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Recently there has been renewed interest in neural-like processing systems, evidenced for ex­
ample in the two volumes Parallel Distributed Processing edited by Rumelhart and McClelland, 
and discussed as parallel distributed systems, connectionist models, neural nets, value passing 
systems and multiple context systems. Dissatisfaction with symbolic manipulation paradigms 
for artificial intelligence seems partly responsible for this attention, encouraged by the promise 
of massively parallel systems implemented in hardware. This paper relates simple neural-like 
systems based on multiple context to some other well-known formalisms-namely production 
systems, k-Iength sequence prediction, finite-state machines and Turing machines-and presents 
earlier sequence prediction results in a new light. 

1 INTRODUCTION 

The revival of neural net research has been very strong, exemplified recently by Rumelhart 
and McClelland!, new journals and a number of meetingsG • The nets are also described as 
parallel distributed systems!, connectionist models2 , value passing systems3 and multiple context 
learning systems4,5,6,7,8,9. The symbolic manipulation paradigm for artificial intelligence does 
not seem to have been as successful as some hoped!, and there seems at last to be real promise 
of massively parallel systems implemented in hardware. However, in the flurry of new work it 
is important to consolidate new ideas and place them solidly alongside established ones. This 
paper relates simple neural-like systems to some other well-known notions-namely production 
systems, k-Iength sequence prediction, finite-state machines and Turing machines-and presents 
earlier results on the abilities of such networks in a new light. 

The general form of a connectionist systemlO is simplified to a three layer net with binary 
fixed weights in the hidden layer, thereby avoiding many of the difficulties-and challenges­
of the recent work on neural nets, The hidden unit weights are regularly patterned using a 
template. Sophisticated, expensive learning algorithms are avoided, and a simple method is 
used for determining output unit weights. In this way we gain some of the advantages of multi­
layered nets, while retaining some of the simplicity of two layer net training methods. Certainly 
nothing is lost in computational power-as I will explain-and the limitations of two layer 
nets are not carried over to the simplified three layer one. Biological systems may similarly 
avoid the need for learning algorithms such as the "simulated annealing" method commonly 
used in connectionist modelsll . For one thing, biological systems do not have the same clearly 
distinguished training phase. 

Briefly, the simplified netb is a production system implemented as three layers of neuron-like 
units; an output layer, an input layer, and a hidden layer for the productions themselves. Each 
hidden production unit potentially connects a predetermined set of inputs to any output. A 
k-Iength sequence predictor is formed once Ie levels of delay unit are introduced into the input 
layer. k-Iength predictors are unable to distinguish simple sequences such as ba . .. a and aa ... a 
since after Ie or more characters the system has forgotten whether an a or b appeared first. If 
the k-Iength predictor is augmented with "auxiliary" actions, it is able to learn this and other 
regular languages, since the auxiliary actions can be equivalent to states, and can be inputs to 

aAmong them the 1st International Conference on Neural Nets, San Diego,CA, June 21-24, 1987, and this 
con.ference. 

bRoughly equivalent to a single context system in Andreae's multiple context system4.5,6,7,8,9. See also 
MacDonald12 . 

@) American Institute of Physics 1988 
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Figure 1: The general form of a connectionist system 10 . 
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the production units enabling predictions to depend on previous states7 . By combining several 
augmented sequence predictors a Thring machine tape can be simulated along with a finite-state 
controller9 , giving the net the computational power of a Universal Turing machine. Relatively 
simple neural-like systems do not lack computational ability. Previous implementations 7,9 of 
this ability are production system equivalents to the simplified nets. 

1.1 Organization of the paper 

The next section briefly reviews the general form of connectionist systems. Section 2 simplifies 
this, then section 3 explains that the result is equivalent to a production system dealing only 
with inputs and outputs of the net. Section 4 extends the simplified version, enabling it to learn 
to predict sequences. Section 5 explains how the computational power of the sequence predictor 
can be increased to that of a Thring machine if some input units receive auxiliary actions; in fact 
the system can learn to be a TUring machine. Section 6 discusses the possibility of a number of 
nets combining their outputs, forming an overall net with "association areas". 

