
850

Strategies for Teaching Layered Networks
Classification Tasks

Ben S. Wittner 1 and John S. Denker
AT&T Bell Laboratories

Holmdel, New Jersey 07733

Abstract

There is a widespread misconception that the delta-rule is in some sense guaranteed to
work on networks without hidden units. As previous authors have mentioned, there is
no such guarantee for classification tasks. We will begin by presenting explicit counter­
examples illustrating two different interesting ways in which the delta rule can fail. We
go on to provide conditions which do guarantee that gradient descent will successfully
train networks without hidden units to perform two-category classification tasks. We
discuss the generalization of our ideas to networks with hidden units and to multi­
category classification tasks.

The Classification Task

Consider networks of the form indicated in figure 1. We discuss various methods for
training such a network, that is for adjusting its weight vector, w. If we call the input
v, the output is g(w· v), where 9 is some function.

The classification task we wish to train the network to perform is the following. Given
two finite sets of vectors, Fl and F2, output a number greater than zero when a vector in
Fl is input, and output a number less than zero when a vector in F2 is input. Without
significant loss of generality, we assume that 9 is odd (Le. g(-s) == -g(s». In that case,
the task can be reformulated as follows. Define 2

F :== Fl U {-v such that v E F2} (1)

and output a number greater than zero when a vector in F is input. The former
formulation is more natural in some sense, but the later formulation is somewhat more
convenient for analysis and is the one we use. We call vectors in F, training vectors.

A Class of Gradient Descent Algorithms

We denote the solution set by

W :== {w such that g(w· v) > 0 for all v E F},

lCurrently at NYNEX Science and Technology, 500 Westchester Ave., White Plains, NY 10604
2 We use both A := Band B =: A to denote "A is by definition B".

@ American Institute of Physics 1988

(2)

851

output

inputs

Figure 1: a simple network

and we are interested in rules for finding some weight vector in W. We restrict our
attention to rules based upon gradient'descent down error functions E(w) of the form

E(w) = L h(w . v).
VEF

The delta-rule is of this form with

1
h(w . v) = h6(W . v) := -(b - g(w . v))2

2

(3)

(4)

for some positive number b called the target (Rumelhart, McClelland, et al.). We call
the delta rule error function E6 .

Failure of Delta-rule Using Obtainable Targets

Let 9 be any function that is odd and differentiable with g'(s) > 0 for all s. In this
section we assume that the target b is in the range of g. We construct a set F of
training vectors such that even though M' is not empty, there is a local minimum of E6
not located in W. In order to facilitate visualization, we begin by assuming that 9 is
linear. We will then indicate why the construction works for the nonlinear case as well.
We guess that this is the type of counter-example alluded to by Duda and Hart (p. 151)
and by Minsky and Papert (p. 15).

The input vectors are two dimensional. The arrows in figure 2 represent the training
vectors in F and the shaded region is W. There is one training vector, vI, in the second
quadrant, and all the rest are in the first quadrant. The training vectors in the first
quadrant are arranged in pairs symmetric about the ray R and ending on the line L.
The line L is perpendicular to R, and intersects R at unit distance from the origin.
Figure 2 only shows three of those symmetric pairs, but to make this construction work
we might need many. The point p lies on R at a distance of g-l(b) from the origin .

We first consider the contribution to E6 due to any single training vector, v. The
contribution is

(1/2)(b - g(w· v))2, (5)

and is represented in figure 3 in the z-direction. Since 9 is linear and since b is in the

,

\ , R
\ ,.
\ ,

p ,'c" , , \
" ,

, L
\

X-axis

853

x-axis

Figure 3: Error surface

We now remove the assumption that 9 is linear. The key observation is that

dh6/ds == h/(s) = (b - g(s»(-g'(s» (6)

still only has a single zero at g-l(b) and so h(s) still has a single minimum at g-l(b).
The contribution to E6 due to the training vectors in the first quadrant therefore still
has a global minimum on the xy-plane at the point p. So, as in the linear case, if there
are enough symmetric pairs of training vectors in the first quadrant, the value of Eo
at p can be made arbitrarily lower than the value along some circle in the xy-plane
centered around p, and E5 = Eo + El will have a local minimum arbitrarily near p.
Q.E.D.

