributions !1,!2 we have

sup
!1(E)

!2(E) = inf
a>1

min

⇢
0, a · +

TVa(!1,!2) + 1� a

2
,
2+ TVa(!1,!2) + a� 1

2a

�

Since TVa(⌫D- , µDz ) is bounded by TVa(⌫, µ) for all a, therefore we have835

sup
⌫D- (E)

µDz (E)  sup
⌫(E)

µ(E) .

M.3 Proof of Proposition 5836

Recall  = supz02Z PZ⇠⇡[⇢(Z, z0)  ⌘] and ̂ = supz02Z PZ⇠⇡̂[⇢(Z, z0)  ⌘]. Let z =837

PZ⇠⇡[⇢(Z, z)  ⌘] and ̂z = PZ⇠⇡̂[⇢(Z, z)  ⌘]. Note ̂z is the sum of N i.i.d. Bernoulli random838

variables and E⇡̂[̂z] = z . Then, using a multiplicative Chernoff bound, we see that for a fixed z839

the following holds with probability at least 1� e
�N⌧2

z/2:840

z 
̂z

1� ⌧
.

Applying this to z
⇤ = arg supz02Z PZ⇠⇡[⇢(Z, z0)  ⌘] we get that the following holds with841

probability at least 1� e
�N⌧2/2:842

 = z⇤ 
̂z⇤

1� ⌧


̂

1� ⌧
.

M.4 Proof of Proposition 4843

Let z =
(r0N0+r0N0�1)

2 . Let E1 be the event that |P[r > z] � | � ⌧ . By applying Chernoff-
Hoefding bound we have P[E1]  2e�2N⌧2

. Now note that since µ is a Gaussian mixture, we
can write µ =

P
i2[2T ] aiµi where each µi is a Gaussian N (ci,�) where |ci|2 

p
T . Now let

ri = µi(W )/⌫(W ). By holder, we have E[r2] 
P

aiE[r2i ]. We also now that E[r2i ]  e
T ,

therefore, E[r2]  e
T
. Now let E2 be the event that |E[r · I(r > z)] � �

0
| � ⌧. Since the second

moment of r is bounded, the probability of E2 goes to zero as N increases. Therefore, almost surely
we have

sup
⌫(E)�⌧

µ(E)� ⌧  lim
N!1

�
0
 sup

⌫(E)+⌧
µ(E) + ⌧.

Now by pushing ⌧ to 0 and using the fact that µ and ⌫ are smooth we have

lim
N!1

�
0 = lim

⌧!0
sup

⌫(E)+⌧
µ(E) + ⌧ = sup

⌫(E)
µ(E).
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(a) ✏ = 1, |⇡| = 2. (b) ✏ = 1, |⇡| = 10. (c) ✏ = 1, |⇡| = 100.

(d) ✏ = 2, |⇡| = 2. (e) ✏ = 2, |⇡| = 10. (f) ✏ = 2, |⇡| = 100.

(g) ✏ = 4, |⇡| = 2. (h) ✏ = 4, |⇡| = 10. (i) ✏ = 4, |⇡| = 100.

(j) ✏ = 8, |⇡| = 2. (k) ✏ = 8, |⇡| = 10. (l) ✏ = 8, |⇡| = 100.

(m) ✏ = 16, |⇡| = 2. (n) ✏ = 16, |⇡| = 10. (o) ✏ = 16, |⇡| = 100.

(p) ✏ = 32, |⇡| = 2. (q) ✏ = 32, |⇡| = 10. (r) ✏ = 32, |⇡| = 100.

Figure 15: How the upper bound changes as a function of q and � at a fixed value of ✏ and prior
size, |⇡|, and setting T = 100. The probability of a successful reconstruction can vary widely with
different values of q. For example, at ✏ = 32 and |⇡| = 100, at q = 0.01 the upper bound is 0.4 and
at q = 0.99 it is 1. Note that the color ranges are independent across subfigures.
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