1.2 General form of a connectionist system 

Figure 1 shows the general form of a connectionist system unit, neuron or ce1l 10 . In the figure 
unit i has inputs, which are the outputs OJ of possibly all units in the network, and an output of 
its own, 0i' The net input excitation, net" is the weighted sum of inputs, where !Vij is the weight 
connecting the output from unit j as an input to unit i. The activation, ai of the unit is some 
function Fi of the net input excitation. Typically Fi is semilinear, that is non-decreasing and 
differentiable13 , and is the same function for all, or at least large groups of units. The output is 
a function fi of the activation; typically some kind of threshold function. I will assume that the 
quantities vary over discrete time steps, so for example the activation at time t + 1 is ai (t + 1) 
and is given by Fi((neti(t)). 

In general there is no restriction on the connections that may be made between units. 
Units not connected directly to inputs or outputs are hidden units. In more complex nets 
than those described in this paper, there may be more than one type of connection. Figure 2 
shows a common connection topology, where there are three layers of units-input, hidden and 
output-with no cycles of connection. 

The net is trained by presenting it with input combinations, each along with the desired 
output combination. Once trained the system should produce the desired outputs given just 



Figure 2: The basic structure of a three layer connectionist system. 
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inputs . During training the weights are adjusted in some fashion that reduces the discrepancy 
between desired and actual output. The general method is lO : 

(1) 

where t; is the desired, "training" activation . Equation 1 is a general form of Hebb's classic 
rule for adjusting the weight between two units with high activations lO • The weight adjustment 
is the product of two functions, one that depends on the desired and actual activations--often 
just the difference-and another that depends on the input to that weight and the weight itself. 
As a simple example suppose 9 is the difference and h as just the output OJ. Then the weight 
change is the product of the output error and the input excitation to that weight: 

where the constant T} determines the learning rate. This is the Widrow-Hoff or Delta rule which 
may be used in nets without hidden units. 1o 

The important contribution of recent work on connectionist systems is how to implement 
equation 1 in hidden units; for which there are no training signals ti directly available . The 
Boltzmann learning method iteratively varies both weights and hidden unit training activations 
using the controlled, gradually decreasing randomizing method "simulated annealing" 14. Back­
propagation13 is also iterative, performing gradient descent by propagating training signal errors 
back through the net to hidden units. I will avoid the need to determine training signals for 
hidden units, by fixing the weights of hidden units in section 2 below. 

2 SIMPLIFIED SYSTEM 

Assume these simplifications are made to the general connectionist system of section 1.2: 

1. The system has three layers, with the topology shown in Figure 2 (ie no cycles) 

2. All hidden layer unit weights are fixed, say at unity or zero 

3. Each unit is a linear threshold unit lO , which means the activation function for all units 
is the identity function, giving just net;, a weighted sum of the inputs, and the output 
function is a simple binary threshold of the form: 

! output 

- I • 
threshold / activation 
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so that the output is binary; on or oft'. Hidden units will have thresholds requiring all 
inputs to be active for the output to be active (like an AND gate) while output units will 
have thresholds requiring only 1 or two active highly weighted inputs for an output to be 
generated (like an OR gate). This is in keeping with the production system view of the 
net, explained in section 3. 

4. Learning-which now occurs only at the output unit weights-gives weight adjustments 
according to: 

Wij 1 if ai = OJ = 1 
Wij 0 otherwise 

so that weights are turned on if their input and the unit output are on, and off otherwise. 
That is, Wij = ai A OJ. A simple example is given in Figure 3 in section 3 below. 

This simple form of net can be made probabilistic by replacing 4 with 4' below: 

4'. Adjust weights so that Wij estimates the conditional probability of the unit i output being 
on when output j is on. That is, 

Wij = estimate of P(odoj). 

Then, assuming independence of the inputs to a unit, an output unit is turned on when the 
conditional probability of occurrence of that output exceeds the threshold of the output 
function. 

