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Advances in brain theory need two complementary approaches: 
Analytical investigations by in situ measurements and as well syn­
thetic modelling supported by computer simulations to generate 
suggestive hypothesis on purposeful structures in the neural 
tissue. In this paper research of the second line is described: 
Starting from a neurophysiologically inspired model of stimulus­
response (S-R) and/or associative memorization and a psychological­
ly motivated ministructure for basic control tasks, pre-conditions 
and conditions are studied for cooperation of such units in a 
hierarchical organisation, as can be assumed to be the general 
layout of macrostructures in the brain. 

I. INTRODUCTION 

Theoretic modelling in brain theory is a highly speculative 
subject. However, it is necessary since it seems very unlikely to 
get a clear picture of this very complicated device by just analy­
zing the available measurements on sound and/or damaged brain parts 
only. As in general physics, one has to realize, that there are 
different levels of modelling: in physics stretching from the ato­
mary level over atom assemblies till up to general behavioural 
models like kinematics and mechanics, in brain theory stretching 
from chemical reactions over electrical spikes and neuronal cell 
assembly cooperation till general human behaviour. 

The research discussed in this paper is located just above the 
direct study of synaptic cooperation of neuronal cell assemblies as 
studied e. g. in /Amari 1988/. It takes into account the changes of 
synaptic weighting, without simulating the physical details of such 
changes, and makes use of a general imitation of learning situation 
(stimuli) - response connections for building up trainable basic 
control loops, which allow dynamic S-R memorization and which are 
themsel ves elements of some more complex behavioural loops. The 
general aim of this work is to make first steps in studying struc­
tures, preconditions and conditions for building up purposeful 
hierarchies and by this to generate hypothesis on reasons and 
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meaning behind substructures in the brain like the columnar organi­
zation of the cerebral cortex (compare e. g. /Mountcastle 1978/). 

The paper is organized as follows: In Chapter II a short descrip­
tion is given of the basic elements for building up hierarchies, 
the learning control loop LERNAS and on the role of its subelement 
AMS, some ~ssociati ve memory ~stem inspired by neuronal network 
considerations. Chapter III starts from certain remarks on sub­
structures in the brain and discusses the cooperation of LERNAS­
elements in hierarchies as possible imitations of substructures. 
Chapter IV specifies the steps taken in this paper in the direction 
of Chapter III and Chapter V presents the results achieved by com­
puter simulations. Finally an outlook will be given on further 
investigations. 

II. LERNAS AND AMS 

Since the formal neuron was introduced by /McCulloch and Pitts 
1943/, various kinds of neural network models have been proposed, 
such as the percept ron by /Rosenblatt 1957/ the neuron equation of 
/Caianello 1961/, the cerebellar model articulation controller CMAC 
by /Albus 1972, 1975/ or the associative memory models by 
/Fukushima 1973/, /Kohonen 1977/ and / Amari 1977/. However, the 
abili ty of such systems to store information efficiently and to 
perform certain pattern recognition jobs is not adequate for sur­
vival of living creatures. So they can be only substructures in the 
overall brain organization; one may call them a microstructure. 

Purposeful acting means a goal driven coordination of sensory in­
formation and motor actions. Al though the human brain is a very 
complex far end solution of evolution, the authors speculated in 
1978 that it might be a hierarchical combination of basic elements, 
which would perform in an elementary way like the human brain in 
total, especially since there is a high similarity in the basic 
needs as well as in the neuronal tissue of human beings and rela­
ti vely simple creatures. This led to the design of the learning 
control loop LERNAS in 1981 by one of the authors - /Ersu 1984/ -
on the basis of psychological findings. He transformed the state­
ment of /Piaget 1970/, that the complete intelligent action needs 
three elements: "1) the question, which directs possible search 
actions, 2) the hypothesis, which anticipates eventual solutions, 
3) the control, which selects the solution to be chosen" into the 
structure shown in Fig. 1, by identifying the "question" with an 
performance criterion for assessment of possible advantages/disad­
vantages of certain actions, the "hypothesis" with a predictive 
model of environment answers and the "control" with a control stra­
tegy which selects for known situations the best action, for un­
known situations some explorative action (active learning). 