Failure of Delta-rule Using Unobtainable Targets

We now consider the case where the target b is greater than any number in the range
of g. The kind of counter-example presented in the previous section no longer exists,
but we will show that for some choices of g, including the traditional choices, the delta
rule can still fail. Specifically, we construct a set F of training vectors such that even
though W is not empty, for some choices of initial weights, the path traced out by going
down the gradient of E5 never enters W.

854

y-axis

:,
, ,

, ,

,
",.,-P ,

q , __ ,:~ 4
J'=----~----~---~ L

x-axis

Figure 4: Counter-example for unobtainable targets

We suppose that 9 has the following property. There exists a number r > 0 such that

. hs'(-rs)
hm h '() = o. _-00 5 S

(7)

An example of such a 9 is

2
9(S) = tanh(s) = 1 + e-2., - 1, (8)

for which any r greater than 1 will do.

The solid arrows in figure 4 represent the training vectors in F and the more darkly
shaded region is W. The set F has two elements,

and
v 2 =mm[n (9)

The dotted ray, R lies on the diagonal {y = x}.

Since
(10)

855

the gradient descent algorithm follows the vector field

-v E(w) = -h/(w· V1)V1 - h/(w. V 2)V2 . (11)

The reader can easily verify that for all won R,

(12)

So by equation (7), if we constrain w to move along R,

. -h/(w. vI)
hm , 2 = O.

w oo -ho (w . v)
(13)

Combining equations (11) and (13) we see that there is a point q somewhere on R such
that beyond q, - V E(w) points into the region to the right of R, as indicated by the
dotted arrows in figure 4.

Let L be the horizontal ray extending to the right from q. Since for all s,

g'(s) > 0 and b> g(s), (14)

we get that
- h/(s) = (b - g(s»g'(s) > o. (15)

So since both vI and v 2 have a positive y-component, -V E(w) also has a positive
y-component for all w. So once the algorithm following -V E enters the region above
L and to the right of R (indicated by light shading in figure 4), it never leaves. Q.E.D.

Properties to Guarantee Gradient Descent Learning

In this section we present three properties of an error function which guarantee that
gradient descent will not fail to enter a non-empty W.

We call an error function of the form presented in equation (3) well formed if h is
differentiable and has the following three properties.

1. For all s, -h'(s) ~ 0 (i.e. h does not push in the wrong direction).

2. There exists some f > 0 such that -h'(s) ~ f for all s ~ 0 (i.e. h keeps pushing
if there is a misclassification).

3. h is bounded below.

Proposition 1 If the error junction is well formed, then gradient descent is guaranteed
to enter W, provided W is not empty.

856

The proof proceeds by contradiction. Suppose for some starting weight vector the path
traced out by gradient descent never enters W. Since W is not empty, there is some
non-zero w* in W. Since F is finite,

A := min{w*. v such that v E F} -:> O. (16)

Let wet) be the path traced out by the gradient descent algorithm. So

w'(t) = -VE(w(t» = I:: -h'(w(t) ·v)v for all t. (17)
vEF

Since we are assuming that at least one training vector is misclassified at all times, by
properties 1 and 2 and equation (17),

w* . w'(t) 2: fA for all t. (18)

So
Iw'(t)1 2: fA/lw*1 =: e > 0 for all t. (19)

By equations (17) and (19),

dE(w(t»/dt = V E· w'(t) = -w'(t) . w'(t) ~ -e < 0 for all t. (20)

This means that
E(w(t» --+ -00 as t --+ 00. (21)

But property 3 and the fact that F is finite guarantee that E is bounded below. This
contradicts equation (21) and finishes the proof.

Consensus and Compromise

So far we have been concerned with the case in which F is separable (i.e. W is not
empty). What kind of behavior do we desire in the non-separable case? One might
hope that the algorithm will choose weights which produce correct results for as many
of the training vectors as possible. We suggest that this is what gradient descent using
a well formed error function does.

From investigations of many well formed error functions, we suspect the following well
formed error function is representative. Let g(s) = s, and for some b > 0, let

h(S)={ (b-s)2 ifs~~;
o otherwIse.

(22)

In all four frames of figure 5 there are three training vectors. Training vectors 1 and 2
are held fixed while 3 is rotated to become increasingly inconsistent with the others. In
frames (i) and (ii) F is separable. The training set in frame (iii) lies just on the border
between separability and non-separability, and the one in frame (iv) is in the interior of

857

i) 3 ii)
2

3

1

iii)
2

iv)
2

3 L.1 1 ...
3

Figure 5: The transition between seperability and non-seperability

the non-separable regime. Regardless of the position of vector 3, the global minimum
of the error function is the only minimum.