Once these simplifications are made, there is no need for learning in the hidden units. Also no 
iterative learning is required; weights are either assigned binary values, or estimate conditional 
probabilities. This paper presents some of the characteristics of the simplified net. Section 6 
discusses the motivation for simplifying neural nets in this way. 

3 PRODUCTION SYSTEMS 

The simplified net is a kind of simple production system. A production system comprises a 
global database, a set of production rules and a control system15 . The database for the net is 
the system it interacts with, providing inputs as reactions to outputs from t.he net. The hidden 
units of the network are the production rules, which have the form 

IF precondition THEN action 

The precondition is satisfied when the input excitation exceeds the threshold of a hidden unit . 
The actions are represented by the output units which the hidden production units activate. 
The control system of a production system chooses the rule whose action to perform, from the 
set of rules whose preconditions have been met. In a neural net the control system is distributed 
throughout the net in the output units. For example, the output units might form a winner-take­
all net. In production systems more complex control involves forward and backward chaining to 
choose actions that seek goals . This is discussed elsewhere4.12.16. Figure 3 illust.rates a simple 
production implemented as a neural net. As the figure shows, the inputs to hidden units are 
just the elements of the precondition. When the appropriate input combination is present the 
associated hidden (production) unit is fired. Once weights have been leamed connecting hidden 
units to output units, firing a production results in output. The simplified neural net is directly 
equivalent to a production system whose elements are inputs and outputse . 

Some production systems have symbolic elements, such as variables, which can be given 
values by production actions. The neural net cannot directly implement this, since it can 
have outputs only from a predetermined set. However, we will see later that extensions t.o the 
framework enable this and other abilities. 

CThis might be referred to as a "sensory-motor" production system, since when implemented ill a l'eal system 
such as a robot, it deals only with sensed inputs and executable motor actions, which may include the auxiliary 
actions of section 4.3. 



Figure 3: A production implemented in a simplified neural net . 
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(b) The rule implemented as a hidden unit. The threshold of the hidden unit is 2 so it is. 
an AND gate. The threshold of the output unit is 1 so it is an OR gate. The learned 
weight will be 0 or 1 if the net is not probabilistic, otherwise it will be an estimate of 
P(it will rainlclouds AND pressure falling) 
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Figure 4: A net that predicts the next character in a sequence, based on only the last character . 

(a) The net . Production units (hidden units) have been combined with input units. 
For example this net could predict the sequence abcabcabc . . .. Productions have the 
form: IF last character is . .. THEN next character will be . . .. The learning rule is 

Wij = 1 if (inputj AND outputi). Output is ai = ~R WijOj 

(b) Learning procedure. 

input 

a 
b 
c 

neural net 
output 

1. Clamp inputs and outputs to desired values 

2. System calculates weight values 

a 
b 
c 

3. Repeat 4 and 4 for all required input/output combinations 

4 SEQUENCE PREDICTION 

A production system or neural net can predict sequences. Given examples of a repeating se­
quence, productions are learned which predict future events on the basis of recent ones . Figure 4 
shows a trivially simple sequence predictor. It predicts the next character of a sequence based 
on the previous one. The figure also gives the details of the learning procedure for the simplified 
net. The net need be trained only once on each input combination, then it will "predict" as 
an output every character seen after the current one. The probabilistic form of the net would 
estimate conditional probabilities for the next character , conditional on the current one. Many 
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Figure 5: Using delayed inputs, a neural net can implement a k-length sequence predictor. 

(a) A net with the last three characters as input. 
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(b) An example production. 
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presentations of each possible character pair would be needed to properly estimate the probabil­
ities. The net would be learning the probability distribution of character pairs. A predictor like 
the one in Figure 4 can be extended to a general k-Iength17 predictor so long as inputs delayed 
by 1,2, ... , k steps are available. Then, as illustrated in Figure 5 for 3-length prediction, hidden 
production units represent all possible combinations of k symbols. Again output weights are 
trained to respond to previously seen input combinations, here of three characters. These delays 
can be provided by dedicated neural netsd , such as that shown in Figure 6. Note that the net 
is assumed to be synchronously updated, so that the input from feedback around units is not 
changed until one step after the output changes. There are various ways of implementing delay 
in neurons, and Andreae4 investigates some of them for the same purpose-delaying inputs-in 
a more detailed simulation of a similar net. 