In detail, Fig. 1 has to be understood in the following way: The 
predictive model is built up in a step by step procedure from a 
characterization of the actual situation at the time instant k-T s 
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T sampling time) and the measured response of the unknown en­s 
vironment at time instant (k+1)T . The actual situation consists of s 
measurements regarding the stimuli and responses of the environment 
at time instant keTs plus - as far as necessary for a unique char-

acterization - of the situation-stimuli and responses at time in­
stants (k-1)T , (k-2)T ... , provided bv the short term memory. To s s -
reduce learning effort, the associative memory system used to store 
the predictive model has the ability of local generalization, that 
means making use of the trained response value not only for the 
corresponding actual situation, but also in similar situations. The 
assessment module generates on the basis of a given goal - a wanted 
environment response - with an adequate performance criterion an 
evaluation of possible actions through testing them with the pre­
dictive model, as far as this is already built up and gives mean­
ingful answers. The result is stored in the control strategyAMS 
together with its quality: real optimal action for the actual situ­
ation or only relatively optimal action, if the testing reached the 
border of the known area in the predictive model of the environ­
ment. In the second case, the real action is changed in a sense of 
curiosity, so that by the action the known area of the predictive 
model is extended. By this, one reaches more and more i:he first 
case, in which the real optimal actions are known. Since the first 
guess for a good action in the optimization phase is given to the 
assessment module from the control strategy AMS - not indicated in 
Fig. 1 to avoid unnecessary complication - finally the planning 
level gets superfluous and one gets very quick optimal reactions, 
the checking with the planning level being necessary and helpful 
only to find out, whether the environment has not changed, possi­
bly. Again the associative memory system used for the control stra­
tegy is locally generalizing to reduce the necessary training 
effort. 

The AMS storage elements for the predictive model, and for opti­
mized actions are a refinement and implementation for on-line 
application of the neuronal network model CMAC from J. Albus - see 
e. g. /Ersu, Militzer 1982/ -, but it could be any other locally 
generalizing neural network model and even a storage element based 
on pure mathematical considerations, as has been shown in 
/Militzer, Tolle 1986/. 

The important property to build up an excellent capability to 
handle different tasks in an environment known only by some sensory 
information - the property which qualifies LERNAS as a possible 
basic structure (a "ministructure") in the nervous system of living 
creatures - has been proven by its application to the control of a 
number of technical processes, starting with empty memories for the 
predictive model and the control strategy storage. Details on this 
as well as on the mathematical equations describing LERNAS can be 
found in /Ersu, Mao 1983/, /Ersu, Tolle 1984/ and /Ersu, Militzer 
1984/. 
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It should be mentioned that the concept of an explicit predictive 
environmental model - as used in LERNAS - is neither the only mean­
ingful description of human job handling nor a necessary part of 
our basic learning element. It suffices to use a prediction whether 
a certain action is advantegeous to reach the actual goal or 
whether this is not the case. More information on such a basic 
element MINLERNAS, which may be used instead of LERNAS in general 
(however, with the penalty of some performance degradation) are 
given in /Ersa, Tolle 1988/. 

III. HIERARCHIES 

There are a number of reasons to believe, that the brain is 
built up as a hierarchy of control loops, the higher levels having 
more and more coordinative functions. A very simple example shows 
the necessity in certain cases. The legs of a jumping jack can move 
together, only. If one wants to move them separately, one has to 
cut the connection, has to build up a separate controller for each 
leg and a coordinating controller in a hierarchically higher level 
to restore the possibility of coordinated movements. Actually, one 
can find such an evolution in the historical development of certain 
animals. In a more complex sense a multilevel hierarchy exists in 
the extrapyramidal motor system. Fig. 2 from /Albus 1979/ specifies 
five levels of hierarchy for motor control. It can be speculated, 
that hierarchical organizations are not existing in the senso-moto­
ric level only, but also in the levels of general abstractions and 
thinking. E. g. /Dorner 1974/ supports this idea. 