In frames (i) and (ii), the error function is zero on the shaded region and the shaded
region is contained in W. As we move training vector number 3 towards its position in
frame (iii), the situation remains the same except the shaded region moves arbitrarily
far from the origin. At frame (iii) there is a discontinuity; the region on which the
error function is at its global minimum is now the one-dimensional ray indicated by
the shading. Once training vector 3 has moved into the interior of the non-separable
regime, the region on which the error function has its global minimum is a point closer
to training vectors 1 and 2 than to 3 (as indicated by the "x" in frame (iv».

If all the training vectors can be satisfied, the algorithm does so; otherwise, it tries to
satisfy as many as possible, and there is a discontinuity between the two regimes. We
summarize this by saying that it finds a consensus if possible, otherwise it devises a
compromise.

Hidden Layers

For networks with hidden units, it is probably impossible to prove anything like propo­
sition 1. The reason is that even though property 2 assures that the top layer of weights

858

gets a non-vanishing error signal for misclassified inputs, the lower layers might still get
a vanishingly weak signal if the units above them are operating in the saturated regime.

We believe it is nevertheless a good idea to use a well formed error function when
training such networks. Based upon a probabilistic interpretation of the output of the
network, Baum and Wilczek have suggested using an entropy error function (we thank
J.J. Hopfield and D.W. Tank for bringing this to our attention). Their error function
is well formed. Levin, Solla, and Fleisher report simulations in which switching to the
entropy error function from the delta-rule introduced an order of magnitude speed-up
of learning for a network with hidden units.

Multiple Categories

Often one wants to classify a given input vector into one of many categories. One popular
way of implementing multiple categories in a feed-forward network is the following. Let
the network have one output unit for each category. Denote by oj(w) the output of
the j-th output unit when input v is presented to the network having weights w. The
network is considered to have classified v as being in the k-th category if

or(w) > oj(w) for all j ~ k. (23)

The way such a network is usually trained is the generalized delta-rule (Rumelhart,
McClelland, et al.). Specifically, denote by c(v) the desired classification of v and let

b"! .= {b if j = c(v);
1 • -b otherwise,

for some target b > O. One then uses the error function

E(w):= EE (bj - oj (w») 2
•

v .
3

(24)

(25)

This formulation has several bothersome aspects. For one, the error function is not will
formed. Secondly, the error function is trying to adjust the outputs, but what we really
care about is the differences between the outputs. A symptom of this is the fact that
the change made to the weights of the connections to any output unit does not depend
on any of the weights of the connections to any of the other output units.

To remedy this and also the other defects of the delta rule we have been discussing, we
suggest the following. For each v and j, define the relative coordinate

(26)

859

What we really want is all the 13 to be positive, so use the error function

E(w):= E E h (f3j(w)) (27)
v #c(v)

for some well formed h. In the simulations we have run, this does not always help, but
sometimes it helps quite a bit.

We have one further suggestion. Property 2 of a well formed error function (and the
fact that derivatives are continuous) means that the algorithm will not be completely
satisfied with positive 13; it will try to make them greater than zero by some non-zero
margin. That is a good thing, because the training vectors are only representatives of
the vectors one wants the network to correctly classify. Margins are critically important
for obtaining robust performance on input vectors not in the training set. The problem
is that the margin is expressed in meaningless units; it makes no sense to use the same
numerical margin for an output unit which varies a lot as is used for an output unit
which varies only a little. We suggest, therefore, that for each j and v, keep a running
estimate of uj(w), the variance of f3J(w), and replace f3J(w) in equation (27) by

f3J (w)/uj (w). (28)

Of course, when beginning the gradient descent, it is difficult to have a meaningful
estimate of uj(w) because w is changing so much, but as the algorithm begins to
converge, your estimate can become increasingly meaningful.

References

1. David Rumelhart, James McClelland, and the PDP Research Group, Parallel Dis­
tributed Processing, MIT Press, 1986

2. Richard Duda and Peter Hart, Pattern Classification and Scene Analysis, John
Wiley & Sons, 1973.

3. Marvin Minsky and Seymour Papert, "On Perceptrons", Draft, 1987.

4. Eric Baum and Frank Wilczek, these proceedings.

5. Esther Levin, Sara A. Solla, and Michael Fleisher, private communications.