4.1 Other work on sequence prediction in neural nets 

Feldman and Ballard2 find connectionist systems initially not suited to representing changes 
with time. One form of change is sequence, and they suggest two methods for representing 
sequence in nets. The first is by units connected to each other in sequence so that sequential 
tasks are represented by firing these units in succession. The second method is to buffer the 
inputs in time so that inputs from the recent past are available as well as current inputs; that 
is, delayed inputs are available as suggested above. An important difference is the necessary 
length of the buffer; Feldman and Ballard suggest the buffer be long enough to hold a phrase of 
natural language, but I expect to use buffers no longer than about 7, after Andreae4 . Symbolic 
inputs can represent more complex information effectively giving the length seven buffers more 
information than the most recent seven simple inputs, as discussed in section 5. 

The method of back-propagation13 enables recurrent networks to learn sequential tasks in a 

dFeldman and Ballard2 give some dedicated neural net connections for a variety of flUlctions 
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Figure 6: Inputs can be delayed by dedicated neural subnets. A two stage delay is shown. 

(a) Delay network. 

(b) Timing diagram for (a). 
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manner similar to the first suggestion in the last paragraph, where sequences of connected units 
represent sequenced events. In one example a net learns to complete a sequence of characters; 
when given the first two characters of a six character sequence the next four are output. Errors 
must be propagated around cycles in a recurrent net a number of times. 

Seriality may also be achieved by a sequence of states of distributed activation 18. An example 
is a net playing both sides of a tic-tac-toe game18 . The sequential nature of the net's behavior is 
derived from the sequential nature of the responses to the net's actions; tic-tac-toe moves. A net 
can model sequence internally by modeling a sequential part of its environment. For example, 
a tic-tac-toe playing net can have a model of its opponent. 

k-Iength sequence predictors are unable to learn sequences which do not repeat more fre­
quently that every k characters. Their k-Iength context includes only information about the last 
k events. However, there are two ways in which information from before the kth last input can 
be retained in the net. The first method latches some inputs, while the second involves auxiliary 
actions. 

4.2 Latch units 

Inputs can be latched and held indefinitely using the combination shown in Figure 7. Not all 
inputs would normally be latched. Andreae4 discusses this technique of "threading" latched 
events among non-latched events, giving the net both information arbitrarily far back in its 
input-output history and information from the immediate past . Briefly, the sequence ba . .. a 
can be distinguished from aa ... a if the first character is latched. However, this is an ad hoc 
solution to this probleme . 

4-3 Auxiliary actions 

When an output is fed back into the net as an input signal, this enables the system to choose the 
next output at least partly based on the previous one, as indicated in Figure 8. If a particular 
fed back output is also one without external manifestation, or whose external manifestation 
is independent of the task being performed, then that output is an auxiliary action. It Las 

"The interested reader should refer to Andreae4 where more extensive analysis is given. 
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Figure 7: Threading. A latch circuit remembers an event until another comes along. This is a 
two input latch, e.g. for two letters a and b, but any number of units may be similarly connected. 
It is formed from a mutual inhibition layer, or winner-take-all connection, along with positive 
feedback to keep the selected output activated when the input disappears. 

a 

b---;~..!!J 

Figure 8: Auxiliary actions-the S outputs-are fed back to the inputs of a net, enabling the 
net to remember a state. Here both part of a net and an example of a production are shown. 
There are two types of action, characters and S actions. 