If one assumes out of these indications, that hierarchies are a 
fundamental element of brain structuring - the details and numbers 
of hierarchy-levels not being known - one has to look for certain 
substructures and groupings of substructures in the brain. In this 
connection one finds as a first subdivision the cortical layers, 
but then as another more detailed subdivision the columns, cell 
assemblies heavily connected in the axis vertical to cortical 
layers and sparsely connected horizontally. /Mountcastle 1978/ 
defines minicolumns, which comprise in some neural tissue roughly 
100 in other neural tissue roughly 250 individual cells. In addi­
tion to these mini columns certain packages of minicolumns, consist­
ing out of several hundreds of the minicolumns, can be located. 
They are called macrocolumns by /Mountcastle 1978/. Fig. 3 gives 
some abstraction, how such structures could be interpreted: each 
minicolumn is considered to be a ministructure of the type LERNAS, 
a number of LERNAS units - here shown in a ring structure instead 
of a filled up cylindrical structure - building up a macrocolumn. 
The signals between the LERNAS elements could be overlapping and 
cooperating. Minicolumns being elements of macrocolumns of a higher 
cortical layer - here layer j projecting to layer k - could initi­
ate and/or coordinate this cooperation in a hierarchical sense. 

Such a complex system is difficult to simulate. One has to go into 
this direction in a step by step procedure. In a first step the 
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overlapping or crosstalk between the minicolumns may be suppressed 
and the number of ministructures LERNAS representing the mini­
columns should be reduced heavily. This motivates Fig. 4 as a fun­
damental blockdiagram for research on cooperation of LERNAS ele­
ments. 

IV. TOPICS ADDRESSED 

From Fig. 4 only the lowest level of coordination (layer 1), 
that means the coordination of two subprocesses was implemented up 
to now - right half of Fig. 5. This has two reasons: Firstly, a 
number of fundamental questions can be posed and discussed with 
such a formulation already. Secondly, it is difficult to set up 
meaningful subprocesses and coordination goals for a higher order 
system. 

The problem discussed in the following can be understood as the 
coordination of two minicolumns as described in Chapter III, but 
also as the coordination of higher level subtasks, which may be 
detailed themselves by ministructures and/or systems like Fig. 4. 
This is indicated in the left half of Fig. 5. 

Important questions regarding hierarchies of learning control loops 
are: 

I. What seem to be meaningful interventions from the coordinator 
onto the lower level systems? 

II. Is parallel learning in both levels possible or requires a 
meaningful learning strategy that the control of subtasks has 
to be learned at first before the coordination can be learned? 

III. Normally one expects, that the lower level takes care of short 
term requirements and the upper level of long term strategies. 
Is that necessary or what happens if the upper level works on 
nearly the same time horizon as the lower levels? 

IV. Furtheron one expects, that the upper level may look after 
other goals than the lower level, e. g. the lower level tries 
to suppress disturbances effects since the upper level tries 
to minimize overall energy consumption. But can such different 
strategies work without oscillations or destabilization of the 
system? 

Question I can be discussed by some general arguments, for ques­
tions II-IV only indications of possible answers can be given from 
simulation results. This will be postponed to Chapter V. 

Fig. 6 shows three possible intervention schemes from the coordina­
tor. 

By case a) an intervention into the structure or the parameters of 
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the sublevel (=local) controllers is meant. Since associative 
mappings like AMS have no parameters being directly responsible for 
the behaviour of the controller - as would be the case with a para­
metrized linear or non-linear differential equation being the de­
scription of a conventional controller - this does not make sense 
for the controller built up in LERNAS. However, one could consider 
the possibility to change parameters or even elements, that means 
structural terms of the performance criterion, which is responsible 
for the shaping of the controller. But this would require to learn 
anew, which takes a too long time span in general. 