Sinputs S outputs 

character inputs character outputs 

IF S input is [§l] and character input is 0 THEN output character lliJ and S [ill 

no direct effect on the task the system is performing since it evokes no relevant inputs, and 
so can be used by the net as a symbolic action. If an auxiliary action is latched at the input 
then the symbolic information can be remembered indefinitely, being lost only when another 
auxiliary action of that kind is input and takes over the latch. Thus auxiliary actions can act 
like remembered states; the system performs an action to "remind" itself to be in a particular 
state. The figure illustrates this for a system that predicts characters and state changes given 
the previous character and state. An obvious candidate for auxiliary actions is speech. So 
the blank oval in the figure would represent the net's environment, through which its own 
speech actions are heard. Although it is externally manifested, speech has no direct effect on 
our physical interactions with the world. Its symbolic ability not only provides the power of 
auxiliary actions, but also includes other speakers in the interaction. 

5 SIMULATING ABSTRACT AUTOMATA 

The example in Figure 8 gives the essence of simulating a finite state automaton with a produc­
tion system or its neural net equivalent . It illustrates the transition function of an automaton; 
the new state and output are a function of the previous state and input. Thus a neural net can 
simulate a finite state automaton, so long as it has additional, auxiliary actions. 

A Thring machine is a finite state automaton controller plus an unbounded memory. A 
neural net could simulate a 'lUring machine in two ways, and both ways have been demonstrated 
with production system implementations-equivalent to neural nets----(;alled "multiple context 
learning systems"', briefly explained in section 6. The first Thring machine simulation 7 has the 
system simulate only the finite state controller, but is able to use an unbounded external memory 

fSee John Andreae's and his colleagues' work4 ,5,6,7,8,9,12 ,16 
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Figure 9: Multiple context learning system implementation as multiple neural nets. Each:3 
layer net has the simplified form presented above, with a number of elaborations such as extra 
connections for goal-seeking by forward and backward chaining. 

Output 
channels 

from the real world, much like the paper of Turing's original work 19 . The second simnlat.ion[" 1 '2 

embeds the memory in the multiple context learning system, along with a counter for accessing 
this simulated memory. Both learn all the productions-equivalent to learning output unit 
weights-required for the simulations. The second is able to add internal memory as required, 
up to a limit dependent on the size of the network (which can easily be large enough to allow 70 
years of computation!). The second could also employ external memory as the first did. Briefly, 
the second simulation comprised multiple sequence predictors which predicted auxiliary actions 
for remembering the state of the controller, and the current memory position . The memory 
element is updated by relearning the production representing that element; the precondition is 
the address and the production action the stored item. 

6 MULTIPLE SYSTEMS FORM ASSOCIATION AREAS 

A multiple context learning system is production system version of a multiple neural net, al­
though a simple version has been implemented as a simulated net4 •20 . It effectively comprises 
several nets--or "association" areas-which may have outputs and inputs in common, as indi­
cated in Figure 9. Hidden unit weights are specified by templates ; one for each net . A template 
gives the inputs to have a zero weight for the hidden units of a net and the inputs to have a 
weight of unity. Delayed and latched inputs are also available . The actual outputs are selected 
from the combined predictions of the nets in a winner-take-all fashion . 

I see the design for real neural nets, say as controllers for real robots, requiring a large 
degree of predetermined connectivity. A robot controller could not be one three layer net wit.h 
every input connected to every hidden unit in turn connected to every output. There will 
need to be some connectivity constraints so the net reflects the functional specialization in the 
control requirements9 . The multiple context learning system has all the hidden layer connections 
predetermined, but allows output connections to be learned. This avoids the "credit assignment" 
problem and therefore also the need for learning algorithms such as Boltzmann learning and 
back-propagation. However, as the multiple context learning system has auxiliary actions, and 
delayed and latched inputs, it does not lack computational power. Future work in this area 
should investigate , for example, the ability of different kinds of nets to learn auxiliary act.ions. 
This may be difficult as symbolic actions may not be provided in training inputs and output.s . 

9 For example a controller for a robot body would have to deal with vision, manipulation, motion, etc. 
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7 CONCLUSION 

This paper has presented a sImplified three layer connectionist model, with fixed weights for 
hidden units, delays and latches for inputs, sequence prediction ability, auxiliary "state" actions, 
and the ability to use internal and external memory. The result is able to learn to simulate a 
Turing machine. Simple neural-like systems do not lack computational power. 
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