By case b) a distribution of work load regarding control commands 
is meant. The possible idea could be, that the coordinator gives 
control inputs to hold the long range mean value required, since 
the local controllers take into account fast dynamic fluctuations 
only. However, this has the disadvantage that the control actions 
of the upper level have to be included into the inputs to the local 
controllers, extending the dimension of in-put space of these 
storage devices, since otherwise the process appears to be highly 
time variant for the local controllers, which is difficult to 
handle for LERNAS. 

So case c) seems to be the best solution. In this case the coordi­
nator commands the set points of the local controllers, generating 
by this local subgoals for the lower level controllers. Since this 
requires no input space extension for the local controllers and is 
in full agreement with the working conditions of single LERNAS 
loops, it is a meaningful and effective approach. 

Fig. 7 shows the accordingly built up structure in detail. The 
control strategy of Fig. 1 is divided here in two parts the storage 
element (the controller C) and the active learning AL. The elements 
are explicitly characterized for the upper level only. The whole 
lower level is considered by the coordinator as a single pseudo­
process to be controlled (see Fig. 4). 

v. SIMULATION RESULTS 

For answering questions II and III the very simple non-linear 
process shown in Fig. 8 - detailing the subprocesses SPl, SP2 and 
their coupling in Fig. 7 - was used. For the comparison of bottom 
up and parallel learning suitably fixed PI-controllers were used 
for bottom up learning instead of LERNAS land LERNAS 2, simulating 
optimally trained local controllers. Fig. 9a shows the result due 
to which in the first run a certain time is required for achieving 
a good set point following through coordinator assistance. However, 
with the third repetition (4th run) a good performance is reached 
from the first set point change on already. For parallel learning 
all (and not only the coordinator AMS-memories) were empty in the 
beginning. Practically the same performance was achieved as in 
bottom up training - Fig. 9b -, indicating, that at least in simple 
problems, as considered here, parallel learning is a real possibi-
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lity. However - what is not illustrated here - the coordinator 
sampling time must be sufficiently long, so that the local control­
lers can reach the defined subgoals at least qualitatively in this 
time span. 

For answering question III, in which respect a higher difference in 
the time horizon between local controller and coordinator changes 
the picture, a doubling of the sampling rate for the coordinator 
was implemented. Fig. 10 give the results. They can be interpreted 
as follows: Smaller sampling rates allow the coordinator to get 
more information about the pseudo-sub-processes, the global goal is 
reached faster. Larger sampling rates lead to a better overall 
performance when the goal is reached: there is a higher amount of 
averaging regarding informations about the pseudo-sub-processes. 

Up to now in both levels the goal or performance criterion was the 
minimization of differences between the actual plant output and the 
requested plant output. The influence of different coordinator 
goals - question IV - was investigated by simulating a two stage 
waste water neutralization process. A detailed description of this 
process set up and the simulation results shall not be given here 
out of space reasons. It was found that: 

• in hierarchical systems satisfactory overall behaviour may be 
reached by well defined subgoals with clearly different coordi­
nator goals. 

• since learning is goal driven, one has to accept that implicit 
wishes on closed loop behaviour are fulfilled by chance only. 
Therefore important requirements have to be included in the 
performance criteria explicitly. 

It should be remarked finally, that one has to keep in mind, that 
simulation results with one single process are indications of 
possible behaviour only, not excluding that in other cases a funda­
mentally different behaviour can be met. 

VI. OUTLOOK 

As has been mentioned already in Chapter III and IV, this work 
is one of many first steps of investigations regarding hierarchical 
organization in the brain, its preconditions and possible behav­
iour. 

Subjects of further research should be the self-organizing task 
distribution between the processing units of each layer, and the 
formation of inter layer projections in order to build up meta-tasks 
composed of a sequence of frequently occuring elementary tasks. 
These investigations will on the other hand show to what extent 
this kind of higher-learning functions can be achieved by a hier­
archy of LERNAS-type structures which model more or less low-level 
basic learning behaviour. 
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Fig. 3. Generic scetch of macrocolumns - drawn as ring 
structures - from different cortical layers with 
LERNAS-subunits representing ainicolumns 
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